当前位置:文档之家› 换热器温度反馈控制系统

换热器温度反馈控制系统

换热器温度反馈控制系统
换热器温度反馈控制系统

目录

目录 (1)

1绪论 (3)

1.1换热设备的概述 (3)

1.1.1设备的分类 (3)

1.1.2换热设备的换热目的 (3)

1.2换热器应用及发展 (4)

1.3设计任务 (4)

2换热器温控系统控制方案设计与论证 (5)

2.1 课程设计的方案论证 (5)

2.2换热器温度控制系统结构及框图 (5)

2.3变量选择 (6)

2.4工作原理及实现功能 (6)

2.4.1系统工作原理 (6)

2.4.2系统实现的功能 (7)

3被控对象特性分析 (8)

3.1数学模型概述 (8)

3.2建模方法 (8)

3.3测试法建模 (8)

3.4换热器测试法建模 (9)

4系统硬件设计 (10)

4.1 温度变送器 (10)

4.2 执行器(调节阀) (11)

4.3调节器 (12)

4.3.1调节器的选型 (12)

4.3.2调节器正反作用的选择 (14)

4.4系统组成 (14)

4.4.1原件清单 (14)

4.4.2系统配接图 (14)

5控制规律选择及系统仿真 (16)

5.1调节器控制规律的选择 (16)

5.2控制参数整定 (17)

总结 (18)

参考文献 (19)

本科生课程设计成绩评定表 (20)

1绪论

1.1换热设备的概述

使热量从热流体传递到冷流体的设备称为换热设备。换热设备广泛应用于炼油、化工、轻工、制药、机械、食品、加工、动力以及原子能工业部门当中。通常,在某些化工厂的设备投资中,换热器占总投资的30%;在现代炼油厂中,换热器约占全部工艺设备投资的40%以上;在海水淡化工业生产当中,几乎全部设备都是由换热器组成的。换热器的先进性、合理性和运转的可靠性直接影响产品的质量、数量和成本。

1.1.1设备的分类

根据不同的使用目的,换热器可以分为四类:加热器、冷却器、蒸发器、冷凝器。按照传热原理和实现热交换的形式不同可以分为间壁式换热器、混合式换热器、蓄热式换热(冷热流体直接接触)、有液态载热体的间接式换热器四种。在石油、化工生产中间壁式换热器应用的最为广泛。按冷、热流体进行热量交换的形式分为两类:一类是在无相变情况下的加热或冷却,另一种是在相变的情况下的加热或冷却。按传热设备的结构形式来分,则有列管式、蛇管式、夹套式和套管式等。衡量一台换热器好坏的标准是传热效率高,流体阻力小,强度足够,结构合理,安全可靠,节省材料,成本低,制造、安装、检修方便。

1.1.2换热设备的换热目的

在炼油的化工生产中,换热器设备应用极其广泛。进行换热的目的主要有下列四种:

(1)使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;

(2)生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围

内进行;

(3)某些工艺过程需要改变无聊的相态;

(4)回收热量。

由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可以是流量、压力、液位等。

1.2换热器应用及发展

换热器作为工艺过程中必不可少的单元设备,广泛地应用于石油、化工、动力、轻工、机械、冶金、交通、制药等工程领域中。据统计,在现代石油化工企业中换热器投资约占装置建设总投资的30%~40%;在合成氨厂中,换热器约占全部设备总台数40%。由此可见,换热器对整个企业的建设投资及经济效益有着重要的影响。化工生产中所指的换热器,常指间壁式换热器,它利用金属壁将冷、热两种流体间隔开,热流体将热传到避面的一侧(对流传热),通过间壁内的热传导,再由间壁的另一侧将热传递给冷流体,从而使热物流被冷却,冷物流被加热,满足化工生产中对冷物流或热物流温度的控制要求。

目前,换热器控制中大多数仍采用简单控制系统及传统的PID控制,以加热(冷却)介质的流量作为调节手段,以被加热(冷却)工艺介质的出口温度作为被控量构成控制系统。

对于存在大的负荷干扰且对于控制品质要求较高的应用场合,可能需要用到串级控制及前馈控制或串级—反馈,前馈—反馈等复杂控制系统。

1.3设计任务

本次设计针对换热器的温度反馈控制系统进行研究。通过对冷却水流量的控制以期实现出口油温度的恒定。具体要求为:

题目: 换热器温度反馈控制系统

初始条件:润滑油入口温度:90℃

润滑油出口温度:45℃

冷却水流量:40Kg/s

冷却水入口温度:28℃

2换热器温控系统控制方案设计与论证

2.1 课程设计的方案论证

根据题目要求并通过检阅大量文献,有三种方案可以实现换热器温度控制系统:

方案一:为了克服干扰对系统的影响,选择串级系统。其中润滑油出口温度为被控参数、冷却水流量为控制参数。

方案二:选择前馈-反馈系统。其中润滑油出口温度为被控参数、冷却水流量为控制参数,为了克服主要扰动(润滑油的流量Q)的干扰,在单闭环控制的基础上,加入对润滑油流量的检测,与单闭环控制构成前馈-反馈系统。

方案三:选择温度反馈控制系统。其中润滑油出口温度为被控参数、冷却水流量为控制参数。

以上三个方案都可以实现对换热器的控制,方案一使用串级控制系统,通过引入副回路使控制更加精确,减小了扰动的影响;方案二使用前馈-反馈系统,能实现对特定干扰的提前检测与消除,适用于系统干扰确定且较大的情况;方案三直接使用温度反馈控制系统,通过反馈来实现温度的恒定控制。其中前两种方案控制效果要好一些,但系统实现起来较复杂,在实际生产中,当简单反馈控制系统能满足要求时,一般直接使用简单反馈控制系统。

