当前位置:文档之家› 基本初等函数知识点归纳

基本初等函数知识点归纳

基本初等函数知识点归纳
基本初等函数知识点归纳

函数及其基本初等函数

〖1.1〗函数及其表示 【1.1.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及

A 到

B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.

②函数的三要素:定义域、值域和对应法则.(所以进行已知对应关系()f x 的函数,一定先求出函数的定义域)

③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法

①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足

,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.

注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须

a b <,(前者可以不成立,为空集;而后者必须成立).而且无论闭区间或者开区间,,a b 均称为端点。

(3)求函数的定义域时,一般遵循以下原则:

①()f x 是整式时,定义域是全体实数.

②()f x 是分式函数时,定义域是使分母不为零的一切实数.

③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

⑤tan y x =中,()2

x k k Z π

π≠+

∈.

⑥零(负)指数幂的底数不能为零.

⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.

⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.

③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程

2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ?=-?≥,从而确定函数的值域或最值.

④不等式法:利用基本不等式确定函数的值域或最值.

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.

例1已知函数3

2

()f x x ax bx c =+++,下列结论中错误的是()

A 00,()0x R f x ?∈=

B 函数()y f x =的图像是中心对称图形

C 若0x 是()f x 的极小值点,则()f x 在区间(-∞,0x )上单调递减

D 若0x 是()f x 的极值点,则'

()0f x =

例2 已知偶函数()f x 在[0,)+∞上单调递减,(2)f =0,若(1)0f x ->,则x 的取值范围是( )

例 3 设函数()x

f x m

π=,若存在()f x 的极值点0x 满足22200[(()]x f x m +<,

则m 的取值范围是( )

A (-∞,-6)∪(6,+∞)

B (-∞,-4)∪(4,+∞)

C (-∞,-2)∪(2,+∞)

D (-∞,-1)∪(1,+∞) 例4 下列函数与y=x 有相同图像的一个函数是( )

A y =2

x y x

=

C log (01)x y a a a =>≠且

D log x

a a

y = 【1.2.2】函数的表示法 (5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.

列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念

①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.

②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 〖1.3〗函数的基本性质

【1.3.1】单调性与最大(小)值 (1)函数的单调性

①定义及判定方法

②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去

一个减函数为增函数,减函数减去一个增函数为减函数.

③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则

[()]y f g x =为减.

(2)打“√”函数()(0)a

f x x a x

=+

>的图象与性质 ()f x

分别在(,-∞

、)+∞

上为增函数,分别在

[

、上为减函数(判定方法2). (3)最大(小)值定义

①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:

(1)对于任意的x I ∈,都有()f x M ≤;

(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是

函数()f x 的最大值,记作max ()f x M =.

②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. 【1.3.2】奇偶性

(4)函数的奇偶性

①定义及判定方法

y

x

o

②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.

③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.

④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.

〖补充知识〗函数的图象

(1)作图

利用描点法作图:

①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:

要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.

①平移变换

0,0,|()()h h h h y f x y f x h ><=???????→=+左移个单位

右移|个单位0,0,|()()k k k k y f x y f x k ><=???????→=+上移个单位下移|个单位

②伸缩变换

01,1,()()y f x y f x ωωω<<>=????→=伸

缩 01,1,()()A A y f x y Af x <<>=????→=缩伸

③对称变换

()()x y f x y f x =???→=-轴()()y y f x y f x =???→=-轴

()()y f x y f x =???→=--原点1()()y x y f x y f x -==????→=直线 ()(||)y y y y f x y f x =???????????????→=去掉轴左边图象

保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =?????????→=保留轴上方图象

将轴下方图象翻折上去

(2)识图

对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图

函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是

探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.

第二章基本初等函数(Ⅰ)

〖2.1〗指数函数

【2.1.1】指数与指数幂的运算 (1)根式的概念

①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n

n 是偶数时,正数a 的正的n

示,负的n

次方根用符号0的n 次方根是0;负数a 没有n 次方根.

n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.

