当前位置:文档之家› 高中物理第1章法拉第电磁感应定律、楞次定律的综合应用学案教科版选修3_2

高中物理第1章法拉第电磁感应定律、楞次定律的综合应用学案教科版选修3_2

高中物理第1章法拉第电磁感应定律、楞次定律的综合应用学案教科版选修3_2
高中物理第1章法拉第电磁感应定律、楞次定律的综合应用学案教科版选修3_2

学案6 习题课:法拉第电磁感应定律、楞次定律的综合应用

[目标定位] 1.掌握电磁感应现象中电路问题的分析方法和解题基本思路.2.综合应用楞次定律和法拉第电磁感应定律解决电磁感应中的图像问题.

一、电磁感应中的电路问题

在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势.若回路闭合,则产生感应电流,所以电磁感应问题常与电路知识综合考查. 解决与电路相联系的电磁感应问题的基本方法是:

(1)明确哪部分导体或电路产生感应电动势,该导体或电路就是电源,其他部分是外电路. (2)画等效电路图.分清内、外电路,画出等效电路图是解决此类问题的关键.

(3)感应电动势的大小由法拉第电磁感应定律E =n ΔΦ

Δt 或E =BLv 确定,感应电动势的方向

由楞次定律或右手定则确定,在等效电源内部从负极指向正极.

(4)运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解.

例1 用相同导线绕制的边长为L 或2L 的四个闭合导线框,以相同的速度匀速进入右侧匀强磁场,如图1所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是( )

图1

A .U a

B .U a

C .U a =U b

D .U b

解析 U a =34BLv ,U b =56BLv ,U c =34·B ·2Lv =32BLv ,U d =46B ·2L ·v =4

3BLv ,故选B.

答案 B

例2 如图2所示,有一范围足够大的匀强磁场,磁感应强度B =0.2 T ,磁场方向垂直纸面向里.在磁场中有一半径r =0.4 m 的金属圆环,磁场与圆环面垂直,圆环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω.一金属棒MN 与圆环接触良好,金属棒与圆环的电阻均忽略不计.

图2

(1)若金属棒以v 0=5 m/s 的速率在圆环上向右匀速滑动,求金属棒滑过圆环直径的瞬间MN 中的电动势和流过灯L 1的电流;

(2)撤去金属棒MN ,若此时磁场随时间均匀变化,磁感应强度的变化率为ΔB Δt =4

π T/s ,求

回路中的电动势和灯L 1的电功率. 解析 (1)等效电路如图所示.

MN 中的电动势E 1=B ·2r ·v 0=0.8 V

MN 中的电流I =E 1

R 0

2

=0.8 A

流过灯L 1的电流I 1=I

2=0.4 A

(2) 等效电路如图所示

回路中的电动势E 2=ΔB Δt ·πr 2

=0.64 V

回路中的电流I ′=

E 2

2R 0

=0.16 A 灯L 1的电功率P 1=I ′2

R 0=5.12×10-2

W

答案 (1)0.8 V 0.4 A (2)0.64 V 5.12×10-2

W 二、电磁感应中的图像问题

1.对于图像问题,搞清物理量之间的函数关系、变化范围、初始条件、斜率的物理意义等,往往是解题的关键. 2.解决图像问题的一般步骤

(1)明确图像的种类,即是B -t 图像还是Φ-t 图像,或者E -t 图像、I -t 图像等. (2)分析电磁感应的具体过程.

(3)确定感应电动势(或感应电流)的大小和方向,有下列两种情况:

①若回路面积不变,磁感应强度变化时,用楞次定律确定感应电流的方向,用E =n ΔΦ

Δt 确

定感应电动势大小的变化;

②若磁场不变,导体杆切割磁感线,用右手定则判断感应电流的方向,用E =BLv 确定感应电动势大小的变化.

(4)涉及受力问题,可由安培力公式F =BIL 和牛顿运动定律等规律写出有关函数关系式. (5)画图像或判断图像.特别注意分析斜率的变化、截距等.

例3 在竖直方向的匀强磁场中,水平放置一圆形导体环.规定导体环中电流的正方向如图3甲所示,磁场方向向上为正.当磁感应强度B 随时间t 按图乙变化时,下列能正确表示导体环中感应电流变化情况的是 ( )

图3

解析 根据法拉第电磁感应定律有:E =n ΔΦΔt =nS ΔB

Δt ,因此在面积、匝数不变的情况下,

感应电动势与磁场的变化率成正比,即与B -t 图像中的斜率成正比,由图像可知:0~2 s ,斜率不变,故形成的感应电流不变,根据楞次定律可知感应电流方向为顺时针方向(俯视)即为正值;2~4 s 斜率不变,感应电流方向为逆时针方向(俯视),即为负值.整个过程中的斜率大小不变,所以感应电流大小不变,故A 、B 、D 错误,C 正确. 答案 C

例4 如图4所示,等腰三角形内分布有垂直于纸面向外的匀强磁场,它的底边在x 轴上且长为2L ,高为L ,纸面内一边长为L 的正方形导线框沿x 轴正方向做匀速直线运动穿过匀

强磁场区域,在t =0时刻恰好位于如图所示的位置,以顺时针方向为导线框中电流的正方向,下列选项中,能够正确表示导线框的电流—位移(I -x )关系的是( )

图4

解析 如图甲所示,线框运动距离x ≤L 时的感应电动势E =Bvx ;当L ≤x ≤3

2L 时几何关系

如图乙所示,此时感应电动势为E =Bv (2L -x )-Bv (x -L )=Bv (3L -2x ),此时图线斜率的绝对值为x ≤L 时的2倍,由右手定则可知感应电流的方向为顺时针方向,由对称性可知A 正确.

