当前位置:文档之家› 均匀传输线的分布参数计算

均匀传输线的分布参数计算

均匀传输线的分布参数计算
均匀传输线的分布参数计算

均匀传输线的分布参数计算

0 引言

传输线作为一种输送能量和传递信号的装置,由于其应用十分广泛而成为了很有意义的研究对象。在长距离输电线路、远距离通信线路、高频测量线路、计算机信号传输以及高速数控系统中均应该考虑线路参数的分布性。[1]

均匀传输线模型是电路、电磁场理论中重要而又简单的简化模型。典型的均匀传输线是由在均匀媒质中放置的两根平行直导线构成的。常见的有平行双板、同轴线、和平行双线等。当然,实际中并不存在真实的均匀线,架空线的支架、导线自身的重力都会使传输线不均匀。为了简化问题,需要忽略这些次要因素。

以平行双线为例。假设传输线是均匀的,即两导体间的距离、截面形状以及介质的电磁特性沿着整个长线保持不变,单位长度的线路电阻和电感分别为0R 和0L ,单位长度的线间电容和电导分别为0C 和0G ,如图1所示。传输线最左端为起点,即0x =,选取距平行双线起点为x 的一小段x ?进行研究。虽然传输线本质上是一个分布参数系统,但可以采用一个长度为x ?的集中参数模型来描述。显然,x ?越小就越接近传输线的实际情况 当0x ?→时,该模型就逼近真实的分布参数系统。[2]

根据基尔霍夫定律,可以得到电报方程,它是均匀传输线上关于电压、电流的偏微分方程组。

00

00i R i L t u

x i G u x

u

C t ??-=??????-=????+???+ 方程表明,电流在传输线上连续分布的电阻中引起电压降,并在导线周围

产生磁场,即沿线有电感的存在,变化的电流沿线产生电感电压降,所以,导线间的电压连续变化;又由于导线间存在电容,导线间存在电容电流,导线间的非理想电介质存在漏电导,所以还有电导电流,所以沿线的电流也连续变化。

图1 有损均匀传输线及其等效模型

均匀传输线方程是一组常系数线性偏微分方程,在给定的初始条件和边界条件下,可以唯一地确定(),u x t 和(),i x t 。

从方程可以知道,给定初始条件和边界条件时,影响电学量的因素就是分布参数0R 、0L 、0G 、0C 。

利用电磁场理论,我们可以根据传输线的位置、尺寸、形状、材料等参数求出这几个分布参数。下面以圆柱平行双线为例,说明计算分布参数的方法。其他常见的几种传输线,比如平行双板、同轴线的计算类似。

1 模型说明

仅考虑低频时参数的计算。

(1) 导体媒质的电导率很高。传输线常用的材料是铝合金,铝的电导率是

3.82×107

(S/m ),远大于磁导率和介电常数。跟据欧姆定律J E γ=(γ是电导率),电流在百安及千安级别时,导线中的电场强度极小,可以忽略。

(2) 两导线间距远小于电磁波波长,即d λ。工频供电时,电磁波波长为6000km ,一般的输电线路都满足这个要求。在这种情形下,可以忽略推迟效应。

(3) 导线的材料、导线周围介质均为线性、均匀、各向同性的物质。

平行双线的结构如图2所示。由于导线中只有轴向电流,可知磁矢位A 只有轴向分量,由B A =??,可得0z B =;由于忽略了导线内部电场,根据电场强度在切线方向连续,可知0z E =。所以,传输线周围的电磁波只有横向分量,导线所导引的电磁波近似为TEM 波(横电磁波)。导线及周围介质中的场分布可以视为平行平面场。同时,由于可以忽略导线内部的电场,可以将导线视为等电位体,导线表面是等位面。

接下来,首先计算电容、电导和电感,这三者的计算有一定共性,因为它们三个参数主要依赖于导体外介质的电磁性质,可以借由静态场的分析来处理。而分布电阻由于涉及到场和导体媒质的相互作用,计算相对复杂一些。

z

图2 平行双线示意图

2 分布电容的计算

根据前文的叙述,可以知道,传输线间电容的计算可以按照静电场的方式进行。

在静电场中,由于两平行长直导线之间存在静电感应,导致导体表面的电荷分布不均匀,所以不能直接计算导线之间的电位差,必须利用镜像法。

如图3,导体外介质的介电常数为ε,对导体外部的电场,可以设想将两圆柱导体撤去,其表面电荷效应代之以两根长的带电细线,图中相距2b 的两根电荷线密度分别为 +p 和-p 。

文献[3]中给出了镜像带电细线位置的计算过程。两镜像带电细线的位置满足

()2

22/2b a d +=,

所以两导线之间的电位差为

0(/2)

2ln

2(/2)

p b d a U b d a πε

+-=

--,

则两导线间单位长度的电容为

00/2arccos ()

ln 2/2p C d b a d U h a b a d πεπε===-+?? ?+

-??