通过对以上三种方案的分析比较及本次设计的技术参数要求,选择方案三作为换热器温度控制系统的方案即可满足要求。

2.2换热器温度控制系统结构及框图

根据前面的方案分析,换热器温度反馈控制系统控制图如图2-1所示。

图2-1换热器控制图

换热器控制系统结构图如图2-2所示,输出量为被控参数,传感器把它测回到输入端与给定值比较,在由控制器指导执行器对被控参数进行操作。

图2-2换热器控制系统结构图

2.3变量选择

简单控制系统是指那些只有一个被控量、一个操作量,只用一个控制器和一个调节阀所组成的控制回路。根据上述分析可知该系统只需用简单控制系统既能完成控制要求。

被控参数选择润滑油出口温度,主要是因为本系统主要干扰是润滑油流量的变化,当选择冷却水为控制参数,则可以使主要干扰进入系统的位置远离被控参数,从而减小干扰对被参数的影响,提高了系统的控制品质。

控制参数选择冷却水流量。若系统出现故障时,应使冷却水以最大速度进入换热器,避免因换热器温度过高,烧坏换热器。从系统整体来看,扰动作用是由扰动通道对过程的被控参数产生影响,力图使被控参数偏离给定值;控制作用是由控制通道对过程的被控参数起主导影响,抵消扰动影响,以使被控参数尽力维持在给定值。因此,选冷却水流量为控制参数。

2.4工作原理及实现功能

2.4.1系统工作原理

换热器的温度控制系统换热器工作原理工艺流程:冷流体冷却水和热流体润滑油分别通过换热器的壳程和管程,通过热传导,从而使热流体润滑油的出口温度降低。通过控制冷却水的流量来使润滑油的出口温度稳定在设定值附近。

反馈系统的工作原理是:根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组

成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。反馈控制是自动控制的主要形式。

2.4.2系统实现的功能

通过控制冷却水的流量来使润滑油的出口温度稳定在设定值附近,即让流进来的热润滑油(90℃)经冷却水冷却后使其出口温度维持在45℃附近。

3被控对象特性分析

3.1数学模型概述

一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。因此要给被控对象建立数学模型。

数学建模将现实问题归结为相应的数学问题,并在此基础上利用数学的概念、方法和理论进行深入的分析和研究,从而从定性或定量的角度来刻画实际问题,并为解决现实问题提供精确的数据或可靠的指导。

3.2建模方法

白箱模型:

指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的工程技术问题。

灰箱模型:

指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。

黑箱模型:

指一些其内部规律还很少为人们所知的现象。如生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

根据实际问题分析,由于换热器较难描述,但人们还是了解了一些方法,所以我们采用灰箱模型建模,即测试法建模。

3.3测试法建模

只用于建立输入输出模型。它是根据工业过程的输入和输出的实测数据进行某种数学处理后得到的模型。它的主要特点是把被研究的对象视为黑匣子,完全从外部特性上测试和描述它的动态特性,不需要深入掌握其内部机理。

响应曲线法是指通过操作调节阀,使被控过程的控制输入产生一阶跃变化或方波变化,得到被控量随时间变化的响应曲线或输出数据,再根据输入-输出数据,求取过程的

输入-输出之间的数学关系。响应曲线法又分为阶跃响应曲线法和方波响应曲线法。

方波响应曲线法是在正常输入的基础上,施加一方波输入,并测取相应输出的变化曲线,据此估计过程参数。通常在实验获取方波响应曲线后,先将其转换为阶跃响应曲线,然后再按阶跃响应法确定有关参数。

3.4换热器测试法建模

通过方波响应曲线法对换热器系统建模,得到实验曲线,对实验曲线分析进而得到系统对象的数学模型。由于换热器类似于单容水箱的特性,考虑到实际工作中,大量的工业过程都采用一,二阶传递函数的形式,所以本对象也采用一阶惯性加延迟的传递函数。

4系统硬件设计

4.1 温度变送器

根据题目知,温度测量仪表的选择:由于系统对温度的要求不是很高,而系统的温度范围也在0~100℃之内,则只需要一般的测温元件,故选择K型热电偶。

温度变送器仪表的选择:DDZ-Ⅲ类仪表相对于DDZ-Ⅱ类仪表的一个优点为电流范围不是从零开始,这样就避免了把仪表不能正常工作误认为是输出为零,所以应选择DDZ-Ⅲ型K型热电偶温度变送器——DZ-5130K型热电偶温度变送器。

图4-1 K型热电偶温度变送器

表1 DZ-5130的主要技术指标

供电电

源:24VDC±10%

电源保

护:

具有反向保护

输出保护:输出短路无

限制

转换精

度:

±0.1~±0.5%F.S

温度漂移:

±0.15%

F.S/10℃

隔离性

能:

输入/输出/电源全隔离

响应时间:

≤0.1秒(0~

90%F.S)

绝缘电

阻:

输入/输出/电源间>100 MΩ

环境温

度:-10~55℃

绝缘强

度:

输入/输出/电源间>1500V AC(1分

钟)

环境湿度:0~90%RH不

结露

外壳:耐高温阻燃工程塑料安装形式:DIN 导轨安装,导轨尺寸35mm

图4-2 DZ-5130接线图

端子1、2为输入,3、4为补偿电阻,5、6为输出1~5VDC,7、8为电源。

4.2 执行器(调节阀)

调节阀是过程控制系统的一个重要组成部分,其特性好坏对控制质量的影响是很大的。由于其结构较简单又较粗糙,所以往往不被人们所重视。实践证明,在过程控制系统设计中,若调节阀特性选用不当,阀门动作不灵活,口径大小不合适,都会严重影响控制质量。

