当前位置:文档之家› 第一原理计算的一些心得

第一原理计算的一些心得

第一原理计算的一些心得
第一原理计算的一些心得

第一原理计算的一些心得

1)第一性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock自洽计算的从头算,前者以电子密度作为基本变量(霍亨伯格-科洪定理),通过求解Kohn-Sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质;后者则通过自洽求解Hartree-Fock方程,获得体系的波函数,求基态性质;

评述:K-S方程的计算水平达到了H-F水平,同时还考虑了电子间的交换关联作用。

(2)关于DFT中密度泛函的Functional,其实是交换关联泛函

包括LDA,GGA,杂化泛函等等

一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;

GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PW,RPBE等方案,BL YP泛函也属于GGA;

此外还有一些杂化泛函,B3L YP等。

(3)关于赝势

在处理计算体系中原子的电子态时,有两种方法,一种是考虑所有电子,叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);此外还有一种方法是只考虑价电子,而把芯电子和原子核构成离子实放在一起考虑,即赝势法,一般赝势法是选取一个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且赝势法得到的能量本征值和全电子法应该相同。

赝势包括模守恒和超软,模守恒较硬,一般需要较大的截断能,超软势则可以用较小的截断能即可。另外,模守恒势的散射特性和全电子相同,因此一般红外,拉曼等光谱的计算需要用模守恒势。

赝势的测试标准应是赝势与全电子法计算结果的匹配度,而不是赝势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。

(4)关于收敛测试

(a)Ecut,也就是截断能,一般情况下,总能相对于不同Ecut做计算,当Ecut增大时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut的收敛要比总能更为苛刻,也就是某个截断能下总能已经收敛了,但应力未必收敛。

(b)K-point,即K网格,一般金属需要较大的K网格,采用超晶胞时可以选用相对较小的K网格,但实际上还是要经过测试。

(5)关于磁性

一般何时考虑自旋呢?举例子,例如BaTiO3中,Ba、Ti和O分别为+2,+4和-2价,离子全部为各个轨道满壳层的结构,就不必考虑自旋了;对于BaMnO3中,由于Mn+3价时d 轨道还有电子,但未满,因此需考虑Mn的自旋,至于Ba和O则不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用,具体的可参照磁性物理。

(6)关于几何优化

包括很多种了,比如晶格常数和原子位置同时优化,只优化原子位置,只优化晶格常数,还有晶格常数和原子位置分开优化等等。

在PRL一篇文章中见到过只优化原子位置,晶格常数用实验值的例子(PRL 100, 186402 (2008));也见到过晶格常数先优化,之后固定晶格常数优化原子位置的情况;更多的情况则是Full geometry optimization。

一般情况下,也有不优化几何结构直接计算电子结构的,但是对于缺陷形成能的计算则往往要优化。

(7)关于软件

软件大致分为基于平面波的软件,如CASTEP、PWSCF和ABINIT等等,计算量大概和体系原子数目的三次方相关;还有基于原子轨道线性组合的软件(LCAO),比如openmx,siesta,dmol等,计算量和体系原子数目相关,一般可模拟较多原子数目的体系。

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质就是旧键的断裂与新建的形成,参与成键原子的电子壳层重新组合就是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似与关于分子波函数的方程形成计算量子化学的数学基础。 2、1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)就是各种计算方法的理论基础与核心部分,因此在介绍本文计算工作所用方法之前,有必要对其关键的部分作一简要阐述。 2、1、1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献与教材中对这些方程已有系统的推导与阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构与性质,在非相对论近似下,须求解 R AB =R 图2-1分子体系的坐标

定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2、1) 其中分子波函数依赖于电子与原子核的坐标,Hamilton 算符包含了电子p 的动能与电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2、2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2、3) 与电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2、4) 式中Z A 与M A 就是原子核A 的电荷与质量,r pq =|r p -r q |,r pA =|r p -R A |与R AB =|R A -R B |分别就是电子p 与q 、核A 与电子p 及核A 与B 间的距离(均以原子单位表示之)。上述分子坐标系如图2、1所示。可以用V(R,r)代表(2、2)-(2、4)式中所有位能项之与 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2、5) 原子单位 上述的Schrodinger 方程与Hamilton 算符就是以原子单位表示的,这样表示的优点在于简化书写型式与避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位就是Bohr 半径