(2.1)

其中,arccos ()ln(h x x

=

这是两平行圆柱导线间单位长度电容的准确解。在实际中,导线的半径往往远小于导线间距,即a d ,于是/1d a ,

arccos ()ln(ln()22d d d

h a a a =≈

0ln()C d a

πε

=

(2.2) 式(2.2)是常用的计算公式,但当不能忽略导线间的相互作用时,应当利用(2.1)式计算。

3 分布电导和电感的计算

P(x,y)图3 镜像法计算导线电位差示意图

在恒定场中,根据电导和电容的定义式:

S

S

l

l

D dS

E dS Q C U

E dl E dl ε??==

=?????? S S l

l

J dS E dS

I G U E dl E dl

γ??===

?????? 可得公式

G C γ

ε

=,需要注意的是这里的ε和γ都是指导体外介质的电磁特性,故只能用来计算漏电导,不能计算电阻。

在计算电容时,考虑到传输线线所导引的电磁波近似为TEM 波,导线及周围介质中的场分布为平行平面场,所以利用静电场的方式计算电容。同理,电导的计算也可以按照恒定电场的方式进行。

于是,由G C γ

ε

=,可知

00arccos ()

2G C d h a

γπγ

ε=

=

, 类似的,在a

d 时,由于/21d a

,有

0ln()G d a

πγ

=。 下面讨论电感的计算。

在多数文献里,计算二线传输线的分布电感(自感)时,都采用定义式

S S

N B dS

L J dS

?ψ==

I ??? 其中Ψ是磁链,I 是和磁链交链的电流,在考虑导线半径时,需要区分内

自感和外自感。

例如文献[3]中,当图2所示的平行双线通有恒定电流时,得到的电感值为

01(ln )ln 4d a d

L a a

μμππ-=+≈(a d )

。 事实上,这种方法没有考虑两导线的相互作用,所以在计算时按照电流均匀分布进行的,当然,在a d 时,所得到的结果是足够准确地。

如果考虑两导线间的相互作用,那么还需要利用对电流的镜像法,这比较复杂,通过对传输线电磁场分布的分析,可以得到下面一个简单的方法,在一些文献,例如[4]、[5]中有介绍。

根据麦克斯韦方程组,可以推导出无源区导电媒质内的平面波。根据前文对传输线的描述,电磁波的传播方向为+z 。

在谐变场的条件下,可得到场量满足的波动方程

222

2

22

00

y

y x x d H k H dz d E k E dz ?-=????-=??

其中,k j j αβ==+ (3.1) k 称为传播常数。

注意到正弦激励下传输线方程(电报方程)的形式

22

2

2

2200d U k U dx d I k I dx

?-=????-=??

其中,k j αβ==+,称为传播常数。

可以发现传输线方程和平面电磁波方程形式相同,而相同的方程对应的解

的形式也必然相同,显然,两个传播系数所代表的物理意义也是统一的。

按照前文的叙述,由于导线电导率很大,同时忽略了导体内部电场,所以这里的分布电阻0R 和传播常数相比可以忽略。

于是,传输线的传播系数可化为

k j =

= (3.2) 对比(3.1)、(3.2)两式,由于

00G C γ

ε

=,可知 00L C με=。

根据前文电容的计算值,可以得到分布电感的值为

0arccos ()2d L h a

μπ=

于是,在a d 时,由于/21d a ,有

0ln()d L a

μπ=,

这和直接利用电感定义式所计算的近似结果是一致的,可以互相印证。 可以注意到电容、电导和电感在形式上有一致性,这是三者都依赖于导线外空间的电磁性质,以及无源区电场和磁场的对称性所决定的。在低频情况

下,可认为这三者和电学量没有关系。

文献[5]中,利用静态时电场和磁场的相互关系,推导了平行平面场情形下电容和电感满足关系00L C με=。这两种分析方法有所不同,利用电磁波的传播系数对比的方法,更能显示传输线作为导波系统,对电磁波的引导作用,但是,所必须的是忽略分布电阻对空间电磁场的影响。而利用静态场引出等式00L C με=,但是其物理意义不如前者明显。当然,这两种方法都做了不同的近似。

4 分布电阻的计算

电阻的存在使得电源必须向其提供电压,以使得电流能够维持持续的流动。而电阻本身会产生热损耗,以焦耳定律表示。于是电阻有两种计算方式,一是根据

l

l

S

S

E dl E dl U R I

J dS E dS

γ??==

=??????, 其中γ是导线电导率;二是根据焦耳定律,2

P

R I =

来计算。 先考虑直流稳态时的情形。对于直流电路,有熟知的公式l

R S

ρ

=,其中ρ是电阻率。对直流稳态而言,如果忽略两导线间的相互影响,则均匀传输线只是延长了线路,而不影响电学量的分布,故在直流稳态时分布电阻仍应按照此公式进行

,即

021

R a

ρπ=。

对于交流电路,电阻的计算十分复杂。首先,导体媒质内电磁波的传播规律不同于理想介质,电磁波的波速和波长较介质会减小许多,甚至可能出现波长与导线半径同一数量级的情况。而且,磁场和电场会产生相位差,对应于电路理论就是复数电阻,电阻部分会产生损耗,而电抗部分对应无功分量。同时,由于存在趋肤效应,场量是矢径r 的函数。

为了简化问题,下面仅考虑一种情况。对于正弦稳态电路,场量按正弦规律变化。假设电流仅在导线表面一薄层内均匀流动,薄层的厚度取趋肤效应的透入深度d

d =

这个值是通过解良导体(c

γωε)中的波动方程,并认为数值减少至最

大值的1e -得到的。直接利用波动方程的解析解求交流电阻的方法,文献[6]有所介绍。

根据上面的假设,交流电路使得电流所分布的截面面积减少而增大电阻,所以,有

01122c R ad γπ=?==

乘2是由于考虑到平行双线,下标c 是为了说明是导体的电导率和磁导率。

5 结论

根据前文的计算,可将平行双线的四个分布参数列于下表1。这些是一般文献中可以查到的公式。

表1 分布参数的表达式

参考文献

[1] 孙韬.传输线方程解析解的研究,2005.