答案 A

1.(电磁感应中的电路问题)粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )

答案 B

解析 在磁场中的线框与速度垂直的边等效为切割磁感线产生感应电动势的电源.四个选项中的感应电动势大小均相等,回路电阻也相等,因此电路中的电流相等,B 中a 、b 两点间

电势差为路端电压,为感应电动势的34倍,而其他选项则为感应电动势的1

4倍.故选项B 正确.

2. (电磁感应中的图像问题)如图5所示,两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里,abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为L ,t

=0时刻bc边与磁场区域边界重合.现令线圈以恒定的速度v沿垂直于磁场区域边界的方向穿过磁场区域,取沿abcda方向为感应电流的正方向,则在线圈穿越磁场区域的过程中,感应电流I随时间t变化的图线可能是 ( )

图5

答案 B

解析由于bc进入磁场时,根据右手定则判断出其感应电流的方向是沿adcba方向,其方向与电流的正方向相反,故是负的,所以A、C错误;当逐渐向右移动时,切割磁感线的条数在增加,故感应电流在增大;当bc边穿出磁场区域时,线圈中的感应电流方向沿abcda 方向,是正方向,故其图线在时间轴的上方,所以B正确,D错误.

3. (电磁感应中的电路问题)如图6所示,在磁感应强度B=2 T的匀强磁场中,有一个半径r=0.5 m的金属圆环.圆环所在的平面与磁感线垂直,OA是一个金属棒,它沿着顺时针方向以20 rad/s的角速度绕圆心O匀速转动.A端始终与圆环相接触,OA棒的电阻R=0.1 Ω,图中定值电阻R1=100 Ω,R2=

4.9 Ω,电容器的电容C=100 pF.圆环和连接导线的电阻忽略不计,则:

图6

(1)电容器所带的电荷量是多少? (2)电路中消耗的电功率是多少? 答案 (1)4.9×10

-10

C (2)5 W

解析 (1)等效电路如图所示

导体棒OA 产生的感应电动势为

E =BL v =Br ω·r

2

=5 V.

I =E R +R 2

=1 A. 则q =CU C =CIR 2=4.9×10

-10

C.

(2)电路中消耗的电功率P =I 2

(R +R 2)=5 W ,或P =IE =5 W.

题组一 电磁感应中的图像问题

1.如图1甲所示,一个闭合线圈固定在垂直纸面的匀强磁场中,设磁场方向向里为磁场的正方向,线圈中的箭头为电流I 的正方向.线圈中感应电流I 随时间变化的图线如图乙所示,则磁感应强度B 随时间变化的图线可能是 ( )

图1

答案 CD

高中物理楞次定律专题复习题

楞次定律 ★1如图所示,线幽abcd自由下落进入匀强磁场中,则当只有dc边进入磁场时,线圈中感应电流的方 向是________.当整个线圈进入磁场中时,线圈中________感应电流(选填 “有”或“无”) ★2.矩形线框在磁场中作如下图所示的各种运动,运动到图上所示位置时,其中有感应电流产生的 是图( ),请将电流方向标在该图上. ★★3.如图所示,当导线棒MN在外力作用下沿导轨向右运动时,流过R的电流方向是( ). (A)由A→B (B)由B→A (C)无感应电流 (D)无法确定 ★★4.如图所示,通电导线与矩形线圈abcd处于同一平面,下列说法中正确的是( ) (A)若线圈向右平动,其中感应电流方向是a→d→c→b (B)若线圈竖直向下平动,无感应电流产生 (C)当线圈以ab边为轴转动时(小于90°),其中感应电流方向是a→b→c→d (D)当线圈向导线靠近时,其中感应电流方向是a→d→c→b ★★5.右如图所示,当条形磁铁作下列运动时,线圈中的感应电流方向应是(从左往右看)( ). (A)磁铁靠近线圈时,电流的方向是逆时针的 (B)磁铁靠近线圈时,电流的方向是顺时针的 (C)磁铁向上平动时,电流的方向是逆时针的 (D)磁铁向上平动时,电流的方向是顺时钊的 ★★6.如图所示,当条形磁铁向上运动远离螺线管时,流过电流计的电流方向是________;当磁铁向 下运动靠近螺线管时,流过电流计的电流方向是________ ★★★7.由细弹簧围成的圆环中间插入一根条形磁铁,如图所示.当用力向四周扩圆展环,使其面积 增大时,从上向下看( ). (A)穿过圆环的磁通量减少,圆环中有逆时针方向的感应电流 (B)穿过圆环的磁通量增加,圆环中有顺时针方向的感应电流 (C)穿过圆环的磁通量增加,圆环中有逆时针方向的感应电流 (D)穿过圆环的磁通量不变,圆环中没有感应电流 ★8.如图所示,当磁铁突然向铜环运动时,铜环的运动情况是( ). (A)向右摆动(B)向左摆动 (C)静止(D)不判定 ★★9.如图所示,水平放置的光滑杆上套有A、B、C三个金属环,其中B接电源.在接通电源的瞬 间,A、C两环( ) (A)都被B吸引 (B)都被B排斥 (C)A被吸引,C被排斥 (D)A被排斥,C被吸引 ★★10.如图所示,把一正方形线圈从磁场外自右向左匀速经过磁场再拉出磁场,则从ad边进入磁场 起至bc边拉出磁场止,线圈感应电流的情况是( ).