③根式的性质

:n a =;当n 为奇数时

a =;当n 为偶数时,

(0)

|| (0) a a a a a ≥?==?

-

. (2)分数指数幂的概念

①正数的正分数指数幂的意义是:0,,,m

n

a a m n N +=>∈且1)n >.0的正分数指数幂等于0.

②正数的负分数指数幂的意义是

: 1()0,,,m m n

n a

a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.

(3)分数指数幂的运算性质

①(0,,)r

s

r s

a a a

a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈

③()(0,0,)r r r

ab a b a b r R =>>∈ 【2.1.2】指数函数及其性质

(4)指数函数

〖2.2〗对数函数

【2.2.1】对数与对数运算 (1)对数的定义

①若(0,1)x

a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.

②负数和零没有对数.

③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式

log 10a =,log 1a a =,log b a a b =.

(3)常用对数与自然对数

常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN += ②减法:log log log a a a M

M N N

-= ③数乘:log log ()n a a n M M n R =∈ ④log a N

a

N =

log log (0,)b n a a n

M M b n R b

=

≠∈ ⑥换底公式:

log log (0,1)log b a b N

N b b a

=

>≠且

【2.2.2】对数函数及其性质

(6)反函数的概念

设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子

()x y ?=.如果对于y 在C 中的任何一个值,通过式子()x y ?=,x 在A 中都有唯一确

定的值和它对应,那么式子()x y ?=表示

x

是y 的函数,函数()x y ?=叫做函数

()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.

(7)反函数的求法

①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; ③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域(即原函数的值域). (8)反函数的性质

①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.

②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.

③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数.

〖2.3〗幂函数 (1)幂函数的定义

一般地,函数y x α

=叫做幂函数,其中x 为自变量,α是常数.

(3)幂函数的性质

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).

③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p

α=

(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q

p

y x =是奇函数,若p 为奇数q 为偶数时,则q

p

y x =是偶函数,若p 为偶数q 为奇数时,则q p

y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.

〖补充知识〗二次函数

(1)二次函数解析式的三种形式

①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:

12()()()(0)f x a x x x x a =--≠

(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式.

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①二次函数2

()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2b

x a

=-

顶点坐标是2

4(,)24b ac b a a

--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-

上递减,在[,)2b

a

-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b

a -∞-

上递增,在[,)2b a -+∞上递减,当2b

x a =-时,2max 4()4ac b f x a

-=. ③二次函数2

()(0)f x ax bx c a =++≠当240b ac ?=->时,图象与x 轴有两个交点

11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布

一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.

设一元二次方程2

0(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2

()f x ax bx c =++,

从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2b

x a

=-

③判别式:? ④端点函数值符号. ①k <x 1≤x 2?

②x 1≤x 2<k ?

③x 1<k <x 2?af (k )<0

④k 1<x 1≤x 2<k 2?

⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<

k 2?f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合

⑥k 1<x 1<k 2≤p 1<x 2<p 2? 此结论可直接由⑤推出.

(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01

()2

x p q =

+. (Ⅰ)当0a >时(开口向上) ①若2b p a -

<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a

->,则()m f q =

①若02b x a -≤,则()M f q =②0

2

x a

->,则()M f p =

x

x

x

x

x

(Ⅱ)当0a <时(开口向下) ①若2b p a -

<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a

->,则()M f q =

①若02b x a -≤,则()m f q =②02b x a

->,则()m f p =.

第三章 函数的应用

〖3.1〗方程的根与函数的零点 一、方程的根与函数的零点

1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x

f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。即:

方程0)(=x f 有实数根?函数)(x f y =

的图象与x 轴有交点?函数)(x f y =有零点.