[2] 王小艳.一般有损均匀传输线中电流电压的瞬态过程分析[J].2008.

[3] 冯慈璋,马西奎.工程电磁场导论.北京:高等教育出版社[M].2000.

[4] David K.Cheng.电磁场与电磁波.北京:清华大学出版社[M].2007.

[5] 冯慈璋.电磁场. 北京:高等教育出版社[M].1983.

[6] 张小林,徐精华.信号传输线趋肤效应的分析[J].大学物理,2009(7):10-12.

形状参数分布特性_图文(精)

方数据 万 86农业机械学报 来自东北农业大学种子站,小麦籽粒的各项指标:小麦籽粒的容积质量及千粒质量由种子站给出,含水率自行测定,测定含水率时使用的仪器为 KANEK0DIGITAL PERCENTER DP一5型快速水分测量仪。试验样品的容积质量、干粒质量、含水率如表1所示。 1.2试验方法 将各种小麦籽粒分别装入密闭塑料袋中,放入冰箱,冰箱内的温度为6℃。 试验时取出适量小麦籽粒,去掉病粒、畸形粒后每个品种随机抽样75粒,使其回升至室温后进行试验。将小麦籽粒的尾毛去掉,并作适当净化处理,使其颜色变浅,以便进行图像处理时能够获得较好的图像分割效果。图像摄入计算机后,以BMP 文件存在硬盘内,以便随时调用。图像摄取之后,对每粒籽粒进行称量,电子天平的型号为HANGPING JA5003(精度1/1ooo g。 表1试验样品的物理特性 Tab.1Physicm propenies oftk experimental s蛐ples 2小麦籽粒形状参数分形特性研究 2.1网格法的基本原理 将欧氏空间R”分为尽可能细的△网格,当正规等测度分割时,即作以维以△ 为、间隔的分割,将集合x离散为数字点集,用Ⅳa表示离散空间(间距为△上的集合x的计点数。将△网格逐次放大为 K△网格,而Ⅳ"表示离散空间(间距为K△上的集

合x的计点数。得到愚个不同网格宽度上的计点数Ⅳ砧,愚一1,2,…,K。二维空间的数字点集分割过程见图1。 衄- 图1数字点集分割 Fig.1Segment of digital assembly 设zl—lg愚,弘一lgⅣm则点集(z^,挑所构成直线的斜率的绝对值就是其分形维数[5]。 2.2分形特性研究 应用上述理论及方法研究小麦粒形分型特性, 在长度、宽度、厚度、粒质量等参数间,对每次任选的两个参数,绘制其散点图,利用网格法计算其咒、 h,求点集(冠,h所构成直线斜率绝对值,作为这两个参数间的分形维数。 以东农99—6501小麦籽粒为例,样品数为60粒时其宽度与长度间的计点数M 及兄、n、的值见表2。X^、K的线性回归方程为K=一o.3774冠+ 5.076,相关系数R2一o.9292,方程显著相关。由图2看出,回归方程曲线拟合较好。东农99—6501小麦籽粒的宽度与长度之间的分形维数为o.3774。其他参数间的分形维数计算方法相同。4种小麦籽粒各参数间的分形维数值见表3。 表2东农鲫一6501小麦籽粒宽度长度分形维数 Tab.2 Fractu聆mme瑚iOn betw∞n稍d也眦d Ie唧恤 for wheat kerneb Of n蛆u 99—6501 5.O 4.8 蕾4.6

线路设计常用参数

线路设计常用参数 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一、线路路径、安全距离 1、与道路距离 (1) 跨越时的垂直距离 (2) 平行时的水平距离(基础边缘与公路排水沟) 类比:电力设施保护条例(先用电力线,后有建筑适用;边线延伸) 2、交叉跨越角度 (1)与广梅汕铁路交叉时,交叉角必须大于60°。 (2)与弱电线路的交叉角 3、与建筑物间的距离 (1) 跨越建筑时(最大计算弧垂,垂直距离) (2) 城市建筑(最大计算风偏,净空距离) (3) 非城市规划区建筑(无风,水平距离) 4、按塔高计算的水平距离

5、跨树距离 (1) 导线与树木间垂直距离 (2) 无准确资料时估算树木自然生长高度 6、与石场距离 条件允许:500m以外;条件不允许:200m(背向爆破面)或300m(正向爆破面)以外。 7、接地体与石油天然气埋地管道距离 8、与机场距离 与跑道端或跑道中心线距离≥4km。 9、接地体与埋地通信线免计算保证距离 10、与无线电台间距离 11、交叉跨越时塔位与控制物距离(m)