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

2021版高中物理第2章楞次定律和自感现象2.2自感学案鲁科版选修

第3讲自感 [目标定位] 1.了解自感现象及自感现象产生的原因.2.知道自感现象中的一个重要概念——自感系数,了解影响其大小的因素.3.了解自感现象的利弊及其利用和防止. 一、自感现象 1.实验与探究 (1)断电自感 实验电路 实验要求电路稳定时A1、A2亮度 相同 A2立刻熄灭 线圈中的电 流在原来电 流值基础上 逐渐减小 I L>I A1A1猛然亮一下再逐渐熄 灭 I L=I A1A1由原来亮度逐渐熄灭 I L<I A1A1先立即变暗一些再逐 渐熄灭 (2)通电自感 实验电路 实验要求电路稳定时A1、A2亮度相同 S闭合的瞬间 A1先亮由于A1支路为纯电阻电路, 不产生自感现象 A2逐渐变亮,最 后与A1一样亮 由于L的自感作用阻碍A2支 路电流增大,出现“延迟”

现象 2.定义:由导体自身的电流变化所产生的电磁感应现象叫自感现象. 二、自感电动势 1.定义:由导体自身的电流变化所产生的感应电动势叫自感电动势.2.作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用,当电流增大时,自感电动势阻碍电流的增大;当电流减小时,自感电动势阻碍电流的减小. 三、自感系数 1.物理意义:描述线圈本身特性的物理量,简称自感或电感. 2.影响因素:线圈的形状、横截面积、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多. 3.单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH. 1mH=10-3H,1μH=10-6H. 一、对通电自感现象的分析 1.通电瞬间通过线圈的电流增大,自感电动势的方向与原电流方向相反,阻碍电流的增加,但不能阻止增加. 2.通电瞬间自感线圈处相当于断路;电流稳定时,自感线圈相当于导体. 3.与线圈串联的灯泡在通电后会逐渐变亮,直到稳定. 例1如图1所示,灯A、B完全相同,带铁芯的线圈L的电阻可忽略,则( ) 图1 A.S闭合的瞬间,A、B同时发光,接着A变暗,B更亮,最后A熄灭

安培定则_左手定则_右手定则_楞次定律的综合应用

高考热点专题复习 安培定则、左手定则、右手定则、楞次定律的综合应用 在选择题中,近两年的理综考试的知识点分布都比较稳定,力学和电学的内容共有四道题,可能是两道力学,两道电学,或者是力电综合的题目,而有关电磁学内容的选择题必定会涉及到安培定则、左手定则、右手定则、楞次定律这些规律的使用,所以我们务必要弄清楚它们的区别,熟练掌握应用它们的步骤. (1) 安培定则、左手定则、右手定则、楞次定律应用于不同的现象: (2)右手定则与左手定则区别: 抓住“因果关系”分析才能无误. “因电而动”——用左手,“力”字的最后一笔向左钩,可以联想到左手定则用来判断安培力! “因动而电”——用右手;“电”字的最后一笔向向右钩,可以联想到右手定则用来判断感应电流方向, (3)楞次定律中的因果关联 楞次定律所揭示的电磁感应过程中有两个最基本的因果联系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系.抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键. (4)运用楞次定律处理问题的思路 ★判断感应电流方向类问题的思路 运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为: ①明确原磁场:弄清原磁场的方向及磁通量的变化情况. ②确定感应磁场:即根据楞次定律中的"阻碍"原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向:原磁通量增加,则感应磁场与原磁场方向相反;原磁通量减少,则感应磁场与原磁场方向相同——“增反减同”. ③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(见例1) ★判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略 在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动. 对其运动趋势的分析判断可有两种思路: ①常规法: 据原磁场(B 原方向及ΔΦ情况) 确定感应磁场(B 感方向)????→?安培定则判断感应电流(I 感方 向)????→?左手定则导体受力及运动趋势. ②效果法 由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据"阻碍"原则,可直接对运动趋势做出判断,更简捷、迅速. ★判断自感电动势的方向类问题 感应电流的效果总是阻碍原电流变化(自感现象)——当自感线圈的电流增大时,感应电流阻碍“原电流”的增大,所以感应电流与原电流的方向相反;当自感线圈的电流减小时,感应电流阻碍“原电流”的减小,则感应电流与原电流的方向相同! 判断感应电动势的思路为: 据原电流(I 原方向及I 原的变化情况)确定感应电流I 感的方向(“增反减同”) ???????????→?出电流从电动势的正极流判断感应电动势的方向 解题范例: 基本现象 应用的定则或定律 运动电荷、电流产生的磁场 安培定则 磁场对运动电荷、电流的作用(安培力) 左手定则 电磁感应 部分导体做切割磁感线运动 右手定则 闭合电路磁通量变化 楞次定律

高中物理楞次定律

楞次定律 教学目标: 知识与技能: 1.理解楞次定律的实质 2.会利用楞次定律判断感应电流的方向 过程与方法: 1.培养学生对物理现象的观察、分析、探索、归纳、总结的素质和能力 2.体验物理研究的基本思路 情感态度价值观: 1.培养学生对科学探索的兴趣 2.知道自然规律是可认识的,可利用的辨正唯物主义观点3.学会欣赏楞次定律的简洁美 教学重点: 1.通过实验总结出楞次定律。 2.应用楞次定律判定感应电流的方向。 教学难点: 1.对演示实验现象进行分析、归纳,并总结出楞次定律。 2.正确理解楞次定律中“阻碍”的含义。 教学方法:实验探究式教学 教学过程: 一、引入设置情景、提出问题:

重复上一节课的实验.连接好电路图。请大家注意观察: 1.当条形磁铁插入线圈时,电流表指针向哪偏? 2.当条形磁铁从线圈中拔出时,电流表指针向哪偏? 二.实验探究感应电流方向 设计实验 实验目的:研究感应电流的方向与原磁场的磁通量之间的关系 实验设计:1)怎样获得感应电流? 2)怎样判断感应电流的方向? 学生讨论,教师引导总结. 1、实验电路: 如图所示,当磁铁向上或向下运动时, 灵敏电流表的指针发生了偏转。 2、弄清线圈导线的绕向。 3、弄清电流方向、电流表指针偏转方向 与电流表红、黑接线柱的关系 将电流表的左右接线柱分别与干电池的正 负极相连(试触法), 观察电流流向与指针偏向的关系. 结论:当电流由“右接线柱”流入时,表针向 偏转。 现在我们进行试验,请大家注意观察:条形磁铁的N 极,S

极位置及运动方向,电流表的指针左偏还是右偏.并将实验过程中线圈中感应电流的方向、磁铁的极性和运动方向记录在图中。 请同学们把草图中记录的实验结果填入下表: 学生分析表格中的记录结果,得出结论: 当线圈中磁通量增加时,感应电流的磁场与原磁场方向相反,阻碍磁通量的增加;当线圈中磁通量减少时,感应电流的磁场与原磁场方向相同,阻碍磁通量的减少。 重点知识: 1、楞次定律:1834年,物理学家楞次在分析了许多实验事 甲 乙 丙 丁

高中物理-法拉第电磁感应定律教案

高中物理-法拉第电磁感应定律教案 教学目标:知识与技能1、知道什么是感应电动势。2、了解什么是磁通量以及磁通量的变化量和磁通量的变化率。3、在实验基础上,了解法拉第电磁感应定律内容及数学表达式,学会用该定律分析与解决一些简单的问题。4、培养类比推理和通过观察、实验、归纳寻找物理规律的能力。 过程与方法通过推导到线切割磁感线时的感应电动势公式t n E ??Φ=,掌握运用理论知识探究问题的方法 情感态度与价值观从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想;了解法拉第探索科学的方法,学习他的执著的科学探究精神 教学重点:法拉第电磁感应定律 教学难点:磁通量的理解 教具:磁铁、螺线管、电流表、学生电源、电键、滑动变阻器、小螺线管A 、大螺线管B 教学过程: 一、感应电动势 说明:既然在闭合电路中产生了感应电流,这个电路中就一定有电动势。我们把电磁感应现象中产生的电动势叫做感应电动势。在闭合电路里,产生感应电动势的那部分导体相当十电源。在同一个电路中,感应电动势越大,感应电流越大。那么,感应电动势的大小跟什么因素有关呢?请看实验 演示实验:实验装置:图3 .1-2 和图3.1-3 实验过程:在图3.1 -2中,使导体捧以不同的速度切割磁感线,砚察电流表指针偏转的幅度。 实验结论:在导线切割磁感线的过程中,切割速度越大,感应电动势越大 实验过程:在图3.1-3 中,使磁铁以不同的速度插入线圈和从线圈中抽出,观察电流表指针偏转的幅度。 实验结论:在磁铁插入和从线圈中拔出的过程中,插入和拔出的速度越大,感应电动势越大 说明:导体捧以较大的速度切割磁感线,和磁体以较大的速度插入线圈和从线圈中抽出,都使线圈中的磁通量发生变化,且磁通量变化的速度比较大 说明:许多实验都表明,感应电动势的大小跟磁通变化的快慢有关。我们用磁通

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

鲁科版 高中物理 选修3-2 第2章 楞次定律和自感现象 寒假复习题含答案

绝密★启用前 鲁科版高中物理选修3-2 第2章楞次定律和自感现象寒假复 习题 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。 分卷I 一、单选题(共10小题,每小题4.0分,共40分) 1.如图所示,一矩形线框以竖直向上的初速度进入只有一条水平边界的匀强磁场,磁场方向垂直纸面向里,进入磁场后上升一段高度又落下离开磁场,运动中线框只受重力和安培力作用,线框在向上、向下经过图中1、2位置时的速率按时间顺序依次为v1、v2、v3和v4,则可以确定() A.v1<v2 B.v2<v3 C.v3<v4 D.v4<v1 2.1931年,英国物理学家狄拉克从理论上预言:存在只有一个磁极的粒子,即“磁单极子”.1982年,美国物理学家卡布莱拉设计了一个寻找磁单极子的实验.他设想,如果一个只有N极的磁单极子从上向下穿过如图所示的超导线圈,那么,从上向下看,超导线圈将出现() A.先有逆时针方向的感应电流,然后有顺时针方向的感应电流 B.先有顺时针方向的感应电流,然后有逆时针方向的感应电流 C.始终有顺时针方向持续流动的感应电流 D.始终有逆时针方向持续流动的感应电流 3.一矩形线圈位于一随时间t变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图甲所示,磁感应强度B随t的变化规律如图乙所示.以I表示线圈中的感应电流,以图甲中线圈上箭头所示方向的电流为正(即顺时针方向为正方向),则以下的I-t图中正确的是()

A. B. C. D. 4.如下图所示,纸面内有U形金属导轨,AB部分是直导线.虚线范围内有垂直于纸面向里的匀强磁场.AB右侧有圆线圈C.为了使C中产生顺时针方向的感应电流,贴着导轨的金属棒MN在磁场里的运动情况是() A.向右匀速运动 B.向左匀速运动 C.向右加速运动 D.向右减速运动 5.如图所示,电源的电动势为E,内阻r不能忽略,A、B是两个相同的小灯泡,L是一个自感系数相当大的线圈.关于这个电路的以下说法正确的是()