3、函数零点的求法: 求函数)(x f y =的零点: ○

1 (代数法)求方程0)(=x f 的实数根; ○

2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y

=的图象联系

起来,并利用函数的性质找出零点. ○

3零点定理法:如果函数)(x f y =在区间[,]a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ?<,那么,函数)(x f y =在区间[,]a b 内有零点,即存在(,)c a b ∈,

x

f x

f

x

f

x

x

使得()0f c =。这个c 也就是方程()0f x =的根

4、二次函数的零点:

二次函数)0(2≠++=a c bx ax y .

1)△>0,方程02

=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.

2)△=0,方程02

=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程02

=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.

〖3.2〗用二分法求方程的近似解

1对于在区间[,]a b 上连续不断、且()()0f a f b ?<的函数)(x f y =,通过不断地

把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

2用二分法求函数()f x 零点近似值的步骤: 1) 确定区间[,]a b ,验证()()0f a f b ?<,给定精确度ε; 2) 求区间(,)a b 的中点1x ; 3) 计算1()f x ;

(1) 若1()0f x =,则1x 就是函数的零点;

(2) 若1()()0f a f x ?<,则令1b x =(此时零点01(,)x a x ∈); (3) 若1()()0f x f b ?<,则令1a x =(此时零点01(,)x x b ∈)。

4) 判断是否达到精确度ε:即若||a b ε-<,则得到零点近似值a (或b );否则重复2~4。

〖3.3〗函数模型及其应用

几类常见的函数模型,一次函数、二次函数、指数函数、对数函数以及幂函数。

函数练习题

基础练习

一、填空题

1

的值是( )

A 、3

B 、-3

C 、±3

D 、81

2、3

416()81

-的值是( )

A 、

49 B 、9

4

C 、481

D 、-814

3、在某种细菌培养过程中,每30分钟分裂一次(一个分裂为两个),经过4个小时,

这种细菌由一个可繁殖成( )

A 、8

B 、16

C 、256

D 、32

4、如图,设,,,0a b c d >,且不等于1,,,,x x x

y a y b y c y ====在同一坐标系中的图象如图,则,,,a b c d 的大小顺序( )

A 、a b c d <<<

B 、a b d c <<<

C 、b a d c <<<

D 、b a c d <<<

5、已知0

6、函数21

4

1()2

x x y -+=的值域为 ( )

A 、(0,+∞)

B 、[1,+∞]

C 、(0,1)

D 、(0,1) 7、方程:lg lg(3)1x x +-=的解为x = ( ) A 、5或-2 B 、5 C 、-2 D 、无解 8、若2

8(41)0x y y -+-= ,则2x loy y 的值为 ( ) A 、4 B、

16

1

C、0 D 、-4 9、已知62()log x f x =,那么(8)f = ( ) A 43 B 8 C 18 D 12

y =

10、函数

2

3

y x

=的图象是()

11、幂函数35

m

y x-

=,其中m∈N,且在(0,+∞)上是减函数,又()()

f x f x

-=,则m= ( )

A、0

B、1

C、2

D、3

12、

1

3

3

()

4

a--

=,

1

4

3

()

4

b--

=,

1

4

3

()

2

c--

=的大小顺序是()

A、c

二、填空题

13、函数1

()3

x

f x a-

=+的图象一定过定点P,则P点的坐标是。

14、函数(2)x

y a

=-在定义域内是减函数,则a的取值范围是。

15、log=,20042005

2)(2

?=。

16、函数

(1)

log(3)

x

y x

-

=-的定义域是,

17、设()

f x是定义在R上的奇函数,当0

x<时,

2

3

()

f x x

=,则(8)

f=。

18、函数2

1

2

log(32)

y x x

=-+的单调增区间是,减区间是。

19、方程2

22

x x

+=的解的个数是。

三、解答题

20、(1)已知13

x x-

+=,求22

x x-

+的值;

(2)已知 x2+x-2 =22且 x>1 ,求 x2-x-2 的值。

21、函数()x f x a = (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大2

a ,求a 的值。

22、证明:幂函数()f x =[0,)+∞是减函数

23、已知二次函数()y f x =满足(2)(3)0f f -==,且()f x 的最大值为5,求()y f x =的

表达式。

24、求函数22log (4)log (2)y x x =?在1

44

x ≤≤的最值,并给出最值时对应的x 的值。

25、已知1()log 1a

x

f x x

+=-(01)a a >≠且 (1)求()f x 的定义域; (2)判断()f x 奇偶性;