通过调节阀的选择原则,及本系统的要求,阀门选择气动薄膜式单座直通阀,安装方式为气关,实物图如图4-4所示。为了与气动薄膜式单座直通阀相匹配,还需要选择一个阀门定位器,与之配套使用,电气阀门定位器的型号为HEP-17,主要技术指标为:

(1)、精度:小于全行程±1%。

(2)、回差:小于全行程1%。

(3)、死区:小于全行程0.4%。

(4)、特性:线性(可改变成快开、等百分比特性)。

(5)、气源压力:0.14-0.16MPa 0.17-0.5MPa。

(6)、最大流量:140NL/min(当气源压力在0.14MPa时)。

(7)、耗气量:5NL/min(当气源压力在0.14MPa时)。

(8)、环境温度:-25℃~+55℃。

(9)、环境湿度:10-90%RH。

(10)、最大行程速度:4mm/秒(配ZH -22执行机构时)。

(11)、输入阻抗:250 Ω(4-20mADC) 100Ω(10-50mADC)。

(12)、电气连接:G1/2螺纹。

(13)、气管连接:卡套式气管接头(φ6或φ8)。

(14)、防爆(防护)型式(等级):隔爆型d(Diibt6),本质安全型 i(iaIICT6)

(15)外壳材料:铝合金喷朔工艺处理

(16)外形尺寸:392.5*141.5*231(mm)(长*宽*高)

(17)重量: 3.5kg

引线端子如图4-3所示。

如图4-3 电气阀门定位器的引线端子图

图4-4 气动薄膜直通单座调节阀

4.3调节器

4.3.1调节器的选型

由于已经选用DDZ-Ⅲ型变送器,所以调节器也选用DDZ-Ⅲ的,选DTZ-2100D。它是全刻度指示调节器,是DDZ-III系列仪表中调节单元的基型品种,它接受变送器经信号

分配器送来的信号征收给定信号进行比较,对其差值进行比例、积分、微分运算,以电流输出控制执行机构。主要技术指标为:

输入信号:1-5VDC

给定方式:内给定1-5DVC

外给定4-20mDVC(250Ω±0.1%)

输出信号:4-20mADC

闭环跟踪误差: <±0.5%

负载电阻: 205Ω-750Ω

功能:自动/手动,非平衡无扰动切换

调节动作: PD;PI;PID

比例带:(P)2%-500%

积分时间:(Ti)0.01分-2.5分和0.1分-25分两档(开关切换)

微分时间:(TD)关、0.04分-10分(开关切换)

微分增益: KD=10

工作环境:环境温度: 0-50℃;相对湿度:≤85%(RH)

电源电压: 24VAC±10%

功耗: 3W

重量: 3kg

图4-5 DTZ-2100D引线端子图

图4-6 DTZ-2100D实物图

4.3.2调节器正反作用的选择

调节器有正作用和反作用调节器两种。调节器正、反作用的选择同被控过程的特性及调节阀的气开、气关形式有关。被控过程的特性也分正、反两种。即当被控过程的输入量增加(或减小)时,其输出(被控参数)亦增加(或减小),此时称此被控过程为正作用;反之,当被控过程的输入量增加时,其输出却减小,称此过程为反作用。

4.4系统组成

4.4.1原件清单

根据前面的选型确定系统的原件清单如表2所示。

表2 控制系统仪表元件清单

名称数

量名称数

K型热电偶温度传感器 1 DTZ-2100D调节器 1

DZ-5130K型热电偶温度变送器1 气动薄膜式直通单座

阀门

1

HEP-17电气阀门定位器 1

4.4.2系统配接图

将所选元器件连接起来组成系统的配接图如下。

图4-7 控制系统的配接图

用K型热电偶将润滑油的出口温度测量出来送给温度变送器处理,温度变送器将此温度送给调节器分析控制,经一定的处理后输出控制信号给执行机构,即通过阀门定位器控

制阀门的开度进而控制冷却水的流量,保证润滑油的出口温度稳定在设定值的附近。

5控制规律选择及参数整定

5.1调节器控制规律的选择

调节器的作用是对来自变送器的测量信号与给定值比较所产生的偏差e(t)进行比例(P)、比例积分(PI)、比例微分(PD)或比例积分微分(PID)运算,并输出信号到执行器。选择调节器的控制规律是为了使调节器的特性与控制过程的特性能很好配合,使所设计的系统能满足生产工艺对控制质量指标的要求。

比例控制规律(P)是一种最基本的控制规律,其适用范围很广。在一般情况下控制质量较高,但有余差。此外,当过程惯性时延较大时,由于纯比例作用在起始段动作不够灵敏,因而超调量较大,同时加长了过渡过程时间,于是纯比例作用的应用受到了限制。积分作用能消除余差,所以当过程容量较小,负荷变化较大,工艺要求无余差时,采用比例积分控制规律可以获得较好的控制质量。但是当过程控制通道的纯时延和容量时延都较大时,由于积分作用容易引起较大的超调,可能出现持续振荡,所以要尽可能避免用比例积分控制规律,不然会降低控制质量。通常对管道内的流量或压力控制,采用比例积分作用其效果甚好,所以应用较多。微分作用具有超前作用,对于被控过程具有较大容量时延的场合,会大大改善系统的控制质量。但是对于时延很小,扰动频繁的系统,由于微分作用会使系统产生振荡,严重时会使系统发生事故,所以应尽可能不用微分作用。

比例积分微分(PID)作用是一种理想的控制作用,一般均能适应不同的过程特性。当要求控制质量较高时,可选用这种控制作用的调节器。

比例积分微分(PID)控制规律的微分方程数学模型为:

01()(){()()}t d p de t u t e t e t dt Ti dt

k T =++? 其中:()u t :为调节器的输出号

p k

:放大倍数 i T

:积分时间常数 d

T :微分时间常数 ()e t :设定值与测量值偏差信号

通过以上分析及本系统是温度控制为被控参数,温度检测本身具有滞后性,为了弥补这个缺点,本系统选用比例积分微分(PID)控制规律。

5.2控制参数整定

PID 参数整定方法就是确定调节器的比例系数P 、积分时间常数Ti 和微分时间常数Td ,改善系统的静态和动态特性,使系统的过渡过程达到最为满意的质量指标要求。一般可以通过理论计算确定,但误差太大。目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。下面介绍衰减曲线法整定PID 参数。

衰减曲线法是在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶跃扰动观察输出响应的衰减过程,直至10:1衰减过程为止。这时的比例度称为10:1衰减比例度,用s δ表示之。由于当衰减比为10:1时。要推测3y 的时间不容易,

因此当过渡过程曲线上只看到第一个波峰而第二个看不出来时就认为是衰减比为10:1的振荡过程。此时被控参数上升时间为r T 。根据r T 和s δ,运用表2所示的经验公式,就可计

算出调节器预整定的参数值。

表2 衰减曲线法整定计算公式

衰减率

整定参数 调节规律 δ Ti Td

0.9 P s δ PI

1.2s δ 2r T PID 0.8s δ 1.2r T 0.4r T

衰减曲线法的第一步就是获取系统的衰减曲线,采用10:1衰减曲线法。取i T =∞,0d T =,可直接将图11中的积分环节和微分环节都断开,让δS

的值从大到小进行试验.,观察示波器的输出, 直到只看到第一个波峰而第二个看不出来时就认为是衰减比为10:1的振荡过程。

总结

在这次课程设计中我觉得最重要的就是要有自学能力,因为这次课程设计中有部分知识我们之前还没有接触过,所以自己必须学会查找相关资料来阅读了解,另外就是在遇到实际问题的时候,要认真思考,运用所学的知识,一步一步的去探索,是完全可以解决遇到的一般问题的。而这次设计过程中,我一开始走了很多弯路,这也是自己的知识不够扎实的原因。不过经自己的几天努力,最后还是做出来。

经过这次的课程设计,让我深深的感受到理论联系实践的重要性,平时在学习中不能够透彻理解的知识,通过动手,会有很好的认知。本次课程设计虽然不长,但是它给我们带来很多收获。它使我们意识到自己的操作能力的不足,在理论上还存在很多缺陷。所以在以后的学习生活中,我会更加努力地加强理论联系实际的学习,在努力学好专业知识的同时努力加强自己的专业技能方面的能力,使自己的知识在实践中不断增长,在实践中锻炼自己,培养自己各个方面的能力,不断提高自己。

参考文献

[1] 黄德先,王京春,金以慧.过程控制系统.第一版.北京:清华大学出版社,2011.

[2] 周泽魁.控制仪表与计算机控制装置.第一版.北京:化学工业出版社,2012.

[3] 张宏建.自动检测技术与装置.北京:化学工业出版社,2010.

[4]李铁苍.热力过程自动化 .北京:中国电力出版社,2006

[5]张井岗.过程控制与自动化仪表.北京:北京大学出版社,2007

本科生课程设计成绩评定表姓名性别

专业、班级

课程设计题目:

课程设计答辩或质疑记录:

成绩评定依据:

序号评定项目评分成绩

1 选题合理、目的明确(10分)

2 设计方案正确,具有可行性、创新性(20分)

3 设计结果可信(例如:系统建模、求解,仿真结果)(25分)

4 态度认真、学习刻苦、遵守纪律(15分)

5 设计报告的规范化、参考文献充分(不少于5篇)(10分)

6 答辩(20分)

总分

最终评定成绩(以优、良、中、及格、不及格评定)

指导教师签字:

年月日

技能训练 换热器仿真实训

换热器仿真实训 一、工作原理简述 换热器的操作技术培训是很重要的基本单元操作训练。化工生产中所指的换热器,常指间壁式换热器,它利用金属壁将冷、热两种流体间隔开,热流体将热传到壁面的一侧(对流传热),通过间壁内的热传导,再由间壁的另一侧将热传给冷流体,从而使热物流被冷却,冷物流被加热,满足化工生产中对冷物流或热物流温度的控制要求。 本单元选用的是双程列管式换热器,冷物流被加热后有相变化。 在对流传热中,传递的热量除与传热推动力(温度差)有关外,还与传热面积和传热系数成正比。传热面积减少时,传热量减少;如果间壁上有气膜或垢层,都会降低传热系数,减少传热量。所以,开车时要排不凝气;发生管堵或严重结垢时,必须停车检修或清洗。 另外,考虑到金属的热胀冷缩特性,尽量减小温差应力和局部过热等问题,开车时应先进冷物料后进热物料;停车时则先停热物料后停冷物料。 二、工艺流程简介 冷物流(92℃)经阀VB01进入本单元,由泵P101A/B,经调节器FIC101控制流量送入换热器E101壳程,加热到气145℃(20%被汽化)后,经阀VD04出系统。热物流(225℃)由阀VB11进入系统,经泵P102A/B,由温度调节器TIC101分程控制主线调节阀TV101A和副线调节阀TV101B(两调节阀的分程动作如图2-23所示)使冷物料出口温度稳定;过主线阀TV101A的热物流经换热器E101管程后,与副线阀TV101B来的热物流混合(混合温度为(177±2)℃),由阀VD07出本单元,工艺流程如图2-24所示,。 图2-23调节阀TV101分程动作示意图