楞次定律难点解析

“楞次定律”教学难点的突破方法 高中物理教学中楞次定律是高考的热点、重点、难点之一,其内容是:感应电流的磁场,总是要阻碍引起感应电流的磁通量的变化。该定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况。要让学生学好这个定律,突破这一定律难点,除做好演示实验外,教学中还应注意让学生从以下几点着手学习。 一、分四步理解楞次定律 1.明白谁阻碍谁──感应电流的磁通量阻碍产生产感应电流的磁通量。 2.弄清阻碍什么──阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 3.熟悉如何阻碍──原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 4.知道阻碍的结果──阻碍并不是阻止,结果是增加的还增加,减少的还减少。 二、学会楞次定律的另一种表述 有人把它称为对楞次定律的深层次理解。 1.表述内容:感应电流总是反抗产生它的那个原因。 2.表现形式有三种: a.阻碍原磁通量的变化; b.阻碍物体间的相对运动,有的人把它称为“来拒去留”; c.阻碍原电流的变化(自感)。 注意:分析磁通量变化时关键在于对有关磁场、磁感线的空间分布要有足够清楚的了解,有些问题应交替利用楞次定律和右手定则分析。 三、能正确区分楞次定律与右手定则的关系 导体运动切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定来得方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判断出来。如闭合圆形导线中的磁场逐渐增强,用右手定则就难以判定感应电流的方向;相反,用楞次定律就很容易判定出来。 四、理解楞次定律与能量守恒定律 楞次定律在本质上就是能量守恒定律。在电磁感应现象中,感应电流在闭合电路中流动时将电能转化为内能,根据能量守恒定律,能量不能无中生有,这部分能量只能从其他形式的能量转化而来。例如,当条形磁铁从闭合线圈中插进与拔出的过程中,按照楞次定律,把磁铁插入线圈或从线圈中拔出,都必须克服磁

高中物理选修3-2 第2章《楞次定律和自感现象》章末测试题

绝密★启用前 2019鲁科版高中物理选修3-2第2章《楞次定律和自感现象》章 末测试题 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。 第Ⅰ卷 一、单选题(共20小题,每小题3.0分,共60分) 1.如图所示,质量为m的金属环用线悬挂起来.金属环有一半处于水平且与环面垂直的匀强磁场中.从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线拉力的大小的下列说法正确的是() A.大于环的重力mg,并逐渐减小 B.始终等于环的重力mg C.小于环的重力mg,并保持恒定 D.大于环的重力mg,并保持恒定 【答案】A 【解析】在磁场均匀减小的过程中,金属环由于受安培力作用要阻碍磁通量的减小,所以有向下运动的趋势,即线拉力大于环的重力.由于感应电流不变,而磁场逐渐减小,所以拉力逐渐减小,答案为A. 2.图中两个电路是研究自感现象的电路,对实验结果的描述正确的是()

①接通开关时,灯P2立即就亮,P1稍晚一会儿亮; ②接通开关时,灯P1立即就亮,P2稍晚一会儿亮; ③断开开关时,灯P1立即熄灭,P2稍晚一会儿熄灭; ④断开开关时,灯P2立即熄灭,P1稍晚一会儿熄灭. A.①③ B.①④ C.②③ D.②④ 【答案】A 【解析】甲图中,接通开关时,由于线圈阻碍电流的增加,故灯P1稍晚一会儿亮;断开开关时,虽然线圈中产生自感电动势,但由于没有闭合回路,灯P1立即熄灭.乙图中,线圈和灯P2并联,接通开关时,由于线圈阻碍电流的增加,故灯P2可以立即就亮,但电流稳定后,灯P2会被短路而熄灭;断开开关时,线圈中产生自感电动势,通过灯P2构成闭合回路放电,故灯P2稍晚一会儿熄灭.故①③正确、②④错误,选A. 3.如图所示,用一根长为L、质量不计的细杆与一个上弧长为l0、下弧长为d0的金属线框的中点联结并悬挂于O点,悬点正下方存在一个上弧长为2l0、下弧长为2d0的方向垂直纸面向里的匀强磁场,且d0?L.先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦力,下列说法正确的是()

最新讲义--安培定则、左手定则、右手定则、楞次定律的综合应用

龙文教育学科教师辅导讲义 教师:______ 学生:______ 时间:_____年_____月____日____段 在选择题中,近两年的理综考试的知识点分布都比较稳定,力学和电学的内容共有四道题,可能是两道力学,两道电学,或者是力电综合的题目,而有关电磁学内容的选择题必定会涉及到安培定则、左手定则、右手定则、楞次定律这些规律的使用,所以我们务必要弄清楚它们的区别,熟练掌握应用它们的步骤. (1) 安培定则、左手定则、右手定则、楞次定律应用于不同的现象: (2)右手定则与左手定则区别: 抓住“因果关系”分析才能无误. “因电而动”——用左手,“力”字的最后一笔向左钩,可以联想到左手定则用来判断安培力! “因动而电”——用右手;“电”字的最后一笔向向右钩,可以联想到右手定则用来判断感应电流方向, (3)楞次定律中的因果关联 楞次定律所揭示的电磁感应过程中有两个最基本的因果联系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系.抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键. (4)运用楞次定律处理问题的思路 ★判断感应电流方向类问题的思路 运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为: ①明确原磁场:弄清原磁场的方向及磁通量的变化情况. ②确定感应磁场:即根据楞次定律中的"阻碍"原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向:原磁通量增加,则感应磁场与原磁场方向相反;原磁通量减少,则感应磁场与原磁场方向相同——“增反减同”. ③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(见例1) ★判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略 在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动. 对其运动趋势的分析判断可有两种思路: ①常规法: 据原磁场(B 原方向及ΔΦ情况)确定感应磁场(B 感方向)????→?安培定则判断感应电流(I 感方 向)????→?左手定则导体受力及运动趋势. ②效果法 课 题 安培定则、左手定则、右手定则、楞次定律的综合应用 基本现象 应用的定则或定律 运动电荷、电流产生的磁场 安培定则 磁场对运动电荷、电流的作用(安培力) 左手定则 电磁感应 部分导体做切割磁感线运动 右手定则 闭合电路磁通量变化 楞次定律

