当前位置:文档之家› 二次函数知识点归纳及有关典型题目

二次函数知识点归纳及有关典型题目

二次函数知识点归纳及有关典型题目
二次函数知识点归纳及有关典型题目

二次函数知识点总结及相关典型题目

第一部分 二次函数基础知识 ? 相关概念及定义

? 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,

,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,

可以为零.二次函数的定义域是全体实数. ? 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.

⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ? 二次函数各种形式之间的变换

? 二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中a

b a

c k a b h 4422

-=-=,. ? 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

;③()2h x a y -=;④

()k h x a y +-=2

;⑤c bx ax y ++=2.

? 二次函数解析式的表示方法

? 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); ? 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

? 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

? 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛

物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

? 二次函数2

ax y =的性质

?

?

?

?

?

? 二次函数2y ax c =+的性质

?

? ? ? ? ? ? ?

? 二次函数

()

2

y a x h =-的性质:

? 二

()2

y a x h k

=-+的性质

? 抛物线2

y ax bx c =++的三要素:开口方向、对称轴、顶点.

?

a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

? 对称轴:平行于y 轴(或重合)的直线记作2b

x a

=-

.特别地,y 轴记作直线0=x . ? 顶点坐标坐标:),(a

b a

c a b 4422

--

? 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完

全相同,只是顶点的位置不同.

? 抛物线c bx ax y ++=2

中,c b a ,,与函数图像的关系

? 二次项系数a

二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.

⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小 ? 一次项系数b

在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.

⑴ 在0a >的前提下,

当0b >时,02b

a -<,即抛物线的对称轴在y 轴左侧;

当0b =时,02b

a -=,即抛物线的对称轴就是y 轴;

当0b <时,02b

a

->,即抛物线对称轴在y 轴的右侧.

⑵ 在0a <的前提下,结论刚好与上述相反,即

当0b >时,02b

a ->,即抛物线的对称轴在y 轴右侧;

当0b =时,02b

a -=,即抛物线的对称轴就是y 轴;

当0b <时,02b

a

-<,即抛物线对称轴在y 轴的左侧.

总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:

? 常数项c

⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.

总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ? 求抛物线的顶点、对称轴的方法

? 公式法:a b ac a b x a c bx ax y 44222

2

-+?

?? ?

?

+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. ? 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2

的形式,得到顶点为(h ,k ),对称轴是

直线h x =.

? 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线

的对称轴,对称轴与抛物线的交点是顶点.

用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ? 用待定系数法求二次函数的解析式

? 一般式:c bx ax y ++=2

.已知图像上三点或三对x 、y 的值,通常选择一般式.

? 顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

? 交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ? 直线与抛物线的交点

?

y 轴与抛物线c bx ax y ++=2得交点为(0, c ).

? 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2

).

? 抛物线与x 轴的交点:二次函数c bx ax y ++=2

的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次

方程02

=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点?0>??抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)?0=??抛物线与x 轴相切; ③没有交点?0

? 平行于x 轴的直线与抛物线的交点

可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是

k c bx ax =++2的两个实数根.

? 一次函数()0≠+=k n kx y 的图像l 与二次函数()02

≠++=a c bx ax y 的图像G 的交点,由方程组

2

y kx n

y ax bx c

=+??=++?的解的数目来确定:①方程组有两组不同的解时?l 与G 有两个交点; ②方程组只有一组解时?l 与G 只有一个交点;③方程组无解时?l 与G 没有交点.

? 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2

与x 轴两交点为()()0021,,,

x B x A ,由于1x 、2x 是方程02

=++c bx ax 的两个根,故

a

c

x x a b x x =

?-=+2121,()

()

a a ac

b a

c a b x x x x x x x x AB ?=-=-??

?

??-=--=

-=

-=44422

212

212

2121

? 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

? 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

? 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

? 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-;

? 关于顶点对称

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

? 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

? 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求

抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

? 二次函数图象的平移

? 平移步骤:

⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,

; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

?

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

平移规律

在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”.

? 根据条件确定二次函数表达式的几种基本思路。 ? 三点式。

1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 ? 顶点式。

1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 ? 交点式。

1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=2

1

a(x-2a)(x-b)的解析式。 ? 定点式。

1,在直角坐标系中,不论a 取何值,抛物线222

5212-+-+-=a x a

x y 经过x 轴上一定点Q ,

直线2)2(+-=x a y 经过点Q,求抛物线的解析式。

2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。 ? 平移式。

1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解

析式。

2, 抛物线32

-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.

