当前位置:文档之家› 物质结构元素周期律总结

物质结构元素周期律总结

物质结构元素周期律总结
物质结构元素周期律总结

物质结构元素周期律总结

1.对原子的组成和三种微粒间的关系

A

Z

X的含义:代表一个质量数为A、质子数为Z的原子。

质量数(A)=质子数(Z)+中子数(N)。

核电荷数=元素的原子序数=质子数=核外电子数。

2.原子核外电子分层排布的一般规律

在含有多个电子的原子里,电子依能量的不同是分层排布的,其主要规律是:

(1)核外电子总是尽先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的电子层(能量最低原理)。

(2)原子核外各电子层最多容纳2n2个电子。

(3)原子最外层电子数目不超过8个(K层为最外层时不能超过2个电子)。

(4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒数第三层电子数目不能超过32个。

3.元素的性质与元素的原子核外电子排布的关系

(1)稀有气体的不活泼性;稀有气体元素的原子最外层有8个电子(氦是2个电子),处于稳定结构,因此化学性质稳定,一般不跟其他物质发生化学反应。

(2)非金属性与金属性(一般规律):

最外层电

子数

得失电子趋

元素的性

金属元素<4易失金属性

非金属元素>4易失非金属

4.1~20号元素微粒结构的特点

(1)稀有气体原子的电子层结构与同周期的非金属元素形成的阴离子的电子层结构相同,与下一周期

的金属元素形成的阳离子的电子层结构相同。

(2)核外有10个电子的微粒:

①分子:Ne、HF、H2O、NH3、CH4。

②阳离子:Mg2+、Na+、Al3+、NH4+、H3O+。

③阴离子:N3—、O2—、F—、OH—、NH2—。

(3)元素的原子结构的特殊性:

①原子核中无中子的原子: 1

1

H。②最外层有1个电子的元素:H、Li、Na。③最外层有2个电子的元

素:Be、Mg、He。④最外层电子数等于次外层电子数的元素:Be、Ar。⑤最外层电子数是次外层电子数2倍的元素:C;是次外层电子数3倍的元素:O;是次外层电子数4倍的元素:Ne。⑥电子层数与最外层电子数相等的元素:H、Be、Al。⑦电子总数为最外层电子数2倍的元素:Be。⑧次外层电子数是最外层电子数2倍的元素:Si。⑨内层电子数是最外层电子数2倍的元素:Li、P。

5.从质量、电性两个方面来认识原子结构

(1)原子核的体积虽小但原子的质量几乎全集中在原子核上,质子和中子的相对质量都近似为1,电子的质量很小,仅约为质子质量的1/1836。所以,离子的相对质量就可以认为等于原子的相对质量。

(2)组成原子的“三微粒”的带电情况及微粒数目的关系:中子不带电,一个质子带一个单位正电荷,一个电子带一个单位负电荷。在学习和解题时要充分利用微粒之间的关系,并注意理解“六种量”的概念:核内质子数=核电荷数=核外电子数=原子序数;质量数A.=质子数(Z)+中子数(N);离子所带电荷数=质子数—电子数,负值表示带负电,正值表示带正电。

6.全面掌握周期表中的元素性质递变规律

非金属性非金属性逐渐增强非金属性逐渐减弱单质的氧化性还原性减弱氧化性减弱

还原性氧化性增强还原性增强

最高价氧化物对

应的水化物的酸性碱性酸性增强

碱性减弱

酸性减弱

碱性增强

气态氢化物稳定

渐增渐减

①上表所列规律的内在联系是:原子结构决定位置,决定性质。

②上述性质之间关系可以用下述方式来理解:

电子层数越多原子半径越大原子核对核外电子的吸引力越弱失电子能力增强,得电子能力减弱金属性增强,非金属性减弱。

电子层数相同,质子数越大原子半径越小原子核对核外电子的引力越强失电子能力减弱,得电子能力增强金属性减弱,非金属性增强。

③根据上表得出的推论:在周期表中越靠左方和下方的元素,其元素的金属性愈强,因此铯(Cs)是自然界里最活泼的金属(钫在自然界不能稳定存在);越靠右方和上方的元素,其元素的非金属性愈强,因此,氟是最活泼的非金属元素。可见,在周期表中金属元素集中在左下半部(含所有副族元素),非金属元素集中的右上部(包括氢),而在金属与非金属的交界处的元素,既表现某些金属的性质,又表现某些非金属的性质,如Be,B,Al,Si,Ge等。

④特殊的相似规律:对角线规律(也叫斜线规则)

在周期表中,左上向右下的斜线方向上相邻元素的性质相似,这个规律称为对角线规律,如Be位于第二周期ⅢA族与铝斜线相对。已知Al显两性,则可推知Be也显两性,Be(OH)2,与Al(OH)3相似,也是两性氢氧化物。

7.微粒半径的比较规律

(1)同周期的主族元素,随着原子序数的递增,原子半径逐渐减小(惰性元素除外)