第1章 财务分析理论习题

第一章财务分析理论 一、单项选择题 1. 财务分析开始于()。 A. 投资者 B. 银行家 C. 财务分析师 D. 企业经理 2. 财务分析的对象是()。 A. 财务报表 B. 财务报告 C. 财务活动 D. 财务效率 3. 企业投资者进行财务分析的根本目的是关心企业的()。 A. 盈利能力 B. 营运能力 C. 偿债能力 D. 增长能力 4. 从企业债权人角度看,财务分析的最直接目的是看()。 A. 企业的盈利能力 B. 企业的营运能力 C. 企业的偿债能力 D. 企业的增长能力 5. 西方财务分析体系的基本构架是()。 A. 盈利能力分析、偿债能力分析、营运能力分析 B. 分析概论、会计分析、财务分析 C. 资产负债表分析、利润表分析、现金流量表分析 D. 水平分析、垂直分析、比率分析 6. 业绩评价属于()。 A. 会计分析 B. 财务分析 C. 财务分析应用 D. 综合分析 7. 企业资产经营的效率主要反映企业的()。 A. 盈利能力 B. 偿债能力 C. 营运能力 D. 增长能力 二、多项选择题 1. 现代财务分析的应用领域包括()。 A. 筹资分析 B. 投资分析 C. 经营分析 D. 资本市场 E. 绩效评价 2. 财务分析与经济活动分析的区别在于()。 A. 分析的对象不同 B. 分析的内容不同 C. 分析的依据不同 D. 分析的主体不同

E. 分析的形式不同 3. 企业财务活动包括()。 A. 筹资与投资活动 B. 销售与生产活动 C. 经营与分配活动 D. 研究与开发活动 E. 会计管理活动 4. 财务分析的主体包括()。 A. 企业所有者或潜在投资者 B. 企业债权人 C. 企业经营者 D. 企业供应商和客户 E. 政府管理部门 5. 财务分析的作用在于()。 A. 评价企业过去 B. 反映企业现状 C. 评估企业未来 D. 进行全面分析 E. 进行专题分析 6. 财务分析概论包括的内容有()。 A. 财务分析理论 B. 财务分析程序与方法 C. 会计分析 D. 财务分析信息基础 E. 增长能力分析 7. 下列分析技术中,用于动态分析的有()。 A. 结构分析 B. 水平分析 C. 趋势分析 D. 比率分析 E. 专题分析 8. 财务分析根据分析的内容与范围的不同,可以分为()。 A. 内部分析 B. 外部分析 C. 综合分析 D. 全面分析 E. 专题分析 9. 财务分析从分析方法和目的的角度看,可分为()。 A. 动态分析 B. 专题分析 C. 全面分析 D. 静态分析 E. 现状分析 三、判断题 1. 财务分析的基础是会计报表,会计报表的基础是会计技术。() 2. 比率能够综合反映与其计算相关的某一报表的联系,但给人们不保险的最终印象。() 3. 财务分析是在企业经济分析的基础上形成的一门综合性、边缘性学科。() 4. 财务分析与财务管理的相同点在于二者都将财务问题作为研究对象。() 5. 前景分析就是预测分析。()