? 距离式。

1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。

2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。 ? 对称轴式。

1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。

2、 已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=

4

3

OC ,求此抛物线的解析式。 ? 对称式。

1, 平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将三角形ABC

沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。

2, 求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。 ? 切点式。

1,已知直线y=ax-a 2(a ≠0) 与抛物线y=mx 2 有唯一公共点,求抛物线的解析式。 2, 直线y=x+a 与抛物线y=ax 2 +k 的唯一公共点A (2,1),求抛物线的解析式。 ? 判别式式。

1、已知关于X 的一元二次方程(m+1)x 2+2(m+1)x+2=0有两个相等的实数根,求抛物线y=-x 2+(m+1)x+3解析式。

2、 已知抛物线y=(a+2)x 2-(a+1)x+2a 的顶点在x 轴上,求抛物线的解析式。

3、已知抛物线y=(m+1)x 2+(m+2)x+1与x 轴有唯一公共点,求抛物线的解析式。

知识点一、二次函数的概念和图像 1、二次函数的概念

一般地,如果特)0,,(2

≠++=a c b a c bx ax y 是常数,,特别注意a 不为零

那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于a

b

x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2

与坐标轴的交点:

当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

知识点二、二次函数的解析式

二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2

≠++=a c b a c bx ax y 是常数,

(2)两根 当抛物线c bx ax y ++=2

与x 轴有交点时,即对应二次好方程02

=++c bx ax 有实根1x 和2x 存

在时,根据二次三项式的分解因式))((212

x x x x a c bx ax --=++,二次函数c bx ax y ++=2

可转化为两根式

))((21x x x x a y --=。如果没有交点,则不能这样表示。

a 的绝对值越大,抛物线的开口越小,a 的绝对值越大,抛物线的开口越小. (3)三顶点 顶点式:)0,,()(2

≠+-=a k h a k h x a y 是常数,

知识点三、二次函数的最值

如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a

b

x 2-

=时,a

b a

c y 442-=最值

如果自变量的取值范围是21x x x ≤≤,那么,首先要看a

b

2-

是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a

b

2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在

此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=12

1最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=22

2最小。

☆、几种特殊的二次函数的图像特征如下:

知识点四、二次函数的性质

1、二次函数的性质

2、二次函数)0,,(2

≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:

a 表示开口方向:a >0时,抛物线开口向上

a <0时,抛物线开口向下

b 与对称轴有关:对称轴为x=a

b 2-

c 表示抛物线与y 轴的交点坐标:(0,c ) 3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。

因此一元二次方程中的ac 4b 2

-=?,在二次函数中表示图像与x 轴是否有交点。

当?>0时,图像与x 轴有两个交点; 当?=0时,图像与x 轴有一个交点; 当?<0时,图像与x 轴没有交点。

知识点五 中考二次函数压轴题常考公式(必记必会,理解记忆)

1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)

如图:点A 坐标为(x 1,y 1)点B 则AB 间的距离,即线段AB

B

知识点五 二次函数

2

y ax bx c =++图象的画法

? 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及

顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,

关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).

? 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ☆、已知二次函数)0(2

≠++=a c bx ax y 的图象如图所示,则下列结论中正确的是( )

A 、00b 0>>>c a ,,

B 、00b 0<>

C 、00b 0><

D 、00b 0<<

☆、函数)0(2

≠=-=a x

a

y a ax y 与在同一坐标系中的图象可能是( )

特别记忆--同左上加 异右下减 (必须理解记忆)

说明① 函数中ab 值同号,图像顶点在y 轴左侧同左,a b 值异号,图像顶点必在Y 轴右侧异右

②向左向上移动为加左上加,向右向下移动为减右下减 3、直线斜率:

1

212tan x x y y k --=

=α b 为直线在y 轴上的截距4、直线方程:

4、①两点 由直线上两点确定的直线的两点式方程,简称两式:

)()(tan 11

21

21x x x x x y y b x b kx y y ---=

+=+=-α 此公式有多种变形 牢记

②点斜 )(11x x kx y y -=-

③斜截 直线的斜截式方程,简称斜截式: y =kx +b (k ≠0)

④截距 由直线在x 轴和y 轴上的截距确定的直线的截距式方程,简称截距式:1=+b

y

a x 牢记 口诀 ---两点斜截距--两点 点斜 斜截 截距

5、设两条直线分别为,1l :11y k x b =+ 2l :22y k x b =+ 若12//l l ,则有1212//l l k k ?=且12b b ≠。 若1212

1l l k k ⊥??=- 6、点P (x 0,y 0)到直线y=kx+b(即:kx-y+b=0) 的距离: 1

)

1(2

002

2

00++-=

-++-=k b

y kx k b y kx d

7、抛物线c bx ax y ++=2中, a b c,的作用

(1)a 决定开口方向及开口大小,这与2

ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2

的对称轴是直线

a

b x 2-

=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

(即

a 、

b 异号)时,对称轴在y 轴右侧. 口诀 --- 同左 异右

(3)c 的大小决定抛物线c bx ax y ++=2

与y 轴交点的位置.

当0=x 时,c y =,∴抛物线c bx ax y ++=2

与y 轴有且只有一个交点(0,c ):

①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则

0

b

. ? 二次函数2ax y =、k ax y +=2

、()2

h x a y -=、()k h x a y +-=2

的性质

相关主题
文本预览
相关文档
最新文档