人教版高中物理选修3-23.楞次定律

高中物理学习材料 (灿若寒星**整理制作) 第4章第3节 (本栏目内容,在学生用书中以活页形式分册装订!)一、选择题1.根据楞次定律可知,感应电流的磁场一定() A.阻止引起感应电流的磁通量变化B.阻碍引起感应电流的磁通量变化 C.使电路磁通量为零D.阻碍引起感应电流的磁场 解析:感应电流的磁场阻碍的是磁通量的变化,而不是磁场本身,故B对,D错;阻碍并不是阻止,只是延缓了变化,最终结果不受影响,故A、C错. 答案: B 2.(2010·海南卷)1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在布展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端.由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈.此项发明是() A.新型直流发电机B.直流电动机 C.交流电动机D.交流发电机 解析:本题考查有关物理学史和电磁感应及电动机等知识,意在考查考生对电磁学的发展过程的了解.题中说明把一发动机发的电接到了另一发动机的输出端,必然使这台发动机通过电流,电流在磁场中必定受到安培力的作用,在安培力的作用下一定会转动起来,这就成了直流电动机,故正确答案为B. 答案: B 3.如右图所示,螺线管B置于闭合金属圆环A的轴线上,当B中通过的电流I减小时() A.环A有缩小的趋势B.环A有扩张的趋势

C.螺线管B有缩短的趋势D.螺线管B有伸长的趋势 解析:当B中通过的电流减小时,穿过A线圈的磁通量减小,产生感应电流,由楞次定律可以判断出A线圈中有顺时针方向的感应电流(左边看),又根据左手定则,线圈各部分受沿径向向里的安培力,所以A线圈有缩小的趋势,故A正确;另外,螺线管与环之间的引力减小.故螺线管有伸长的趋势,故D正确. 答案:AD 4.(2011·长沙高二检测)如下图所示,螺线管与电流表组成闭合电路,条形磁铁位于螺线管上方,下端为N极,则当螺线管中产生的感应电流() A.方向与图示方向相同时,磁铁靠近螺线管 B.方向与图示方向相反时,磁铁靠近螺线管 C.方向与图示方向相同时,磁铁远离螺线管 D.方向与图示方向相反时,磁铁远离螺线管 解析:磁铁靠近螺线管时,根据楞次定律,螺线管中感应电流方向与图示方向相同,A对,B错;磁铁远离螺线管时,根据楞次定律,螺线管中感应电流方向与图示方向相反,C错,D对. 答案:AD 5.如图所示,闭合金属圆环沿垂直于磁场方向放置在匀强磁场中,将它从匀强磁场中匀速拉出,以下各种说法中正确的是() A.向左拉出和向右拉出时,环中的感应电流方向相反 B.向左或向右拉出时,环中的感应电流方向都是沿顺时针方向的 C.向左或向右拉出时,环中的感应电流方向都是沿逆时针方向的 D.环在离开磁场之后,仍然有感应电流 解析:不管将金属圆环从哪边拉出磁场,穿过闭合圆环的磁通量都要减少,根据楞次定律可知,感应电流的磁场总要阻碍原磁通量的减少.感应电流的磁场方向与原磁场方向相同,应用安培定则可以判断出感应电流的方向是顺时针方向的.B正确,A、C错误.另外在圆环离开磁场后,无磁通量穿过圆环,该种情况无感应电流,故D错误.答案: B 6.如右图所示,使通电导线在垂直纸面的平面内以虚线CD为轴逆时针(从左向右看)转动时,A、B两线圈的运动情况是()