图2-24换热器仿真操作流程图 ●训练步骤 (一)冷态开车 1.启动冷物流进料泵P101A (1)确定所有手动阀已关闭,将所有调节器置于手动状态且输出值为0; (2)开换热器E101壳程排气阀VD03(开度约50%); (3)全开泵P101A前阀VB01; (4)启动泵P101A; (5)当泵P101A出口压力达到9.0atm(表)时,全开P101A后手阀VB03。 2.冷物流进料 (1)顺序全开调节阀FV101前后手阀VB04和VB05;再逐渐手动打开调节阀FV101; (2)待壳程排气标志块由红变绿时,说明壳程不凝气体排净,关闭VD03; (3)开冷物流出口阀VD04,开度为50%;同时,手动调节FV101,使FIC101指示值稳定到12000kg/h,FV101投自动(设定值为12000kg/h)。 3.启动热物流泵P102A (1)开管程排气阀VD06(开度约50%); (2)全开泵P102A前阀VB11; (3)启动泵P102A; (4)待泵P102A出口压力达到正常值10.0atm(表),全开泵P102A后手阀

换热器热流出口温度控制

毕业设计说明书 G RADUATE T HESIS 论文题目:换热器热流出口温度控制学院:电气工程学院

摘要 换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。以工业上常用的列管式换热器为例,热流体和冷流体通过对流热传导达到换热的目的,从而使换热器物料出口温度满足工业生产的需求。但由于目前制造工艺的限制,控制方式的单一性,换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义。 本课题来源于对SMPT—1000实验平台换热器的研究,对于换热器热流出口温度的控制,使用PID控制来进行调节,通过不断的调整其参数,确定一个比较准确的参数值,通过调整冷水阀的开度调整其流量来控制热流的出口温度。 本设计利用PCS7来完成整个系统自动控制,通过PCS7软件对系统进行硬件和软件组态,完成控制出口温度的编程,最后通过人机界面监控维护控制系统正常运行。 关键词换热器;温度;PID控制;PCS7

Abstract Heat exchanger as a standard process equipment has been widely used in the field of power engineering and other process industries. In the industry commonly used shell and tube heat exchanger, for example, the hot fluid and cold fluid heat transfer by convection heat transfer to achieve the purpose, so that the heat exchanger outlet temperature of the material to meet the needs of industrial production. However, as the manufacturing process constraints, control unity, common heat exchanger control is poor, the phenomenon of low heat transfer efficiency, resulting in waste of energy. How to improve the control performance of the heat exchanger to improve heat transfer efficiency, to ease China's energy shortage situation, have long-term significance. The design comes from the SMPT-1000 test platform research exchanger for heat exchanger outlet temperature control, the use of PID control to adjust, through continuous adjusting its parameters to determine a more accurate parameter values by adjusting opening of the cold water valve to control the flow of adjustment of the outlet temperature of the heat flow. This design uses PCS7 to complete the system of automatic control by PCS7 software on the system hardware and software configuration, complete control of the outlet temperature of the programming, the last operating normally by HMI monitoring and control system. Keywords Heat;temperature; PID control; PCS7

换热器温度控制系统简单控制系统方案

换热器温度控制系统简单控制系统方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 目录 (2) 1、题目................................................................................................................. 错误!未定义书签。 2、换热器概述..................................................................................................... 错误!未定义书签。 换热器的用途............................................................................................... 错误!未定义书签。 换热器的工作原理及工艺流程图............................................................... 错误!未定义书签。 3、控制系统 (3) 控制系统的选择 (3) 工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 被控变量的选择 (4) 操纵变量的选择 (4) 被控对象特性 (5) 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 测温元件及变送器 (7) 执行器 (10) 调节器 (12) 、仪表型号清单列表 (12) 6、系统方块图 (13) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (13) 调节控制参数 (13) PID参数整定及系统仿真 (14) 系统性能分析 (16) 8、参考文献 (17)

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

换热器温度控制系统

1. E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K 的加热蒸汽加热入口温度为294K的工艺介质。为保证生成物的产量,质 量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此 实际情况,最后确定设计一个换热器的反馈控制方案。 1.1 换热器概述 换热器工作状态如何, 可用几项工作指标加以衡量。常用的工作指标主要有漏损率、换热效率 和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这 些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、 动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷 却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上 流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流 体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的 主要设备之一。 1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器 的具体分类如下: 一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触 式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K 的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出

2020年换热器温度控制系统简单控制系统

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 目录 目录 (1) 1、题目........................................................ 错误!未定义书签。 2、换热器概述.................................................. 错误!未定义书签。 2.1换热器的用途............................................ 错误!未定义书签。 2.2换热器的工作原理及工艺流程图............................ 错误!未定义书签。 3、控制系统 (3) 3.1控制系统的选择 (3) 3.2工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 4.1 被控变量的选择 (4) 4.2 操纵变量的选择 (4) 4.3 被控对象特性 (5) 4.4 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 5.1 测温元件及变送器 (7) 5.2 执行器 (10) 5.3 调节器 (13) 5.4、仪表型号清单列表 (13) 6、系统方块图 (14) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (14) 7.1调节控制参数 (14)

7.2 PID参数整定及系统仿真 (15) 7.3 系统性能分析 (18) 8、参考文献 (19) 1、题目 热交换器出口温度的控制。 2、换热器概述 2.1 换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及 其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有 下列四种: ①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行; ②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度 范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变 量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、 调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可 以是流量、压力、液位等。 2.2 换热器的工作原理及工艺流程图 换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别 通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体

水温自动控制系统设计

水温自动控制系统设计 摘要 水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。实现水温控制的方法很多,如单片机控制、PLC控制等等。而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。 温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。 为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control System ABSTRACT The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system. In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value. Keywords:AT89S52; temperature control; PT1000; PID