(3)求使()f x >0的x 的取值范围。

知识拓展

已知0a >且1a ≠,求使方程222log ()log ()a a x ak x a -=-有解时的k 的取值范围。

答案: 由题可知:

22222log ()log ()a a x ak x a -=-

22

222()x ak

x a x ak x a >??>?

?-=-?,即2(1)2x ak x a a k x k ??>??>??+?=??①,或2

(1)2x ak x a a k x k ??>??<-??+?=??

② 当1k ≥时,①得

22(1)

,12a k ak k k

+><,与1k ≥矛盾;②不成立 当01k <<时,①得

22(1)

,122a k a k k k +>+>,恒成立,即01k <<;②不成立 显然0k ≠,当0k <时,①得

22(1)

,122a k a k k k +>+<,不成立, ②得2(1)

,2a k ak a k

+<

<-得1k <- ∴01k <<或1k <- 已知函数满足

,对于任意

R 都有

,

且 ,令

.

(1)求函数的表达式; (2)求函数的单调区间; (3)研究函数在区间

上的零点个数。

答案:

(1)解:∵,∴.

∵对于任意R都有,

∴函数的对称轴为,即,得.

又,即对于任意R都成立,

∴,且.

∵,∴.

∴.

(2) 解:

① 当时,函数的对称轴为,

若,即,函数在上单调递增;

若,即,函数在上单调递增,在上

单调递减.

② 当时,函数的对称轴为,

则函数在上单调递增,在上单调递减.综上所述,当时,函数单调递增区间为,单调递

减区间为;

当时,函数单调递增区间为和,单调递减区间为和.

(3)解:①当时,由(2)知函数在区间上单调递增,

又,

故函数在区间上只有一个零点.

② 当时,则,而,

(ⅰ)若,由于,

且,

此时,函数在区间上只有一个零点;

(ⅱ)若,由于且,此时,函数在区间上有两个不同的零点.

综上所述,当时,函数在区间上只有一个零点;

当时,函数在区间上有两个不同的零点.

基本初等函数I知识点总结

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1* >∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0 a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化 幂值 真数 = b

高中数学必修基本初等函数常考题型幂函数

高中数学必修基本初等 函数常考题型幂函数 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质 解析式y=x y=x2y=x3y=1 x y= 1 2 x 图象 定义域R R R{x|x≠0}[0,+∞)值域R[0,+∞)R{y|y≠0}[0,+∞) 奇偶性奇函数偶函数奇函数奇函数非奇非偶函 数 单调性在(-∞, +∞)上单 调递增 在(-∞, 0]上单调递 减,在(0, +∞)上单 调递增 在(-∞, +∞)上单 调递增 在(-∞, 0)上单调递 减,在(0, +∞)上单 调递减 在[0,+ ∞)上单调 递增 定点(1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.

特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ? ?? ;③y=4x 2;④y=x 5 +1;⑤y=(x -1)2;⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =()2 2231m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=()2 2231m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