12、规程中与铁路、公路、河流、管道、索道及各种架空线路交叉或接近的基本要求

二、电气间隙 1、带电部分与杆塔构件的最小间隙 2、变电站OY引下线 3、跳线对横担底部距离 4、档中线间距离 5、上下层导地线水平偏移 6、绝缘地线绝缘子间隙 一般为15mm。

三、绝缘配合、防雷 1、爬电比距配置 (1) 爬电比距要求(按额定电压) (2)有效系数(悬垂钟罩型、深棱型玻璃和瓷绝缘子) 零~II级:~;III~IV级:~ 2、复合绝缘子防雷选择 3、等高绝缘配置绝缘子片数

非线性控制理论和方法

非线性控制理论和方法 姓名:引言 人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,现实生活中,大多数的系统都是非线性的。非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。控制理论的发展目前面临着一系列严重的挑战, 其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。 1.传统的非线性研究方法及其局限性 传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。相平面法是Poincare于1885年首先提出的一种求解常微分方程的图解方法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。描述函数法是 P. J.Daniel于1940

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

电子电路设计的基础知识

电子电路设计的基础知识 一、电子电路的设计基本步骤: 1、明确设计任务要求: 充分了解设计任务的具体要求如性能指标、内容及要求,明确设计任务。 2、方案选择: 根据掌握的知识和资料,针对设计提出的任务、要求和条件,设计合理、可靠、经济、可行的设计框架,对其优缺点进行分析,做到心中有数。 3、根据设计框架进行电路单元设计、参数计算和器件选择: 具体设计时可以模仿成熟的电路进行改进和创新,注意信号之间的关系和限制;接着根据电路工作原理和分析方法,进行参数的估计与计算;器件选择时,元器件的工作、电压、频率和功耗等参数应满足电路指标要求,元器件的极限参数必须留有足够的裕量,一般应大于额定值的1.5倍,电阻和电容的参数应选择计算值附近的标称值。 4、电路原理图的绘制: 电路原理图是组装、焊接、调试和检修的依据,绘制电路图时布局必须合理、排列均匀、清晰、便于看图、有利于读图;信号的流向一般从输入端或信号源画起,由左至右或由上至下按信号的流向依次画出务单元电路,反馈通路的信号流向则与此相反;图形符号和标准,并加适当的标注;连线应为直线,并且交叉和折弯应最少,互相连通的交叉处用圆点表示,地线用接地符号表示。 二、电子电路的组装 电路组装通常采用通用印刷电路板焊接和实验箱上插接两种方式,不管哪种方式,都要注意: 1.集成电路:

认清方向,找准第一脚,不要倒插,所有IC的插入方向一般应保持一致,管脚不能弯曲折断; 2.元器件的装插: 去除元件管脚上的氧化层,根据电路图确定器件的位置,并按信号的流向依次将元器件顺序连接; 3.导线的选用与连接: 导线直径应与过孔(或插孔)相当,过大过细均不好;为检查电路方便,要根据不同用途,选择不同颜色的导线,一般习惯是正电源用红线,负电源用蓝线,地线用黑线,信号线用其它颜色的线;连接用的导线要求紧贴板上,焊接或接触良好,连接线不允许跨越IC或其他器件,尽量做到横平竖直,便于查线和更换器件,但高频电路部分的连线应尽量短;电路之间要有公共地。 4.在电路的输入、输出端和其测试端应预留测试空间和接线柱,以方便测量调试; 5.布局合理和组装正确的电路,不仅电路整齐美观,而且能提高电路工作的可靠性,便于检查和排队故障。 三、电子电路调试 实验和调试常用的仪器有:万用表、稳压电源、示波器、信号发生器等。调试的主要步骤。 1.调试前不加电源的检查 对照电路图和实际线路检查连线是否正确,包括错接、少接、多接等;用万用表电阻档检查焊接和接插是否良好;元器件引脚之间有无短路,连接处有无接触不良,二极管、三极管、集成电路和电解电容的极性是否正确;电源供电包括极性、信号源连线是否正确;电源端对地是否存在短路(用万用表测量电阻)。 若电路经过上述检查,确认无误后,可转入静态检测与调试。 2.静态检测与调试 断开信号源,把经过准确测量的电源接入电路,用万用表电压档监测电源电压,观察有无异常现象:如冒烟、异常气味、手摸元器件发烫,电源短路等,如发现异常情况,立即切断电源,排除故障; 如无异常情况,分别测量各关键点直流电压,如静态工作点、数字电路各输入端和输出端的高、低电平值及逻辑关系、放大电路输入、输出端直流电压等是否在

电力系统潮流计算

课程设计论文 基于MATLAB的电力系统潮流计算 学院:电气工程学院 专业:电气工程及其自动化 班级:电自班 学号: 姓名:

目录 摘要 (3) 一、问题重述 (3) 1.1题目原始资料 (3) . 1.1.1、系统图 (3) 1.1.2、发电厂资料 (4) 1.1.3、变电所资料 (4) 1.1.4、输电线路资料 (4) 1.2 课程设计基本内容 (4) 1.3课程设计要求 (5) 二、问题分析 (5) 2.1系统的等值电路 (5) 2.2 参数求取 (6) 2.3 计算方法 (7) 2.4 牛顿—拉夫逊法 (7) 三、问题求解 (10) 3.1 等值电路的计算 (10) 3.2 潮流计算及结果分析 (10) 3.2.1、初始条件下的潮流计算及分析 (10) 3.2.2、负荷按一定比例变化时的潮流计算及分析 (13) 3.2.3、轮流断开支路双回线中的一条时的潮流计算及分析 (21) 心得体会 (34) 参考文献 (35) 附录 (35)