水温自动控制系统

《电子技术综合设计》 设计报告 设计题目:水温自动控制系统 组长姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 时间: 2016 ~ 2017 学年第(1)学期指导教师:陈烨成绩:评阅日期:

一、课题任务 设计并制作一个水温自动控制系统,对1.5L净水进行加。水温保持在一定范围内且由人工设定。 细节要求如下: 1.温度设定范围为40℃~90℃,最小分辨率为0.1℃,误差≤1℃。 2.可通过LCD显示屏显示温度目标值与实时温度。 3.可以通过键盘调整目标温度的数值。 二、方案比较 1.系统模块设计 为完成任务目标,可以将系统分为如下几个部分:5V直流电供电模块、测温模块、80C52单片机控制系统、键盘控制电路、温度显示模块、继电器控制模块、强电加热电路。通过各模块之间的相互配合,可以完成水温检测、液晶显示、目标值设置、水温控制等功能。 系统方框图如下:

2.5V直流电供电模块 方案一:直接用GP品牌的9v电池,然后接通过三端稳压芯片7805稳压成5伏直流电源提供给单片机系统使用,接两个5伏电源的滤波电容后输出。 方案二:通过变压器,将220v的市电转换成9v左右的交流电,变压器输出端的9V电压经桥式整流并电容滤波。要得到一个比较稳定的5v电压,在这里接一个三端稳压器的元件7805。 由于需要给继电器提供稳定的5V电压,而方案一中导致电池的过度损耗,无法稳定带动继电器持续工作,所以我们选用能够提供更加稳定5v电源的方案二。 3.测温模块 经查阅资料,IC式感温器在市场上应用比较广泛的有以下几种: AD590:电流输出型的测温组件,温度每升高1 摄氏度,电流增加1μA,温度测量范围在-55℃~150℃之间。其所采集到的数据需经A/D 转换,才能得到实际的温度值。 DS18B20:内含AD转换器,所以除了测量温度外,它还可以把温度值以数字的方式(9 B i t ) 送出,因此线路连接十分简单,它无需其他外加电路,直接输出数字量,可直接与单片机通信,读取测温数据。它能够达到0.5℃的固有分辨率,使用读取温度暂存寄存器的方法还能达到0.0625℃以上精度,温度测量范围在-55℃~125℃之间,应用方便。 SMARTEC感温组件:这是一只3个管脚感温IC,温度测量范围在 -45℃~13℃,误差可以保持在0.7℃以内。 max6225/6626:最大测温范围也是-55~+125℃,带有串行总线接口,测量温度在可测范围内的的误差在4℃以内,较大,故舍弃该方案。 本设计选用DS18B20感温IC,这是因其性能参数符合设计要求,接口简单,内部集成了A/D 转换,测温更简便,精度较高,反应速度快,且经过市场考察,该芯片易购买,使用方便。 下面是DS18B20感温IC的实物和接口图片

仿真-热交换器

化工仿真技术实习报告 实习名称:热交换器 学院: 专业: 班级: 姓名:学号 指导教师: 日期:年月日

一、实习目的 1、熟习换热器的操作方法; 2、掌握换热器各个部件的表示方法及操作,加深对换热器性能的了解; 3、了解测定流量,温度的一些常用方法,仿真系统测试换热器的原理; 4、了解换热器的一些常见故障及排除方法和技巧。 二、实习内容 1、工艺流程简介 本热交换器为双程列管式结构,起冷却作用,管程走冷却水(冷流)。含量30%的磷酸钾溶液走壳程(热流)。 工艺要求:流量为18441 kg/h的冷却水,从20℃上升到30.8℃,将65℃流量为8849 kg/h的磷酸钾溶液冷却到32℃。管程压力0.3MPa,壳程压力 0.5MPa。 流程图画面“G1”中:阀门V4是高点排气阀。阀门V3和V7是低点排液阀。P2A为冷却水泵。P2B为冷却水备用泵。阀门V5和V6分别为泵P2A 和P2B的出口阀。P1A为磷酸钾溶液泵。P1B为磷酸钾溶液备用泵。阀门V1和V2分别为泵P1A和P1B的出口阀。 FIC-1 是磷酸钾溶液的流量定值控制。采用PID单回路调节。 TIC-1 是磷酸钾溶液壳程出口温度控制,控制手段为管程冷却水的用量(间接关系)。采用PID单回路调节。 检测及控制点正常工况值如下: TI-1 壳程热流入口温度为65℃ TI-2 管程冷流入口温度为20℃ TI-3 管程冷流出口口温度为30.8℃左右 TI-2 壳程热流入口温度为32℃ FR-1 冷却水流量18441kg/h FIC-1 磷酸钾流量8849kg/h 报警限说明(H为报警上限,L为报警下限): TIC-1>35.0℃ TIC-1<28.0℃ FIC-1>9500kg/h FIC-1<7000kg/h 2、工艺流程图

换热器仿真训练

换热器单元仿真训 化工二班、 1、工艺说明 本单元设计采用管壳式换热器。来自界外的92℃冷物流(沸点:198.25℃)由泵P101A/B送至换热器E101的壳程被流经管程的热物流加热至145℃,并有20%被汽化。冷物流流量由流量控制器FIC101控制,正常流量为12000kg/h。来自另一设备的225℃热物流经泵P102A/B送至换热器E101与注经壳程的冷物流进行热交换,热物流出口温度由TIC101控制(177℃)。 2 、设备名称预览 P101A/B:冷物流进料泵 P102A/B:热物流进料泵 E101:列管式换热器 3、开车操作流程