n a n a n ? (1)根式的概念 高一必修一函数知识点(12.1) 〖1.1〗指数函数 ① 叫做根式,这里 n 叫做根指数, a 叫做被开方数. ②当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 . ?a (a ≥ 0) ③根式的性质: ( n a )n = a ;当 n 为奇数时, = a ;当 n 为偶数时, =| a |= ?-a . (a < 0) (2) 分数指数幂的概念 m ①正数的正分数指数幂的意义是: a n = (a > 0, m , n ∈ N + , 且 n > 1) .0 的正分数指数幂等于 0. a - m = ( )1 m ( ) 1(a > 0, m , n ∈ N , n > 1) ②正数的负分数指数幂的意义是: n n = n m + 且 .0 的负分数指数幂没有意 a a 义. 注意口诀:底数取倒数,指数取相反数. (3) 分数指数幂的运算性质 ① a r ? a s = a r +s (a > 0, r , s ∈ R ) ② (a r )s = a rs (a > 0, r , s ∈ R ) ③ (ab )r = a r b r (a > 0, b > 0, r ∈ R ) (4) 指数函数 函数名称 指数函数 定义 函数 y = a (a > 0 且 a ≠ 1)叫做指数函数 a > 1 0 < a < 1 图象 y 1 y O y a x (0,1) x y a x y 1 O y (0,1) x 定义域 R 值域 (0,+∞) 过定点 图象过定点(0,1),即当 x=0 时,y=1. 奇偶性 非奇非偶 单调性 在 R 上是增函数 在 R 上是减函数 函数值的变化情况 y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0) a 变化对 图象的影响 在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴. 例:比较 n a n n a m

(推荐)高中数学必修1基本初等函数常考题型:幂函数

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x 是自变量,α是常数. 2.常见幂函数的图象与性质 解析式 y =x y =x 2 y =x 3 y =1x y =12 x 图象 定义域 R R R {x|x≠0} [0,+∞) 值域 R [0,+∞) R {y|y≠0} [0,+∞) 奇偶性 奇函数 偶函数 奇函数 奇函数 非奇非偶函数 单调性 在(-∞,+ ∞)上单调递增 在(-∞,0]上单调递减,在(0,+∞)上单调递增 在(-∞,+∞)上单调递增 在(-∞,0)上单调递减,在(0,+∞)上单调递减 在[0,+∞)上单调递增 定点 (1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念

【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ??? ;③y=4x 2;④y=x 5+1;⑤y=(x -1)2 ; ⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =( ) 22 23 1m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=( ) 22 23 1m m m m x ----为幂函数, ∴m 2 -m -1=1,解得m =2或m =-1. 当m =2时,m 2 -2m -3=-3,则y =x -3 ,且有x≠0; 当m =-1时,m 2 -2m -3=0,则y =x 0 ,且有x≠0. 故所求幂函数的解析式为y =x -3 ,{x|x≠0}或y =x 0 ,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法 判断一个函数是否为幂函数的依据是该函数是否为y =x α (α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件. 【对点训练】 函数f(x)=( ) 22 3 1m m m m x +---是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x) 的解析式. 解:根据幂函数的定义得 m 2 -m -1=1.解得m =2或m =-1. 当m =2时,f(x)=x 3 在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3在(0,+∞)上是减函数,不符合要求. 故f(x)=x 3 . 题型二、幂函数的图象

高中数学基本初等函数知识点梳理

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇 数时,a 的n n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n 为奇数时, a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分 数指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

【2.1.2】指数函数及其性质(4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫 做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且

基本初等函数经典复习题+问题详解

()) 1,,,0(.4*>∈>=n N n m a a a n m n m x N N a a x =?=log 必修1基本初等函数 复习题 1、幂的运算性质 (1)s r s r a a a +=?),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =?)(R r ∈ 2、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1()N M N M a a a log log log +=?; ○2 N M N M a a a log log log -=; ○ 3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a 换底公式:a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b m n b a n a m log log = ;(2)a b b a log 1log =. 求函数的定义域时列不等式组的主要依据是: (1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法 (A) 定义法:○1 任取x 1,x 2∈D ,且x 1

基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1. 三、指数函数的图象和性质

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函 数知识点总结 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念: 负数没有偶次方根;0的任何次方根都是0,=0。 注意:(1)n a = (2)当 n是奇数时a = ,当 n 是偶数时,0 ||,0 a a a a a ≥?==?-∈>且 正数的正分数指数幂的意义:_1(0,,,1)m n m n a a m n N n a *= >∈>且 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)r s r s a a a a r s R +=>∈ (2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r r r a a b a b r R =>>∈ 注意:在化简过程中,偶数不能轻易约分;如122 [(1]11≠- (二)指数函数及其性质 1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1