(2)同主族元素的原子半径(或离子半径)都是随着原子序数的增加而逐渐增大

(3)对同种元素来说,其阴离子半径>原子半径>阳离子半径

(4)电子层结构相同的离子,原子序数越大,微粒半径越小 (5)同周期元素形成的离子,阴离子半径一定大于阳离子半径。

(6)惰性元素的原子半径与其它元素的原子半径的测定标准不同,因而没有可比性。 8.元素金属性、非金属性强弱的判断方法 (1)单质、化合物的性质、实验判断法

对于金属性:

①金属与水(或非氧化性酸)反应越剧烈,其金属性越强。

②金属的还原性越强(或金属阳离子的氧化性越弱),其金属性越强。 ③金属的最高价氧化物的水化物的碱性越强,一般金属性越强。

④若一种金属能把另一种金属从其盐溶液中置换出来,则前者的金属性强于后者的金属性。 此外还有原电池原理判断法等,这将在以后的章节中学习。 对于非金属性:

①单质与氢气反应越容易,生成的气态氢化物越稳定,元素的非金属性越强。 ②非金属单质的氧化性越强(或非金属阴离子还原性越弱),元素的非金属性越强。 ③非金属的最高价氧化物的水化物的酸性越强,元素的非金属性越强。

④若非金属单质Xn 能将非金属阴离子Y m-

从其盐溶液中置换出来,则X 的非金属性比Y 的强(注意,这里的盐溶液就是指Y m-型的盐,不是任何形式的盐)。

(2) 主族元素的经验公式K =

n

m

(其中m 是最外层电子数,n 为电子层数)巧断法: ①当K <1时,元素显金属性,且K 值越小,元素的金属性越强 ②当K =1时,元素显两性。

③当K >1时,元素显非金属性,且K 值越大,元素的非金属性越强。

9.元素性质、存在、用途的特殊性

(1)形成化合物种类最多的元素是C;单质是自然界中硬度最大的物质的元素是C;

(2)空气中含量最多的元素是N;气态氢化物的水溶液呈碱性的元素是N。

(3)地壳中含量最多的元素是O;气态氢化物的沸点最高的元素是O;氢化物在通常情况下呈液态的元素是O。

(4)地壳中含量最多的金属元素是Al。

(5)最活泼的非金属元素是F;无正价的元素且无含氧酸的非金属元素是F;气态氢化物(其水溶液)可腐蚀玻璃的元素是F;气态氢化物最稳定的元素是F;阴离子的还原性最弱的元素是F。

(6)自然界中最活泼的金属元素是Cs;最高价氧化物对应水化物碱性最强的元素是Cs;阳离子氧化性最弱的元素是Cs。

(7)焰色反应呈黄色的元素是Na。

(8)焰色反应呈紫色(透过蓝色的钴玻璃观察)的元素是K。

(9) 单质最轻的元素:H。

(10)最轻的金属元素:Li。

(11)常温下单质呈液态的非金属元素是Br;金属元素是Hg。

(12) 最高价氧化物及其水化物既能与强酸反应,又能与强碱反应的元素:Be、Al。

10.核素和同位素

(1)核素:具有一定数目的质子和一定数目的中子的一种原子。如11H(H)、12H(D)、13H(T)就各为一种核素。

(2)同位素:同一元素的不同核素之间互称同位素。如816O、817O、818O是氧元素的三种核素,互为同位素。

(3)元素、核素、同位素之间的关系如下图所示。

(4)同位素的特点

①同种元素,可以有若干种不同的核素。至今已发现了110多种元素,但发现的核素远多于这些元素的种类。

②核电荷数相同的不同核素,虽然它们的中子数不同,但是属于同一种元素。

③同位素是同一元素的不同核素之间的互相称谓,不指具体的原子。

④817O是一种核素,而不是一种同位素。816O、817O、818O是氧元素的三种核素,互为同位素。

⑤同一种元素的不同同位素原子其质量数不同,核外电子层结构相同,其原子、单质及其构成的化合物化学性质几乎完全相同,只是某些物理性质略有差异。

11.元素化合价的规律:

(1)所有元素都有零价

(2)主族元素原子的最外层电子数等于元素的最高正价

(3)只有非金属主族元素才有负价,且最低负价数+最高正价数=8(氢除外)

(4)若原子的最外层电子数为偶数,则元素的正常化合价为一系列偶数;若原子的最外层电子数为奇数,则元素的正常化合价为一系列奇数。

12.元素周期表的应用

(1)预测元素的性质:常见的题目是给出一种不常见的主族元素(如砹、碲、铋、铟、镭、铯等),或尚未发现的主族元素,推测该元素及其单质或化合物所具有的性质。解答的关键是根据该元素所在族的熟悉元素的性质,根据递变规律,加以推测判断。

(2)启发人们在一定区域内寻找新物质(农药、半导体、催化剂等)。

13. 离子键

(1)离子键是一种静电作用:

①静电作用包括阴、阳离子间的静电吸引作用和电子之间、原子核之间的静电排斥作用,当阴、阳离子接近到某一定距离时,吸引和排斥作用达到平衡,于是阴、阳离子间就形成了稳定的离子键。

②由于离子键是静电吸引与静电排斥的平衡,所以阴、阳离子间既不能离得太远,又不能靠得太近,当离子化合物被熔化或溶解于水时,离子键即遭到破坏,这时离子可以自由移动。

(2)离子键的成键原因

相关主题
文本预览
相关文档 最新文档