3.1 启动冷流进料泵P101A (1)开换热器壳程排气阀VD03。 (2)开P101A泵的前阀VB01。 (3)启动泵P101A。 (4)当进料压力指示表PI101指示达9.0atm以上,打开P101A泵的出口阀VB03。3.2 冷物流E101进料 (1)打开FIC101的前后阀VB04,VB05,手动逐渐开大调节阀FV101(FIC101)。 (2)观察壳程排气阀VD03的出口,当有液体溢出时(VD03旁边标志变绿),标志着壳 程已无不凝性气体,关闭壳程排气阀VD03,壳程排气完毕。 (3) 打开冷物流出口阀(VD04),将其开度置为50%,手动调节FV101,使FIC101 其达到12000kg/h,且较稳定时FIC101设定为12000kg/h,投自动。 3.3 启动热物流入口泵P102A (1)开管程放空阀VD06。 (2)开P102A泵的前阀VB11。 (3)启动P102A泵。 (4)当热物流进料压力表PI102指示大于10atm时,全开P102泵的出口阀VB10。3.4 热物流进料 (1)全开TV101A的前后阀VB06,VB07,TV101B的前后阀VB08,VB09。 (2)打开调节阀TV101A(默认即开)给E101管程注液,观察E101管程排汽阀VD06 的出口,当有液体溢出时(VD06旁边标志变绿),标志着管程已无不凝性气体,此时关管程排气阀VD06,E101管程排气完毕。 (3)打开E101热物流出口阀(VD07),将其开度置为50%,手动调节管程温度控制 阀TIC101,使其出口温度在177±2℃,且较稳定,TIC101设定在177℃,投自动。 4、正常工作操作参数 (1)冷物流流量为12000kg/h,出口温度为145℃,气化率20%。 (2)热物流流量为10000kg/h,出口温度为177℃。 5、停车操作流程 5.1 停热物流进料泵P102A (1)关闭P102泵的出口阀VB01。 (2)停P102A泵。

换热器出口温度设置

换热器出口温度设置 Prepared on 24 November 2020

摘要 目前,换热器控制中大多数仍采用简单控制系统及传统的PID控制,以加热(冷却)介质的流量作为调节手段,以被加热(冷却)工艺介质的出口温度作为被控量构成控制系统。但是,由于换热系统这种被控对象具有纯滞后、大惯性、参数时变的非线性特点,传统的PID控制往往不能满足其静态、动态特性的要求。使换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义 本课题是针对换热器实验设备温度控制改进提出的。设计中首先通过对现阶段换热器出口温度控制的特点进行分析,从而发现了制约控制效果进一步提高的瓶颈,为下一步改善换热器的控制效果提供了理论依据。然后根据换热系统组成、控制流程的特点对换热器温度控制系统建立数学模型。再根据所建立的数学模型,联系换热器温度控制的特点,给出了相应的控制策略,提出了串级控制及前馈控制或串级—反馈,前馈—反馈等复杂控制系统,来满足对于存在大的负荷干扰且和控制品质要求较高的应用场合。 关键字:换热器、数学模型、PID 、出口温度控制、串级控制

前言 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大型风力发电场的建设、太阳能光伏发电产业中多晶硅产量的迅速增长、大型环境保护工程的开工建设、海水淡化工程的日益成熟,都将对换热器产业产生巨大的拉动。 未来换热器将会朝着更加节能环保和美观实用的角度不断创新与发展,短时期钢制柱式散热器和铜铝复合散热器任将会是市场主流产品与选择。

换热器温度控制系统范本

换热器温度控制系 统

1.E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K 的工艺介质。为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。 1.1换热器概述 换热器工作状态如何,可用几项工作指标加以衡量。常见的工作指标主要有漏损率、换热效率和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO (一氧化碳)加热到出口温度为473K,因此我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。 1.3换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的

基于单片机的水温控制系统毕业设计

基于单片机的水温控制系统设计 摘要 温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。它以单片机AT80C51为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。 关键词:单片机、数码管显示、单总线、DS18B20. Based Temperature Control System Abstract Temperature control system can be said to be ubiquitous, water heaters, air conditioning systems, refrigerators, rice cookers, electric fans and other home appliances as well as high-speed and efficient hand-held computers and electronic equipment are required to provide temperature control. The system design can be used for drinking water heater temperature control systems and other electrical circuits. AT80C51 microcontroller as the core of it, through the three temperature digital display and 4 keys to achieve man-machine dialogue, the use of single-chip bus temperature conversion temperature DS18B20 real-time acquisition and through the digital display and offers a variety of operating light to indicate system now live in the state, such as: temperature setting, heating, and stop heating, the entire system through the four buttons to set the heating temperature and control the operating mode. KEY WORDS:Microcontroller, digital display, single bus, DS18B20 绪论

换热器温度控制系统设计精编资料

换热器温度控制系统 设计

换热器温度控制系统设计 1、换热设备概述 换热器又称热交换器,是进行热量交换的设备的统称。换热器广泛应用于化工、石化、炼油、轻工、制药、食品加工、动力以及原子能等工业。换热器应用于存在温度差的流体间的热交换设备,换热器中至少有两种流体,温度较高则放出热量,反之则吸收热量。换热器依据传热原理和实现热交换的方法一般分为间壁式、混合式、蓄热式三类。其中间壁式换热器应用最广。它又可分为管式换热器、板式换热器、翅片式换热器、热管换热器等。其中以管式(包括蛇管式、套管式、管壳式等)换热器应用最普遍。列管式和板式,各有优点,列管式是一种传统的换热器,广泛应用于化工、石油、能源等设备;板式则以其高效、紧凑的特点大量应用于工业当中。 2、控制方案的确定 实验控制对象位列管式换热器,主要的扰动是冷物料的流量Q。换热器温度控制系统包括换热器、控制冷流体的离心泵,传感器等设备。实验采用温度流量串级控制,以冷物料出口温度为主对象,以冷物料流量Q为副对象。 换热器控制图 仅供学习与交流,如有侵权请联系网站删除谢谢2