摘要 本文运用MATLAB 软件进行潮流计算,对给定题目进行分析计算,再应用DDRTS 软件,构建系统图进行仿真,最终得到合理的系统潮流。 在电力系统的正常运行中,随着用电负荷的变化和系统运行方式的改变,网络中的损耗也将发生变化,系统运行中个节点出现电压的偏移是不可避免的。为了保证电力系统的稳定运行,要进行潮流调节。电力系统潮流计算是电力系统分析计算中最基本的内容,也是电力系统运行及设计中必不可少的工具。 根据系统给定的运行条件、网络接线及元件参数,通过潮流计算可以确定各母线电压的幅值及相角、各元件中流过的功率、整个系统的功率损耗等。对不同的负荷变化,分析潮流分布,并进行潮流的调节控制。 关键词 潮流计算 牛顿-拉夫逊法 MATLAB DDRTS 仿真 一、问题重述 1.1题目原始资料 .1.1.1、系统图 两个发电厂分别通过变压器和输电线路与四个变电所相连。 变电所1 变电所2 母线

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

围岩强度和变形参数的分布特征及可靠性分析

2010年11月 Rock and Soil Mechanics Nov. 2010 收稿日期:2010-05-12 基金项目:国家自然科学基金资助项目(No. 40872178);上海市重点学科建设项目资助(No. B308)。 第一作者简介:闫春岭,男,1975年生,博士研究生,讲师,主要从事岩土力学及工程地质方面的研究与教学。 文章编号:1000-7598 (2010)增刊2-0349-06 围岩强度和变形参数的分布特征及可靠性分析 闫春岭1, 2,丁德馨3,唐益群1, 2,毕忠伟3 (1. 同济大学 岩土及地下工程教育部重点实验室,上海 200092,2. 同济大学 地下建筑与工程系,上海 200092; 3. 南华大学 核资源与安全工程学院,湖南 衡阳 421001) 摘 要:从康家湾铅锌金矿Ⅲ-1号矿体上盘围岩取大量岩样,分别加工制作了50个压缩和拉伸试验的试样。利用RMT-150B 伺服试验系统对试样进行单轴抗压、抗拉试验,各获得了50个试验结果。采用假设检验法,分别对50个单轴抗压强度和50个抗拉强度进行检验,结果表明,它们分别服从正态分布和对数正态分布;对50个E 、μ和50个C 、?,进行不放回抽样,组成50组E 、μ、C 、?。利用FLAC 计算软件,对硐室围岩中的应力进行了计算,分别获得了50个最大主应力和50个最小主应力;采用同样假设检验法,证明它们分别服从对数正态和正态分布;根据单轴抗压、抗拉强度及围岩中的最大主应力、最小主应力概率密度函数,计算了硐室围岩不发生拉伸破坏和压缩破坏的可靠度;并对硐室围岩抗剪强度的校核,得出了该地下硐室围岩稳定的结论。 关 键 词:可靠性;围岩;力学参数;概率分布 中图分类号:TU 458 文献标识码:A Probability distribution of strength parameters and deformation parameters of surrounding rock and reliability analysis YAN Chun-ling 1, 2,DING De-xin 3,TANG Yi-qun 1, 2,BI Zhong-wei 3 (1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University ,Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. School of Nuclear Resources and Safety Engineering, University of South China, Hengyang, Hunan 421001, China) Abstract: Cores were taken from hanging wall of the Ⅲ-1 ore body at Kangjiawan Lead ,Zink and Gold Mine. 50 samples for compression tests and 50 samples for tension tests were fabricated. And 50 compressive strength values and 50 tensile strength values were obtained by using the electro-hydraulic and servo-controlled testing system RMT-150B. The probability distributions for the compressive strength and tensile strength were tested by using the obtained compressive strength values and tensile strength values and the hypothesis test method. It is shown that the uniaxial compressive strength follows normal distribution; and uniaxial tensile strength follows the lognormal distribution. It composes of 50 groups of E , μ, C , ? by random sampling to 50E , μand 50 C , ? without replacement. The stress of surrounding rock was calculated by using FLAC and 50 maximum values and 50 minimum values were respectively gained. The results show the former follows lognormal distribution and the latter follows normal distribution. The reliability of surrounding rock without tensile and compression failure was calculated under uniaxial compressive, tensile strength and probability density function of maximum and minor principal stress. Shear strength and the stability of surrounding rock were checked. Key words: reliability; surrounding rock mass; mechanical parameters; probability distribution 1 引 言 岩土工程的可靠度研究开始于20世纪50年代后期[1]。1956年Casagrande [2]提出了土工和基础工程中计算风险的问题,在岩土工程领域中最早论述了风险问题,直到60年代才有较多的人注意这方面 的研究。大量的报导出现在70年代,可靠度研究取得了很大的进展,Meyerhof 、Lumo 和Wu 等[3]都研究了岩土工程中安全系数与失效概率的关系,讨论岩土变异性对失效概率的影响;松尾稔[4]系统地论述了可靠度设计的现状和发展可靠度设计需要解决的问题;Harr 在他所著的Mechanics of Particulate