注意: 指数增长模型:y =N(1+p)指数型函数: y=ka3 考点:(1)ab =N, 当b>0时,a,N 在1的同侧;当b <0时,a,N 在1的 异侧。 (2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。掌握利用单调性比较 幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。 (3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。 (4)分辨不同底的指数函数图象利用a 1=a,用x=1去截图象得到对应的底数。 (5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数 1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式) 说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式. 2、两个重要对数: (1)常用对数:以10为底的对数, 10log lg N N 记为 ; (2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =?= 对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数 (2)log a a=1, log a 1=0 特别地, l g10=1, lg1=0 , lne=1, l n1=0

高一数学必修一第二章基本初等函数知识点总结

第二章基本初等函数知识点整理 〖2.1〗指数函数 2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 表示;当n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数 a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0.②正数的负分数 指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底 数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r a b a b a b r R =>>∈ 2.1.2指数函数及其性质 (4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…) . (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘: log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且

10基本初等函数知识点总结

基本初等函数知识点总结 一、指数函数的概念 (1)、指数函数的定义 一般地,函数x y a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。 (2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。 (3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。 2、指数:自变量x 。 3、系数:1。 二、指数函数的图象与性质 一般地,指数函数x y a =(0a >,且1a ≠)的图象与性质如下表: 三、幂的大小比较方法 比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法: 要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。 四、底数对指数函数图象的影响 (1)、对函数值变化快慢的影响 1、当底数1a >时,指数函数x y a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。 2、当底数01a <<时,指数函数x y a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。 (2)、对函数图象变化的影响

指数函数x y a =与x y b =的图象的特点: 1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当 0x >时,总有1x x a b >>。 2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当 0x >时,总有01x x a b <<<。 五、对数的概念 (1)、对数:一般地,如果x a N =(0a >,且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数。 (2)、常用对数:我们通常把以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N 。 (3)、自然对数:我们通常把以无理数e ( 2.71828e =)为底的对数称为自然对数, 为了简便,N 的自然对数log e N 简记为ln N 。 六、对数的基本性质 根据对数的定义,对数log a N (0a >,1a ≠)具有如下性质: 1、0和负数没有对数,即0N >; 2、1的对数是0,即log 10a =; 3、底数的对数等于1,即log 1a a =; 4、对数恒等式:如果把b a N =中的b 写成log a N ,则log a N a N =。 七、对数运算性质 如果0a >且1a ≠,0M >,0N >,那么 (1)、()log log log a a a MN M N =+; (2)、log log log a a a M M N N =-; (3)、log log n a a M n M =(n R ∈)。 八、换底公式

基本初等函数题型总结

基本初等函数题型总结 题型1 指数幂、指数、对数的相关计算 【例1】 计算: (1)12lg 3249-43lg 8+lg 245;(2)lg 25+23 lg 8+lg 5×lg 20+(lg 2)2. (3)353log 1+-232log 4++103lg3+????1252log . 变式: 1.计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27 . (3)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06. 题型2指数与对数函数的概念 【例1】(1)若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________. (2)指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (3)函数y =a x -5+1(a ≠0)的图象必经过点________. 题型3 指数与对数函数的图象 【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c 【例2】函数y =2x +1的图象是( )

【例3】函数y =|2x -2|的图象是( ) 【例4】直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________. 【例5】方程|2x -1|=a 有唯一实数解,则a 的取值范围是____________. 变式: 1.如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110 ,则相应于 c 1,c 2,c 3,c 4的a 值依次为( ) A.3,43,35,110 B.3,43,110,35 C.43,3,35,110 D.43,3,110,35 2.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1) 3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1 4.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ) A .0 B .1 C .2 D .3 5.函数y =x 3 3x -1 的图象大致是( ) 题型4指数与对数型函数的定义域、值域、单调性、奇偶性 例 1函数f (x )=1-2x +1x +3的定义域为____________. 2判断f (x )= x -x )(2231的单调性,并求其值域.