仅供学习与交流,如有侵权请联系网站删除 谢谢3 3、系统硬件设计 或控制量 型号 参数 温度变送器 (Endress+Hauser ) TR13 工作温度范围 PT100 (薄膜式(TF) 50 °C...500 °C (58 °F...932 °F) PT100 (绕线式(WW)): -200 °C (600) °C (- 328 °F...1,112 °F) PT100 (薄膜式(TF)): -50 °C...400 °C (58 °F...752 °F) 最大过程压力(静压) 20 °C 时:50 bar (725 psi) 73W 参数: 标称口径 DN 15…150 (1/2"…6") 测量范围 气体: 4…5 210 m3/h 过程温度 -200...+400°C (-328...+752°F) 最高可达 +450°C / 842°F (特殊选型) 输出信号 4…20 mA 电流输出 防爆认证 ATEX 、FM 、CSA 、TIIS 、NEPSI 、IEC 换热器热水出口温度和冷水流量串级控制

蓄热式换热器的仿真模拟与研究

万方数据

万方数据

万方数据

蓄热式换热器的仿真模拟与研究 作者:崔中坚, 刘刚, 王海, 冯震, CUI Zhong-jian, LIU Gang, WANG Hai, FENG Zhen 作者单位:东华大学环境科学与工程学院 刊名: 建筑热能通风空调 英文刊名:BUILDING ENERGY & ENVIRONMENT 年,卷(期):2010,29(3) 参考文献(5条) 1.郝红;张于峰转轮除湿器的数学模型及性能研究[期刊论文]-暖通空调 2005(12) 2.杨世铭;陶文铨传热学 1998 3.若尾法昭;影片一朗填充床传热与传质过程 1986 4.林瑞泰多孔介质传热传质引论 1995 5.余驰;王磊太阳能低温水源热泵辅助供暖系统模拟研究[期刊论文]-制冷与空调 2006(01) 本文读者也读过(7条) 1.张海强.刘晓华.江亿.Zhong Haiqiang.Liu Xiaohua.Jiang Yi蓄热式换热器周期性换热过程的性能分析[期刊论文]-暖通空调2011,41(3) 2.王维刚.WANG Weigang蓄热式换热器的优化设计[期刊论文]-化工机械2010,37(4) 3.严亮新型高频换向陶瓷蓄热式换热器性能分析及实验研究[学位论文]2007 4.罗海兵.陈维汉蓄热式换热器传热过程的数值模拟[期刊论文]-化工装备技术2004,25(4) 5.冯震核电站汽机房通风方案的优化[学位论文]2010 6.朱铮.杨其才.刘刚.冯震.Zhu Zheng.Yang Qicai.Liu Gang.Feng Zhen电厂自然通风方式的选择[期刊论文]-制冷与空调(四川)2011,25(2) 7.吴志根.陶文铨多孔金属矩阵材料在相变蓄热中的强化换热数值分析[会议论文]-2011 本文链接:https://www.doczj.com/doc/ef2801353.html,/Periodical_jzrntfkt201003002.aspx

换热器温度控制系统设计

换热器温度控制系统设计 1、换热设备概述 换热器又称热交换器,是进行热量交换的设备的统称。换热器广泛应用于化工、石化、炼油、轻工、制药、食品加工、动力以及原子能等工业。换热器应用于存在温度差的流体间的热交换设备,换热器中至少有两种流体,温度较高则放出热量,反之则吸收热量。换热器依据传热原理和实现热交换的方法一般分为间壁式、混合式、蓄热式三类。其中间壁式换热器应用最广。它又可分为管式换热器、板式换热器、翅片式换热器、热管换热器等。其中以管式(包括蛇管式、套管式、管壳式等)换热器应用最普遍。列管式和板式,各有优点,列管式是一种传统的换热器,广泛应用于化工、石油、能源等设备;板式则以其高效、紧凑的特点大量应用于工业当中。 2、控制方案的确定 实验控制对象位列管式换热器,主要的扰动是冷物料的流量Q。换热器温度控制系统包括换热器、控制冷流体的离心泵,传感器等设备。实验采用温度流量串级控制,以冷物料出口温度为主对象,以冷物料流量Q为副对象。 换热器控制图

3、系统硬件设计 或控制量 型号 参数 温度变送器 (Endress+Hauser ) TR13 热保护套管末端类型 直管型 工作温度范围 PT100 (薄膜式(TF) 50 °C...500 °C (58 °F...932 °F) PT100 (绕线式(WW)): -200 °C...600 °C (-328 °F...1,112 °F) PT100 (薄膜式(TF)): -50 °C...400 °C (58 °F...752 °F) 最大过程压力(静压) 20 °C 时:50 bar (725 psi) 流量变送器 (Endress+Hauser )73W 涡街 流量计 73W 参数: 标称口径 DN 15 (150) (1/2"…6") 测量范围 气体: 4…5 210 m3/h 过程温度 -200...+400°C (-328...+752°F) 最高可达 +450°C / 842°F (特殊选型) 输出信号 4…20 mA 电流输出 防爆认证 ATEX 、FM 、CSA 、TIIS 、NEPSI 、IEC 防护等级 IP 67 (NEMA 4x) X 主调节器 副调节器 换热器热水出口温 主回路干 给定值+ - 换热器热水出口温度和冷水流量串级控制框图 X - 调节阀 涡街流量 流量 换热器热水出口温 变频器干扰 水泵

相关主题
文本预览
相关文档 最新文档