统计学原理-计算公式

位值平均数计算公式 1、众数:是一组数据中出现次数最多的变量值 组距式分组下限公式:002 110m m d L M ??+??+= 0m L :代表众数组下限; 1100--=?m m f f :代表众数组频数—众数组前一组频数 0m d :代表组距; 1200+-=?m m f f :代表众数组频数—众数组后一组频数 2、中位数:是一组数据按顺序排序后,处于中间位置上的变量值。 中位数位置2 1+=n 分组向上累计公式:e e e e m m m m e d f S f L M ?-∑+=-12 e m L 代表中位数组下限; 1-e m S :代表中位数所在组之前各组的累计频数; e m f 代表中位数组频数; e m d 代表组距 3、四分位数:也称四分位点,它是通过三个点将全部数据等分为四部分,其中每部分包含 25%,处在25%和75%分位点上的数值就是四分位数。 其公式为:4 11+=n Q 212+=n Q (中位数) 4)1(33+=n Q 实例 数据总量: 7, 15, 36, 39, 40, 41 一共6项 Q1 的位置=(6+1)/4=1.75 Q2 的位置=(6+1)/2=3.5 Q3的位置=3(6+1)/4=5.25 Q1 = 7+(15-7)×(1.75-1)=13, Q2 = 36+(39-36)×(3.5-3)=37.5, Q3 = 40+(41-40)×(5.25-5)=40.25 数值平均数计算公式 1、简单算术平均数:是将总体单位的某一数量标志值之和除以总体单位。 其公式为:n x n x x x X n ∑=??++=21 2、加权算术平均数:受各组组中值及各组变量值出现的频数(即权数f )大小的影响,

第一性原理计算方法论文

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT 软件包。 1.1第一性原理 第一性原理计算(简称从头计算,the abinitio calculation),指从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。第一性原理计算就只需要用到五个最基本的物理常量即(b o k c h e m ....)和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。 第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。 以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT 。 1.2量子力学与Born-Oppenheimer 近似 固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系,相应的体系哈密顿量可以写成如下形式: ),(),(R r E R r H H ψψ= (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子(原子核和电子)的动能和粒子之间的相互作用能,即 N e N e H H H H -++= (1-2) 其中,以是电子部分的哈密顿量,形式为:

财务分析理论基础文档

第一章财务分析理论 ?财务分析的产生与发展 ?财务分析的内涵与目的 ?财务分析的体系与内容 ?财务分析的形式与要求 第一节财务分析的产生与发展 一、财务分析与会计技术发展 (一)财务分析与会计技术发展 1、财务分析的产生与发展是社会经济发展对财务分析信息需求与供给共同作用的结果 2、会计技术与会计报表的发展为财务分析的产生与发展奠定了理论基础 技术发展四阶段,利用会计凭证,登记会计账簿,编制财务报表,解释财务报表 (二)财务分析与会计汇总的历史发展 会计汇总的历史发展:交易记录→会计余额→会计汇总→会计报表 ?会计汇总的历史发展源自于经济发展及人们对会计信息的需求。 ?会计汇总的历史发展促使财务分析领域的扩充和分析技术的发展。? 二、财务分析应用领域的发展 ?1、开始于银行家,进行银行信贷分析 ?2、投资领域的应用,进行投资效益分析 ?3、现代财务分析领域 基本领域:筹资分析、投资分析、经营分析等 特种领域:企业重组、绩效评价、企业评估等 三、财务分析技术的发展 ?1、比率分析:以流动比率等比率指标,了解报表及数据之间的各种关系; ?2、标准比率:以行业平均比率为标准,比较实际比率与标准比率的差距; ?3、趋势比率:以不同年份指标的比较,反映企业进步与否的动态信息; ?4、现代财务分析技术:传统与现代、手工与电算、规范与实证、事后评价与事前预测分析技术四个相结合。 四、财务分析形式的发展 ?1、静态分析?动态分析 静态分析:同期报表中各指标关系的分析,找出内在联系,揭示相互影响和作用。 动态分析:连续报表中同一指标的对比,揭示经济活动的变动及其规律。 ?2、外部分析?内部分析 外部分析:只能得到企业披露的信息。 内部分析:可以获取企业的完全信息。 五、我国财务分析的发展 第二节财务分析的内涵与目的 财务分析是以会计资料及其他相关信息为依据,采用一系列专门技术和方法,对企业等经济组织过去和现在的有关筹资活动、投资活动、经营活动及其偿债能力、盈利能力和营运能力等进行分析与评价,为企业的投资者、债权人、经营者及其他利益关系人了解企业过去、评价企业现状、预测企业未来,做出正确决策提供准确的信息或依据的经济管理活动。 财务分析的要素: ?主体:投资者、债权人、经营者及其他利益关系人 ?依据:会计资料及其他相关信息 ?方法:专门技术和方法