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

高中物理楞次定律和自感现象感应电流的方向楞次定律素材鲁科选修

楞次定律 楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 楞次定律还可表述为:感应电流的效果总是反抗引起感应电流的原因。 楞次定律(Lenz's law)是一条电磁学的定律,可以用来判断由电磁感应而产生的电动势的方向。它是由俄国物理学家海因里希·楞次(Heinrich Friedrich Lenz)在1834年发现的。 楞次定律是能量守恒定律在电磁感应现象中的具体体现。 物理简介 1834年,物理学家海因里希·楞次(H.F.E.Lenz,1804-1865)在概括了大量实验事实的基础上,总结出一条判断感应电流方向的规律,称为楞次定律(Lenz law )。简单的说就是“来拒去留”的规律,这就是楞次定律的主要内容。 物理表述 楞次定律可概括表述为: 感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 表述特点 楞(léng)次定律的表述可归结为:“感应电流的效果总是反抗引起它的原因。” 如果回路上的感应电流是由穿过该回路的磁通量的变化引起的,那么楞次定律可具体表述为:“感应电流在回路中产生的磁通总是反抗(或阻碍)原磁通量的变化。”我们称这个表述为通量表述,这里感应电流的“效果”是在回路中产生了磁通量;而产生感应电流的原因则是“原磁通量的变化”。可以用十二个字来形象记忆“增反减同,来阻去留,增缩减扩”。 如果感应电流是由组成回路的导体作切割磁感线运动而产生的,那么楞次定律可具体表述为:“运动导体上的感应电流受的磁场力(安培力)总是反抗(或阻碍)导体的运动。”我们不妨称这个表述为力表述,这里感应电流的“效果”是受到磁场力;而产生感应电流的“原因”是导体作切割磁感线的运动。 从楞次定律的上述表述可见,楞次定律并没有直接指出感应电流的方向,它只是概括了确定感应电流方向的原则,给出了确定感应电流的程序。要真正掌握它,必须要求对表述的涵义有正确的理解,并熟练掌握电流的磁场及电流在磁场中受力的规律。 以“通量表述”为例,要点是感应电流的磁通量反抗引起感应电流的原磁通量的变化,而不是反抗原磁通量。如果原磁通量是增加的,那么感应电流的磁通要反抗原磁通量的增加,就一定与原磁通量的方向相反;如果原磁通减少,那么感应电流的磁通要反抗原磁通的减少,就一定与原磁通量的方向相同。在正确领会定律的上述涵义以后,就可按以下程序应用楞次定律判断感应电流的方向: a.穿过回路的原磁通的方向,以及它是增加还是减少; b.根据楞次定律表述的上述涵义确定回路中感应电流在该回路中产生的磁通的方向; c.根据回路电流在回路内部产生磁场的方向的规律(右手螺旋法则),由感应电流的磁通的方向确定感应电流的方向。

一文看懂电磁感应定律右手定则

一文看懂电磁感应定律右手定则 电磁感应定律中电动势的方向可以通过楞次定律或右手定则来确定。右手定则内容:伸平右手使姆指与四指垂直,手心向着磁场的N极,姆指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。楞次定律指出:感应电流的磁场要阻碍原磁通的变化。简而言之,就是磁通量变大,产生的电流有让其变小的趋势;而磁通量变小,产生的电流有让其变大的趋势。 右手定则概念“右手定则“又叫发电机定则,用它来确定在磁场中运动的导体感应电动势(感应电流)的方向。 电磁学中,右手定则判断的主要是与力无关的方向。如果是和力有关的则全依靠左手定则。即,关于力的用左手,其他的(一般用于判断感应电流方向)用右手定则。(这一点常常有人记混,可以发现“力”字向左撇,就用左手;而“电”字向右撇,就用右手)记忆口诀:左通力右生电。还可以记忆为:因电而动用左手,因动而电用右手,方法简要:右手手指沿电流方向拳起,大拇指伸出,观察大拇指方向。 可以用右手的手掌和手指的方向来记忆导线切割磁感线时所产生的电流的方向,即:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从手心进入,并使拇指指向导线运动方向,这时四指所指的方向就是感应电流的方向。这就是判定导线切割磁感线时感应电流方向的右手定则。右手定则判断线圈电流和其产生磁感线方向关系以及判断导体切割磁感线电流方向和导体运动方向关系。 右手定则计算方法电流元I1dι对相距γ12的另一电流元I2dι的作用力df12为: μ0I1I2dι2(dι1γ12) df12=───────────── 4πγ123 式中dι 1.dι2的方向都是电流的方向;γ12是从I1dι指向I2dι的径矢。安培定律可分为两部分。其一是电流元Idι(即上述I1dι)在γ(即上述γ12)处产生的磁场为

人教版高中物理选修3-2楞次定律练习题

高中物理学习材料 (马鸣风萧萧** 整理制作) 三、楞次定律练习题 、选择题 1.位于载流长直导线近旁的两根平行铁轨 A 和B,与长直导线平行且在同一水平面上,在铁轨 A 、B上套有两段可以自由滑动的导体CD和EF,如图1所示,若用力使导体EF向右运动,则导体CD 将[ ] A.保持不动 B.向右运动 C.向左运动 D.先向右运动,后向左运动 2.M 和N 是绕在一个环形铁心上的两个线圈,绕法和线路如图a 处断开,然后合向 b 处,在此过程中,通过电阻R2 的电流方向是 A .先由 c 流向d,后又由 c 流向d B.先由 c 流向d,后由 d 流向c C.先由 d 流向c,后又由 d 流向c D.先由 d 流向c,后由 c 流向d 2,现将开关S 从[ ] 落,穿

3.如图 3 所示,闭合矩形线圈abcd 从静止开始竖直下

过一个匀强磁场区域,此磁场区域竖直方向的长度远大于矩形线圈 空气阻力,则 [ ] A .从线圈 dc 边进入磁场到 ab 边穿过出磁场的整个过程,线圈中始终有感应电流 B .从线圈 dc 边进入磁场到 ab 边穿出磁场的整个过程中,有一个阶段线圈的加速 度等于重力加速度 C .dc 边刚进入磁场时线圈内感应电流的方向, 与 dc 边刚穿出磁场时感应电流的方 向相反 D . dc 边刚进入磁场时线圈内感应电流的大小,与 dc 边刚穿出磁场时感应电流的 大小一定相等 4.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈 M 相接,如图 4 所 示.导轨上放一根导线 ab ,磁感线垂直于导轨所在平面.欲使 M 所包围的小闭合线圈 N 产生顺时针方向的感应电流,则导线的运动可能是 [ ] A .匀速向右运动 B .加速向右运动 C .匀速向左运动 D .加速向左运动 bc 边的长度,不计 5.如图 5 所示,导线框 abcd 与导线在同一平面内,直导线通有恒定电流 I ,当线