地铁线路平面曲线设计相关参数的确定

地铁线路平面曲线设计相关参数的确定

地铁线路平面曲线设计相关参数的确定 地铁线路平面曲线设计相关参数的确定 内容简介: 摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词地铁线路曲线设计参数确定 1 曲线半径选择曲线半径应根据行车速度、沿 论文格式论文范文毕业论文 摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词地铁线路曲线设计参数确定 1 曲线半径选择曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。地铁《设规》规定:“最小曲线半径一般情况300 m ,困难情况250 m。” 在实际设计中,对250 m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300 m。例如,天津地铁1 号线南段,因受津萍大厦桩基和城市干道交叉口及地铁设站位置控制,经多次研究比选,设计了3 处300 m 半径曲线,最终经市建委审批确定。 2 曲线超高与限速计算列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。列车通过曲线的最大允许速度式中 g 重力加速度, 9. 8 m s2 ; r 曲线半径,m; s 内外轨头中心距离,取1 500 mm; v 、V 行车速度, v 单位为m s , V 单位为km h ; h 所需外轨超高度,mm。 图1 超高与向心力关系图对某一实设曲线而言, 超高h 是定值。当列车以vmax 通过时,将产生最大的欠超高hqmax 为hqmax = h-Sv

电力系统潮流计算课程设计

课程设计 电力系统潮流计算 学院:电气工程学院 班级: 学号: 姓名:

电力系统潮流计算课程设计任务书 一 .题目原始资料 1、系统图:两个发电厂分别通过变压器和输电线路与四个变电所相连。 2、发电厂资料: 母线1和2为发电厂高压母线,发电厂一总装机容量为( 300MW ),母线3为机压母线, 机压母线上装机容量为( 100MW ),最大负荷和最小负荷分别为40MW 和20MW ;发电厂二总装机容量为( 200MW )。 3、变电所资料: (一) 变电所1、2、3、4低压母线的电压等级分别为:10kV 10kV 35kV 35kV (二) 变电所的负荷分别为: (4)50MW 50MW 60MW 70MW (三)每个变电所的功率因数均为cos φ=0.85; (四)变电所3和变电所4分别配有两台容量为75MV A 的变压器,短路损耗414kW , 变电所1 变电所2 母线 电厂一 电厂二

短路电压(%)=16.7;变电所1和变电所2分别配有两台容量为63MV A 的变压器,短路损耗为245kW ,短路电压(%)=10.5; 4、输电线路资料: 发电厂和变电所之间的输电线路的电压等级及长度标于图中,单位长度的电阻为 Ω17.0,单位长度的电抗为Ω0.402,单位长度的电纳为S -610*2.78。 二、 课程设计基本内容: 1. 对给定的网络查找潮流计算所需的各元件等值参数,画出等值电路图。 2. 输入各支路数据,各节点数据利用给定的程序进行在变电所在某一负荷情况下的潮 流计算,并对计算结果进行分析。 3. 跟随变电所负荷按一定比例发生变化,进行潮流计算分析。 1) 4个变电所的负荷同时以2%的比例增大; 2) 4个变电所的负荷同时以2%的比例下降 3) 1和4号变电所的负荷同时以2%的比例下降,而2和3号变电所的负荷同时 以2%的比例上升; 4. 在不同的负荷情况下,分析潮流计算的结果,如果各母线电压不满足要求,进行电 压的调整。(变电所低压母线电压10KV 要求调整范围在9.5-10.5之间;电压35KV 要求调整范围在35-36之间) 5. 轮流断开环网一回线,分析潮流的分布。 6. 利用DDRTS 软件,进行绘制系统图进行上述各种情况潮流的分析,并进行结果的 比较。 7. 最终形成课程设计成品说明书。 三、课程设计成品基本要求: 1. 在读懂程序的基础上画出潮流计算基本流程图 2. 通过输入数据,进行潮流计算输出结果 3. 对不同的负荷变化,分析潮流分布,写出分析说明。 4. 对不同的负荷变化,进行潮流的调节控制,并说明调节控制的方法,并列表表示调 节控制的参数变化。 5. 打印利用DDRTS 进行潮流分析绘制的系统图,以及潮流分布图。

