当前位置:文档之家› 【免费下载】桩基托梁挡墙完整计算书

【免费下载】桩基托梁挡墙完整计算书

【免费下载】桩基托梁挡墙完整计算书
【免费下载】桩基托梁挡墙完整计算书

纳黔高速公路K58+412.3-K58+465左侧桩基托梁路肩墙结构计算书

1、

衡重式挡土墙土压力计算

本次考虑采用本项目提供的《衡重式一般挡墙标准图》中容许承载力500kpa,f=0.4,φ=35,γ=21的13m高挡墙对应尺寸(墙身自身倾覆稳定性不再计算),同时为了便于结构的设计取消原标准图中的基底坡度。土压力计算式行车荷载按照2004年《公路路基设计规范》规定采用10KN/m2,其他荷载分项系数均按照规范要求取用。土压力计算采用“理正挡土墙设计程序”完成,其结果如下:

=============================================

组合系数: 1.000

1. 挡土墙结构重力分项系数 = 0.900 √

2. 填土重力分项系数 = 1.000 √

3. 填土侧压力分项系数 = 1.400 √

4. 车辆荷载引起的土侧压力分项系数 = 1.400 √

=============================================

[土压力计算] 计算高度为 13.000(m)处的库仑主动土压力

计算上墙土压力

无荷载时的破裂角 = 27.500(度)

按假想墙背计算得到:

第1破裂角: 28.050(度)

Ea=248.401(kN) Ex=88.634(kN) Ey=232.049(kN) 作用点高度 Zy=1.867(m)因为俯斜墙背,需判断第二破裂面是否存在,计算后发现第二破裂面存在:第2破裂角=27.501(度) 第1破裂角=27.510(度)

Ea1=197.151(kN) Ex1=91.031(kN) Ey1=174.876(kN) 作用点高度 Zy1=1.867(m)计算下墙土压力

无荷载时的破裂角 = 34.449(度)

按力多边形法计算得到:

破裂角: 34.780(度)

Ea2=246.668(kN) Ex2=246.218(kN) Ey2=14.903(kN) 作用点高度 Zy2=3.371(m)

墙身截面积 = 41.143(m2) 重量 = 946.289 kN

第二破裂面与墙背间填料重= 145.336(kN)

由此分析,采用第二破裂面法计算出挡墙所受的水平土压力合力为Eax=91.031+246.67=337.25(kN/m)。

2、托梁外力计算

托梁计算时,考虑将其考虑为跨径为11m=2.5+6+2.5的支端悬出的简支梁结构,其尺寸采用1.5x4.1,桩基设置于托梁形心位置。其延米荷载情况如下:

(1)竖向荷载计算:

1)第二破裂面与墙背间填料重: Wt=145.336 kN/m

2)衡重式挡墙自重:W1 =946.289 kN/m

3)托梁自重:W2 =154.50 kN/m

4)上墙土压力的竖向分力:Ey1=174.876 kN/m,

5)下墙土压力的竖向分力:Ey2=14.903(kN)

将各力简化到托梁地面中心位置(桩基础轴线位置):

竖向力:N=145.34+946.29+154.50+174.88+14.90=1435.91 kN/m

(2)水平荷载计算:

1)上墙土压力的水平分力:Ex1=91.031(kN)

2)下墙土压力的水平分力:Ex2=246.218(kN)

将各力简化到托梁底面水平面位置(桩基础轴线位置)

水平力:F=91.03+246.22=337.25 kN/m

(3)弯矩计算:

将以上所有的力向托梁底面中心简化,求的弯矩如下(顺时针为正)

Mn=946.29*0.72+145.34*1.88+174.88*2.83+14.90*2.70-154.50*0.01-91.03*11.17-246.67*4.87=-729.93Kn.m/m。

3、托梁内力计算

考虑到本项目梁底面覆盖层厚度较大(13m),且自身强度也比较小故在计算中不考虑梁底面土体对梁体的弹性地基梁支撑作用。模型采用2.5+6.0+2.5跨径分布的支端悬出的简支梁,计算采用“理正结构工具箱”,其计算结果如下

;

1). 几何信息: (单位: 除注明外,均为mm)

梁号 1: 跨长 = 2500 B×H = 4105 × 1500

梁号 2: 跨长 = 6000 B×H = 4105 × 1500

梁号 3: 跨长 = 2500 B×H = 4105 × 1500

2). 荷载条件:

均布恒载标准值=1435.91kN/m ;活载准永久值系数=0.50

均布活载标准值=0.00kN/m ;支座弯矩调幅系数=100.0%

梁容重=25.00kN/m3;计算时不考虑梁自重:

恒载分项系数=1.20 ;活载分项系数=1.40

3). 计算结果:

由此进行托梁结构配筋设计。

4、桩顶外力计算

按照托梁计算模型,其支座处的竖向支反力即为桩竖向荷载。而且两桩对称布置,故两桩外力一致,同时考虑到每根托梁上布置了3跟650KN,20°倾角的锚索,故其外力计算如下:

a)弯矩:M=Mn*L/2=-729.93*11/2=-4014.62(公路横断面方向逆时针)

b)水平力:F=337.25*5.5=1854.89kN

c)竖向力:N=1435.91*5.5=7897.5Kn

d)锚索预应力;Fsx=650*3*Cos20°/2=916.2KN

Fsy=650*3*sin20°/2=333.5Kn

综合考虑计算后1-6号桩;

Mz=4009.65KN.m(公路横断面方向逆时针)

Fz=940kN

Nz=8231kN

5、桩内力计算

根据立面布置情况,本段共有桩8根,穿越地层均为两层,其力学指标如下;