3.法拉第电磁感应定律

学案《法拉第电磁感应定律》 【基础知识】: 1.内容:电路中感应电动势的大小,跟穿过这个电路的 成正比. 2.公式:E = ,其中n 为 ,ΔΦ总是 该公式一般用来求Δt 时间内感应电动势的 3.对法拉第电磁感应定律的理解 (1)磁通量的变化率ΔΦ Δt 和磁通量Φ (填“有”或“没有”)直接关系. Φ很大时,ΔΦΔt 可能很小,也可能很大;Φ=0时,ΔΦ Δt 可能不为0. (2)E =n ΔΦ Δt 有两种常见形式: ①线圈面积S 不变,磁感应强度B 均匀变化,则E =n ΔB Δt ·S ; ②磁感应强度B 不变,线圈面积S 均匀变化,则E =nB ·ΔS Δt .(其中ΔΦΔt 是Φ-t 图像上某点切线的斜率. ΔB Δt 为B -t 图像上某点切线的斜率) (3)产生感应电动势的那部分导体相当于 如果电路没有闭合,这时虽然没有 ,但感应电动势依然存在. 【实验方案设计】: 物理量 物理意义 与电磁感应的关系 磁通量Ф 磁通量变化△Ф 磁通量变化率 ΔΦ/Δt 【反馈练习】: 1、下列说法正确的是( ) A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中的磁通量越大,线圈中产生的感应电动势一定越大 C.线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 D.线圈中磁通量变化得越快,线圈中产生的感应电动势越大 2、单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场。若线圈所围面积里磁通量随时间变化的规律如图所示,则:( ) A 、线圈中0时刻感应电动势最大 B 、线圈中D 时刻感应电动势为零 C 、线圈中D 时刻感应电动势最大 D 、线圈中0到D 时间内平均感应电动势为0.4V 【本节优化训练设计】: 1.某单匝闭合线圈电阻是1 Ω,当穿过它的磁通量始终以每秒2 Wb 速率减小时,则 ( ) A.线圈中感应电动势一定每秒降低2 V B.线圈中感应电动势一定是2 V C.线圈中感应电流一定每秒减少2 A D.线圈中感应电流一定是2 A 2.穿过一个单匝闭合线圈的磁通量始终为每秒钟均匀地增加2 Wb,则 ( ) A.线圈中的感应电动势每秒钟增加2 V B.线圈中的感应电动势每秒钟减少2 V C.线圈中的感应电动势始终是2 V D.线圈中不产生感应电动势 3.N 匝线圈的总电阻为R,当它的磁通量由Φ1变到Φ2的过程中,通过线圈截面的总电量为 ( ) A.N(Φ2-Φ1)/ R B.(Φ2-Φ1)NR C.(Φ1-Φ2)/R D.R(Φ2-Φ1)/N 4.如图匀强磁场中,B=0.4 T,导体ab 长l=40 cm,以v=5 m/s 速度匀速向左运动,框架电阻不计,R ab=0.5 Ω.求:(1)导体向右匀速运动时,I 感多大? (2)感应电功率多大? (猜想):感应电动势的大小可能与哪些因素有关 试验方法 实验器材 电流表1只,条形磁铁2个,1000匝的线圈1个,2000匝的线圈1个,导线 实验步骤

高中物理 第1、2章 电磁感应 楞次定律和自感现象 23单元测试 鲁科版选修32

高中物理第1、2章电磁感应楞次定律和自感现象 23单 元测试鲁科版选修32 一、选择题(每小题5分,共20分) 1、下列关于感应电动势的说法中,正确的是() A.不管电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势 B.感应电动势的大小跟穿过电路的磁通量的变化量成正比 C.感应电动势的大小跟穿过电路的磁通量的变化率成正比 D.感应电动势的大小跟穿过回路的磁通量多少无关,但跟单位时间内穿过回路的磁通量变化有关 2、如图所示装置,在下列各种情况中,能使悬挂在螺线管附近 的铜质闭合线圈A中产生感应电流的是() A.电键S接通的瞬间 B.电键S接通后,电路中电流稳定时 C.电键S接通后,滑线变阻器触头滑动的瞬间 D.电键S断开的瞬间 3、闭合线框abcd,自某高度自由下落时穿过一个有界的匀强磁场,当 它经过如图所示的三个位置时,感应电流的方向是() A.经过Ⅰ时,a→d→c→b→a B.经过Ⅱ时,a→b→c→d→a C.经过Ⅱ时,无感应电流 D.经过Ⅲ时,a→b→c→d→a 4、在闭合线圈上方有一条形磁铁自由下落,直至穿过线圈的过程中,下列说法中正确 的是() A.磁铁在下落过程中机械能守恒 B.磁铁的机械能增加 C.磁铁的机械能有时增加有时减少 D.线圈增加的内能是由磁铁减少的机械能转化而来的 二、填空题(每小题4分,共12分) 5、如图所示是“研究电磁感应现象”的实验装置。 如果在闭合电键时发现灵敏电流计的指针向右偏了 一下,那么合上电键后,将原线圈迅速插入副线 圈时,电流计指针_______________(填“向右偏 一下”、“向左偏一下”或“不偏”);原线圈插入 副线圈后,将滑动变阻器滑片迅速向左移动时, 电流计指针________________(填“向右偏一下”、 “向左偏一下”或“不偏”)。 6、如图所示,在磁感应强度B为0.4T 的匀强磁场中,让长为0.2m 的导体棒ab在金属框上以6m/s的速度向右移动,此时感应电 动势大小为_________V。如果R1=6Ω,R2=3Ω,其余部分电阻 不计,则通过ab的电流大小为_________A。

文本预览
相关文档 最新文档