非线性系统学习控制理论的发展与展望

非线性系统学习控制理论的发展与展望 谢振东谢胜利刘永清 摘要:论述了学习控制的基本理论问题,给出了学习与学习控制系统的基本定义,着重讨论了学习控制方法产生的历史背景、目前非线性系统学习控制的研究状况,提出了一些有待继续研究的问题. 关键词:非线性系统;学习控制;发展与展望 文献标识码:A Development and Expectation for Learning Control Theory of Nonlinear Systems XIE Zhendong,XIE Shengli and LIU Yongqing (Depatrment of Automatic Control Engineering, South China University of Technology. Guangzhou, 510640, P.R.China) Abstract:In this paper, the problem for the basic theory of learning control is discussed. After giving the basic definition of learning and learning control, we mainly discuss the background of learning control and the research status for learning control of nonlinear systems, and put forward some problems need to be researched. Key words:nonlinear systems; learning control; development and expectation▲ 1 非线性系统学习控制的研究背景(Research background for learning control theory of nonlinear systems) 1.1 引言(Introduction) 对于高速运动机械手的控制,Uchiyama提出一个思想[1]:不断重复一个轨线的控制尝试,并以此修正控制律,能达到较好的控制效果.日本学者Arimoto[2]等人根据这种思想于1984年针对机器人系统的控制研究,提出了迭代学习控制这一新颖方法.这种控制方法只是利用控制系统先前的控制经验,根据测量系统的实际输出信号和期望信号来寻求一个理想的输入,使被控对象产生期望的运动.而“寻找”的过程就是学习的过程,在学习的过程中,只需要测量系统的输出信号和期望信号,不象适应控制那样,对系统要进行复杂的参数估计[3,4],也不象一般控制方法那样,不能简化被控对象的动力学描述.特别是在一类具有较强的非线性耦合和较高的位置重复精度的动力学系统(如工业机器人、数控机床等)中,学习控制有着很好的应用,如T.Sugie[5],M.Katic[6],H.Park[7]的工作.迭代学习控制方法提出后,受到了控制界的广泛关注,人们不仅针对各种机器人系

地铁线路平面曲线设计相关参数的确定(精)

地铁线路平面曲线设计相关参数的确定 摘要针对地铁不同于一般铁路的特点和现有技术资料不完全适用的情况,对地铁线路平面曲线设计中如何合理确定相关参数问题作了较详细论述。 关键词地铁线路曲线设计参数确定 地铁线路平面曲线设计涉及行车速度、圆曲线半径、缓和曲线长度、外轨超高、线间距加宽等多个参数, 各参数相互关联制约。1993 年发布的现行《地下铁道设计规范》( GB50157 92) (以下简称《设规》) 中有关规定尚不尽完善,而地铁又有其不同于一般铁路的自身特点,既有的铁路设计手册等技术资料也不完全适用, 因此,设计中常需自行计算合理确定这些参数,以期取得地铁线路较好的技术条件和节省部分工程投资。 1 曲线半径选择 曲线半径应根据行车速度、沿线地形、地物等条件因地制宜由大到小合理选定。地铁线路不同于野外一般铁路,它往往受城市道路和建筑物控制,曲线半径选择自由度小,常须设置较小半径曲线。地铁《设规》规定:“最小曲线半径一般情况300 m ,困难情况250 m。” 在实际设计中,对250 m 半径曲线,因其钢轨磨耗陡然加剧,除非因特殊条件控制不得已时方可采用,一般应控制在最小300 m。例如,天津地铁1 号线南段,因受津萍大厦桩基(地下线) 和城市干道交叉口及地铁设站位置(高架线) 控制,经多次研究比选,设计了3 处300 m 半径曲线,最终经市建委审批确定。 2 曲线超高与限速计算 列车通过较小半径曲线地段,为保证行车安全和乘客舒适要求,列车必须限速运行。列车通过曲线的最大允许速度(通常简称曲线限速),根据曲线外轨超高和旅客舒适度计算确定。 列车在曲线上运行时产生惯性离心力使乘客有不适感。因此,通常以设置外轨超高产生向心力,以达到平衡离心力的目的。 从理论上分析,车体重力P 产生的离心力为: J= Pv 2/gR (1) 由于设置外轨超高使车体向曲线内侧倾斜产生的车体重力P 和轨道对车辆的反力Q 的合力形成向心力(图1) 为Fn= P h/s (2) 当Fn =J 时,可得h = Sv 2/gR = 11. 8 V2/R (3) 式中g 重力加速度,9. 8 m/ s2 ;

集总参数和分布参数

集总参数和分布参数 组成电路模型的元件,都是能反映实际电路中元件主要物理特征的理想元件,由于电路中实际元件在工作过程中和电磁现象有关,因此有三种最基本的理想电路元件:表示消耗电能的理想电阻元件R;表示贮存电场能的理想电容元件C;表示贮存磁场能的理想电感元件L,当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总在一起,用一个或有限个R、L、C元件来加以描述,这样的电路参数叫做集总参数。而集总参数元件则是每一个具有两个端钮的元件,从一个端钮流入的电流等于从另一个端钮流出的电流;端钮间的电压为单值量。 参数的分布性指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。 一个电路应该作为集总参数电路,还是作为分布参数电路,或者说,要不要考虑参数的分布性,取决于其本身的线性尺寸与表征其内部电磁过程的电压、电流的波长之间的关系。若用 l表示电路本身的最大线性尺寸,用λ表示电压或电流的波长,则当不等式 λ>>l 成立,电路便可视为集总参数电路,否则便需作为分布参数电路处理。电力系统中,远距离的高压电力传输线即是典型的分布参数电路,因50赫芝的电流、电压其波长虽为 6000 千米,但线路长度达几百甚至几千千米,已可与波长相比。通信系统中发射天线等的实际尺寸虽不太长,但发射信号频率高、波长短,也应作分布参数电路处理。 研究分布参数电路时,常以具有两条平行导线、而且参数沿线均匀分布的传输线为对象。这种传输线称为均匀传输线(或均匀长线)。作这样的选择是因为实际应用的传输线可以等效转换成具有两条平行导线形式的传输线,而且这种均匀的传输线容易分析。 传输线是传送能量或信号的各种传输线的总称。其中包括电力传输线、电信传输线、天线等。传输线又称长线。由于它具有在空间某个方向上其长度已可与其内部电压、电流的波长相比拟,而必须考虑参数分布性的特征,所以是典型的分布参数电路。在电路理论中讨论传输线时以均匀传输线作为对象。均匀传输线是指参数沿线均匀分布的二线传输线,其基本参数,或称原参数是R0、L0、C0和G0。其中R0代表单位长度线(包括来线与回线)的电阻;L0代表单位长度来线与回线形成的电感;C0和G0分别代表单位长度来线与回线间的电容和