《统计学原理》形成性考核作业计算题

《统计学原理》形成性考核作业(计算题) (将计算过程和结果写在每个题目的后面,也可以手写 拍成照片上传) 计算题(共计10题,每题2分) 1、某生产车间40名工人日加工零件数(件)如下: 30 26 42 41 36 44 40 37 43 35 37 25 45 29 43 31 36 49 34 47 33 43 38 42 32 25 30 46 29 34 38 46 43 39 35 40 48 33 27 28 要求:(1)根据以上资料分成如下几组:25- 30, 30 —35, 35 —40, 40—45, 45—50,计算出各组的频数和频率,整理编制次数分布表。 (2)根据整理表计算工人生产该零件的平均日产量解:(1)40名工人加工零件数次数分配表为: (2)工人生产该零件的平均日产量 x x? — f 27.5 17.5% 32.5 20% 37.5 22.5% 42.5 25% 47.5 15% 37.5 (件)

答:工人生产该零件的平均日产量为37.5件x

x m 1.2 2.8 1.5 m 1.2 2.8 1.5 5.5 4 1.375 (元/公斤) 2 根据资料计算三种规格商品的平均销售价格 解: x x —25 0.2 35 0.5 45 0.3 36 (元) 答:三种规格商品的平均价格为 36元 试问该农产品哪一个市场的平均价格比较高 解:甲市场平均价格 1.2 1.4 1.5

乙市场平均价格 xf 1.2 2 1.4 1 1.5 1 f 2 1 1 4、某企业生产一批零件,随机重复抽取 400只做使用寿命试 验。测试结果平均寿命为5000小时,样本标准差为300小时,400 只中发现10只不合格。根据以上资料计算平均数的抽样平均误差 和成数的抽样平均误差。 解:(1)平均数的抽样平均误差: 2)成数的抽样平均误差: 0.78% 5、采用简单重复抽样的方法,抽取一批产品中的 200件作为 样本,其中合格品为195件。要求: (1) 计算样本的抽样平均误差 (2) 以95.45 %的概率保证程度对该产品的合格品率进行区 间估计。 解: / 八 195 (1) p 97.5% 200 p 、耐石.°975 °.°25 0.011 P n ? 200 样本的抽样平均误差:p 0.011 53 4 1.325 (元/公斤) 300 400 15小时 25%*75 &% V 400

量子力学第一性原理

量子力学第一性原理:仅需五个物理基本常数——电子质量、电子电量、普郎克常数、光速和玻耳兹曼常数,通过求薛定谔方程得到材料的电子结构,而不依赖于任何经验常数即可以预测微观体系的状态和性质,预测材料的组分、结构、性能之间的关系,进一步设计具有特定性能的新材料 作为评价事物的依据,第一性原理和经验参数是两个极端。第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。 量子化学的第一性原理是指多电子体系的Schr?dinge r方程,但是光有这个方程是无法解决任何问题的,量子力学能够准确的解决的问题很少很少,绝大多数都是有各种各样的近似,为此计算量子力学提出一个称为“从头计算”的原理作为第一性原理,除了Schr?dinger方程外还允许使用下列参数和原理: (1) 物理常数,包括光速c、Planck常数h、电子电量e、电子质量m e以及原子的各种同位素的质量,尽管这些常数也是通过实验获得的。(在国际单位值中,光速是定义值,Planck常数是测量值,在原子单位制中则相反。) (2) 各种数学和物理的近似,最基本的近似是“非相对论近似”(Schr?dinger 方程本来就是非相对论的原理)、“绝热近似”(由于原子核质量比电子大得多,而把原子核当成静止的点处理)和“轨道近似”(用一个独立函数来描述一个独立电子的运动)。 量子化学的从头计算方法就是在各种近似上作的研究。如果只考虑一个电子,而把其他电子对它的作用近似的处理成某种形式的势场,这样就可以把多电子问题简化成单电子问题,这种近似称为单电子近似,也称为平均场近似,例如最基本的从头计算方法哈特里-富克(Hartree-Fock)方法,是平均场近似的一种,它把所有讨论的电子视为在离子势场和其他电子的平均势场中的运动。但是哈特里-富克近似程度过大,忽略了电子之间的交换和相关效应,使得计算的精度受到一定的限制,为了解决这一问题,P Hohenberg和W Kohn于1964年提出密度泛函理论(density functional theory, DFT),这一理论将电子之间的交换相关势表示为密度泛函,然后使薛定谔方程在考虑了电子之间的复杂相互作用后