高一数学必修一基本初等函数知识点总结

〖 2.1〗指数函数 根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.②正数的负分数 指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)分数指数幂的运算性质① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数 〖2.2〗对数函数 负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. 几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. 常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数的运算性质 如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 换底公式的推论: (5)对数函数 〖2.3〗幂函数 (1)幂函数的定义 一般地,函数 y x α=叫做幂函数,其中x 为自变量,α 是常数.

基本初等函数知识点

- 考试资料 指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0 =1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1.

基本初等函数题型归纳

1基本初等函数题型归纳 题型一指数运算与对数运算 例1已知函数2log ,0,()31,0, x x x f x x ->?=?+≤?则f (f (1))+f 31log 2?? ???的值是()A.5 B.3 C.-1 D.72 【答案】A 【解析】由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,31log 0,2<∴ f 31log 2?? ?? ?=31log 23-+1=2+1=3,所以f (f (1))+ 5. 【易错点】确定31log 2 的范围再代入.【思维点拨】本题较简单,分段函数计算题代入时要先确定范围,再代入函数.例2定义在R 上的函数f (x )满足f (x )=2log 1,0,6,0,x x f x x -≤?? ->?()()则f (2019)=()A .-1 B .0 C .1 D .2【答案】D 【解析】∵2019=6×337-3,∴f (2019)=f (-3)=log 2(1+3)=2.故选D. 【易错点】转化过程 【思维点拨】x >6时可以将函数看作周期函数,得到f (2019)=f (3),然后再带入3,得出f (3)=f (-3).题型二指对幂函数的图象与简单性质 例1函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是() A.a >1,b <0 B.a >1,b >0 C.00 D.0

基本初等函数知识点总结 (1)

基本初等函数知识点总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根, 其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ??<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1.

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或 )]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 b a = N ?log a N = b 底数 指数 对数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =.

基本初等函数几个题型解答

返回 已知函数y =(12 )x 2-6x +17, (1)求函数的定义域及值域; (2)确定函数的单调区间. [提示] 求值域时,要先求x 2-6x +17的值域,再利用指数函数的图像进行求解.确定单调区间可先分解成y =(12)u ,u =x 2-6x +17,分别研究这两个函数的单调性,再按照复合函数的单调性写出函数的单调区间. 返回[解] (1)设μ=x 2-6x +17,由于函数y =(12 )μ及μ=x 2-6x +17的定义域为(-∞,+∞),故函数y =(12 )x 2-6x +17的定义域为R. 因为μ=x 2-6x +17=(x -3)2+8≥8,所以(12)μ≤(12 )8,又(12)μ>0,故函数的值域为(0,1256]. 返回(2)函数μ=x 2-6x +17在[3,+∞)上是增函数,即对任意x 1、x 2∈[3,+∞)且x 1(12 )μ2,即y 1>y 2,所以函数y =(12 )x 2-6x +17在[3,+∞)上是减函数,同理可知y =(12)x 2-6x +17在(-∞,3)上是增函数. 返回 在本例中,把“12 ”改为“a ”,a >0且a ≠1,讨论f (x )=a x 2-6x +17的单调性. 解:设u =x 2-6x +17=(x -3)2+8,则当x ≥3时,u 是增函数,当x <3时,u 是减函数. 又因为当a >1时,y =a u 是增函数, 当01时,原函数f (x )=a x 2-6x +17在(-∞,3)上是减函数,在(3,+∞)上是增函数. 当0

高一必修一基本初等函数知识点总结归纳

高一必修一函数知识点(12.1) 〖1.1〗指数函数 (1)根式的概念 n 叫做根指数,a 叫做被开方数. ②当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指数幂没有意 义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r a b a b a b r R =>>∈ (4)指数函数 例:比较

〖1.2〗对数函数 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (3)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 (5)对数函数

相关主题
文本预览
相关文档 最新文档