电力系统潮流计算

电力系统潮流计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电力系统 课程设计题目: 电力系统潮流计算 院系名称:电气工程学院 专业班级:电气F1206班 学生姓名: 学号: 指导教师:张孝远 1 2 节点的分类 (5) 3 计算方法简介 (6) 牛顿—拉夫逊法原理 (6) 牛顿—拉夫逊法概要 (6) 牛顿法的框图及求解过程 (8) MATLAB简介 (9) 4 潮流分布计算 (10)

系统的一次接线图 (10) 参数计算 (10) 丰大及枯大下地潮流分布情况 (14) 该地区变压器的有功潮流分布数据 (15) 重、过载负荷元件统计表 (17) 5 设计心得 (17) 参考文献 (18) 附录:程序 (19) 原始资料 一、系统接线图见附件1。 二、系统中包含发电厂、变电站、及其间的联络线路。500kV变电站以外的系统以一个等值发电机代替。各元件的参数见附件2。 设计任务 1、手动画出该系统的电气一次接线图,建立实际网络和模拟网络之间的联系。 2、根据已有资料,先手算出各元件的参数,后再用Matlab表格核算出各元件的参数。 3、潮流计算 1)对两种不同运行方式进行潮流计算,注意110kV电网开环运行。 2)注意将电压调整到合理的范围 110kV母线电压控制在106kV~117kV之间; 220kV母线电压控制在220 kV~242kV之间。 附件一:

72 水电站2 水电站1 30 3x40 C 20+8 B 2x8 A 2x31.5 D 4x7.5 水电站5 E 2x10 90+120 H 12.5+31.5 F G 1x31.5 水电站3 24 L 2x150 火电厂 1x50 M 110kV线路220kV线路课程设计地理接线示意图 110kV变电站220kV变电站牵引站火电厂水电站500kV变电站

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

粒度参数特征

2)粒度参数 碎屑粒度分析数据主要用于分析岩石的沉积环境及沉积条件,主要参数包括粒 度中值、偏度、峰度、标准偏差、分选系数等。 粒度中值是选取样品中的一个粒度值,大于此粒度值的颗粒数占50%,小于此 粒度值的颗粒数也占50%,于是我们就称这个粒度值为粒度中值。粒度累积 分选系数指粒度累积曲线上25%和75%处所对应的颗粒直径的比值。是表示 碎屑沉积物(岩)分选性的一种参数。其公式为: 式中:So——分选系数,无因次: P25——累计曲线上的25%处对应的颗粒直径,mm; R75——累计曲线上75%处对应的颗粒直径,mm。。 当颗粒分选很好时,P25和P75两值很靠近,所以SO值就接近于1。 以每个直线段的陡缓反映分选好坏。线段陡(>500~600)分选好,线段 平缓(200~300)分选差。 标准偏差标准偏差越小,这些值偏离平均值就越少,分选越好。 φ16、φ50和φ84分别代表累积曲线上百分含量为16%、50%、84%三处的粒径(φ值)。 偏度、峰度更能反映尾部变化。中央组分代表了原沉积环境的分选性,而尾部反映 后期沉积环境对沉积物的改造。若中央峰值高,展开度窄,说明分选好。 偏度是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度 的数字特征。 又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数。直 观看来,峰度反映了尾部的厚度。 (1)砾岩粒度参数特征

(2)砂岩粒度参数特征 (3)粉砂岩粒度参数 区别:该事件实际发生的次数与试验总次数的比值。由于观察的时间有长短,随机事件的发生与否也有随机性,所以在不同的试验中,同一个事件发生的频率可 以彼此不相等。.概率被用来表示一个事件发生的可能性的大小。如果一个事件是必然事件,它发生的概率就是1,例如:抛掷一枚均匀的硬币,硬币落地后“正面1 朝上”的概率是1/2。当试验次数较少的时候,“正面朝上”的频率有可能是0,也 有可能是l或其它数,但是经过多次重复试验后,“正面朝上”的频率会稳定在1/2。 频率与概率的联系即用频率来估计概率。谁也无法预测随机事件在每次试验中是否会发生,但是在相同的条件下进行多次重复试验后,事件出现的频率会逐渐稳定,稳定后的频率可以作为概率的估计值。反之,如果知道一个事件发生的概率, 就可以由此推断:在多次重复试验后该事件发生的频率将接近其概率。但是:用试 验的方法得出的频率只是概率的估计值,要想得到近似程度较高的概率估计值,通 常需要经过大量的重复试验。 (三)粒度曲线和粒度参数 常用的粒度曲线包括:直方图、频率曲线、累积曲线、概率累积 曲线。

相关主题
文本预览
相关文档 最新文档