第一性原理计算原理和方法精编

第一性原理计算原理和 方法精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 SCF-MO 方法的基本原理 分子轨道的自洽场计算方 法(SCF-MO)是各种计算方法的理论基础和核心部分,因此在介绍本文计算工作所用方法之 前,有必要对其关键的部分作 一简要阐述。 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本 R AB =R 图2-1分子体系的坐标

近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ () 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 以及原子核的动能 ∑?-=A A A N M H 2121? 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图所示。可以用V(R,r)代表-式中所有位能项之和 ∑∑∑-+=≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( 原子单位

财务分析-判断题

电大财务分析—判断题 第一章财务分析理论 1财务分析的基础是会计报表,会计报表的基础是会计技术。(V) 2.比率能够综合反映与比率计算相关的某一报表的联系,但给人们不保险的最终印象。 (X ) 更正:某一比率很难综合反映与比率计算相关的某一报表的联系;比率给人们不保险的最终印象。3.财务分析是在企业经济分析基础上形成的一门综合性、边缘性学科。( X ) 更正:财务分析是在企业经济分析、财务管理和会计基础上形成的一门综合性、边缘性学科。4.财务分析与财务管理的相同点在于二者都将财务问题作为研究的对象。( V ) 5.前景分析就是预测分析。( X ) 更正:前景分析包括预测分析与价值评价。 6.财务分析作为一个全面系统的分析体系,通常都包括分析理论、分析方法、具体分析及分析应用。( V ) 7.通过对企业经营目标完成情况的分析,可评价企业的盈利能力和资本保值、增值能力。 ( X ) 更正:通过收益分析,可评价企业的盈利能力和资本保值、增值能力;通过对企业的经营目标完成情况分析,可考核与评价企业的经营业绩,及时、准确地发现企业的成绩与不足,为 企业未来生产经营的顺利进行,提高经济效益指明方向。 8.财务分析的最初形式是动态分析,即趋势分析。( X ) 更正:财务分析的最初形式静态分析,如比率分析。 9.财务分析是随着财务报表解释这一会计技术发展要求而产生和发展的。( V ) 10.财务活动是财务分析的对象和基本内容。( V ) 11.盈利能力分析以利润表为基础的,偿债能力分析是以资产负债表为基础的。(X ) 更正:盈利能力分析不仅需要利用利润表资料,而且需要资产负债表资料。 第二章财务分析信息基础 1.经验标准的形成依据大量的实践经验的检验,因此是适用于一切领域或一切情况的绝对标准。 ( X ) 更正:经验标准只是对一般情况而言,并不是适用于一切领域或一切情况的绝对标准。2.注册会计师在审计报告中对所审计的会计报告可提出四种意见。( V ) 3.财务活动及其结果都可以直接或间接地通过财务报表来反映体现。( V ) 4.企业与其关联方企业之间,不论他们有无交易,都应按会计准则的要求加以说明。 ( V ) 5.资产减值准备明细表用于补充说明企业的流动资产减值准备的增减变动情况。( X ) 更正:资产减值准备明细表用于补充说明企业的各项资产减值准备的增减变动情况。 6.资产负债表是反映企业某一时点财务状况的会计报表,因此,资产负债表的附表反映的也是某一时点的财务状况。( X ) 更正:虽然资产负债表是反映企业某一时点财务状况的会计报表,但是,资产负债表的附表为了解释和说明资产负债表某一时点情况,往往用某一时期的数据来说明。如资产减值准备明细表、所有者权益增减变动明细表等都不属于反映某一时点财务状况的报表。 7.不仅长期投资可提跌价准备,短期投资也可计提跌价准备。( V )