M(MN/m4)Frb(kpa)地层名称C(kpa)φ(°)γ(Kn/m3

粘土258197.540

强风化泥岩181********所设置的8跟桩受力及尺寸如下表:

桩号

全长(m )桩宽(m )桩高(m )粘土层高度(m )强风化泥岩层高度(m )弯矩(KN/m )水平力(KN)竖向力(KN)1#

10 1.8 2.2 46401094082312#

19 1.8 2.2 118401094082313#

19 1.8 2.2 127401094082314#

19 1.8 2.2 127401094082315#

19 1.8 2.2 118401094082316#

10 1.8 2.2 46401094082317#

6 1.5 2.0 3

34014185578988#6 1.5 2.0 33401418557898同时考虑到本项目桩顶荷载较大且覆盖层指标较低较深,为了控制桩身变位考虑对1-6号桩基托梁实施预应力锚索,每根托梁单元中按照3m 间距,均匀布置3根650KN 级预应力锚索(倾角20°),由此进行桩的计算。计算考虑采用m 法进行,桩端铰支,其内力分析采用“理正岩土”进行计算,其结果如下(计算时考虑1.2的结构安全系数):

设备调试高中资料试卷方案。

12

5819.525834.075-0.5-44.996315.98 12.5

5396.863900.409-0.35-220.339606.14 13

4919.117993.395-0.23-151.606632.18 13.5

4403.4681054.849-0.14-94.21658.23 14

3864.2681090.451-0.07-48.198684.28 14.5

3313.0181105.815-0.02-13.26710.32 15

2758.4531106.3190.0111.244736.37 15.5

2206.6981096.9440.0326.256762.42 16

1661.5081082.1310.0432.997788.46 16.5

1124.5671065.6440.0432.949814.51 17

595.8641050.4460.0327.843840.55 17.5

74.1211038.5730.0219.651866.60 18

-442.7091031.0120.0110.593892.65 18.5

-956.8911027.580 3.135918.69 19-735.144513.3980

0944.74

缆敷设完毕,要进行检查和检测处理。卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。试卷切除从而采用高中资料试卷主要保护装置。

5.5

5095.04 1218.07 -3.28 -903.08 345.68 不通过5.75

4762.30 1435.97 -2.92 -840.20 358.70 不通过6

4377.05 1637.41 -2.57 -771.25 371.72 不通过6.25

3943.60 1820.86 -2.23 -696.35 384.75 不通过6.5

3466.62 1984.85 -1.89 -615.56 397.77 不通过6.75

2951.17 2127.90 -1.57 -528.85 410.79 不通过7

2402.67 2248.52 -1.25 -436.10 423.81 不通过7.25

1826.92 2345.17 -0.93 -337.15 436.84 通过7.5

1230.09 2416.28 -0.62 -231.71 449.86 通过7.75

618.78 2460.18 -0.31 -119.47 462.88 通过80.00 1237.56 0.00

0.00 475.91 通过计算后,1、6号桩土反力超过容许值,不能满足要求,故考虑调整为2.2*1.8桩,锚固桩长调整为10m ,且由于锚固段加长,桩端考虑为固定,计算结果如下:

设备调试高中资料试卷方案。

7.143

8675.855428.919-0.64-230.274431.26 通过7.429

8543.908489.31-0.52-192.463446.16 通过7.714

8396.25539.182-0.41-156.647461.01 通过8

8235.804579.182-0.31-123.351475.91 通过8.286

8065.288610.1-0.22-93.073490.81 通过8.571

7887.175632.866-0.15-66.292505.65 通过8.857

7703.65648.545-0.1-43.461520.55 通过9.143

7516.578658.328-0.05-25.014535.45 通过9.429

7327.463663.524-0.02-11.363550.35 通过9.714

7137.421665.562-0.01-2.901565.19 通过103473.571332.9880

0580.09 通过

设备调试高中资料试卷方案。

结构计算书

5.79316344.344-1659.206-0.01-3.425373.96 通过

68343.777-829.42600384.75 通过

6、锚索设计计算

本次考虑在托梁中心设置间距3.0m,650KN级锚索,计算按照《公路路基设计规范》(JTG D30-2004)要求进行,过程如下:

1)锚索材料设计

锚索考虑采用1X7,,强度标准值1860(设计强度1320Mpa)的钢绞线,

截面面积为:A=2.0*650*1000/1860=698.9mm2

所以考虑采用5φs15.2,钢绞线作为锚索材料。

2)锚固段长度设计

本项目自由端较长,不考虑钢绞线与砂浆间的粘结破坏,仅考虑砂浆于岩体间的破坏情况,锚固段考虑全部设置于强风化泥(中风化)上,采用130锚孔,

frb=140kpa(240):

强风化内有7.5m长,其粘结力为428.82KN,考虑规范要求安全系数2.0,应用力为214.4KN

中风化内长度为:L=2.0*(650-214.4)/(1*3.1415*0.13*240)=8.9m,

故,锚固段长度考虑保证7.5+8.9=16.4m。

本段锚索自由段长度约为20m,故单根锚索长36.4m,设计考虑采用40m。

7、结论

通过计算,本段挡墙确定采用桩基托梁结构,托梁采用4.1*1.5的2.5+6.0+2.5的两端

自由的简支梁结构;桩基础采用人工挖孔方桩,间距6m,其中1-6号桩采用2.2*1.8尺寸,7、8号采用1.5*2.0尺寸。并在1-6号桩对应的每根托梁上对称布置3跟650KN级预应力锚索,锚索采用130孔,5φs15.2,1860MPa钢绞线,单根全长40m。

相关主题
文本预览
相关文档 最新文档