电子运动服从量子力学规律

电子运动服从量子力学规律,电子体系的性质由其状态波函数确定。但波函数包含3N个变量(N为电子数目),对于含很多电子的大体系,通过求出波函数计算体系的性质计算量非常大,很难实现。根据密度泛函理论,体系的性质由其电子密度分布唯一确定。电子密度分布是只含三个变量的函数,通过它研究体系的性质可以大大减少计算量,对大体系的量子力学计算就比较容易进行。密度泛函理论研究的基本内容是寻找体系的性质(特别是动能和交换相关能)作为电子密度分布的泛函的精确或近似的形式、相关的计算方法和程序及在各科学领域的应用。目前与密度泛函理论相关的研究有三方面的工作:1.密度泛函理论本身的研究。一部分工作是寻找基态体系性质(特别是动能和交换相关能)作为电子密度分布的泛函的精确形式或者尽可能精确的近似形式;另一部分工作是拓宽密度泛函理论的内涵。2.密度泛函计算方法的研究,包括新算法的提出和程序的优化。用密度泛函理论研究具体体系,必须通过计算才能得到所需结果。大的体系,计算很复杂,是能否用密度泛函理论方法进行研究的瓶颈。因此,发展高效率的计算方法和相关程序是很重要的工作。目前的研究热点是实现对大体系的高精度计算,结合使用密度泛函理论的线性标度算法和分区算法特别受到重视,迄今也已经提出过很多算法,并且推出了相关的计算程序。发展对含重元素体系的相对论密度泛函计算方法也受到重视。3.用以近似能量密度泛函为基础建立的方法研究各种化学和物理问题。密度泛函方法由于其计算量比从头计算方法小得多,可以用来计算大的复杂体系,结果精度可以满足很多研究工作的要求,因此目前已经得到广泛应用。随着更精确的密度泛函形式的发现和更高效率的计算方法和程序的推出,密度泛函理论方法肯定将在化学、物理学、材料科学(纳米科学)、生命科学、药物化学等领域的研究工作中发挥更大的作用。 自从20世纪60年代密度泛函理论(DFT)建立并在局域密度近似(LDA)下导出著名 的Kohn-Sham (KS)方程[1,2]以来,DFT一直是凝聚态物理领域计算电子结构及其特性 最有力的工具。近几年来DFT同分子动力学方法相结合,在材料设计、合成、模拟计算和 评价诸多方面有明显的进展,成为计算材料科学的重要基础和核心技术[3]。特别在量子 化学计算领域,根据INSPEC数据库的记录显示,1987年以前主要用Hartree-Fock(HF) 方法,1990~1994年选择DFT方法的论文数已同HF方法并驾齐驱,而1995年以来,用 DFT的工作继续以指数律增加,现在已经大大超过用HF方法研究的工作[4]。W. Kohn 因提出DFT获得1998年诺贝尔化学奖,非常精确地表明DFT在计算量子化学领域的核 心作用和应用的广泛性。 DFT适应于大量不同类型的应用,因为电子基态能量与原子核位置之间的关系可以 用来确定分子或晶体的结构,而当原子不处在它的平衡位置时,DFT可以给出作用在原子核位置上的力。因此,DFT可以解决原子分子物理中的许多问题,如电离势的计算[5], 振动谱研究,化学反应问题,生物分子的结构[6],催化活性位置的特性[7]等等。在凝聚态 物理中,如材料电子结构和几何结构[8],固体和液态金属中的相变[9~10]等。现在,这些方 法都可以发展成为用量子力学方法计算力的精确的分子动力学方法[11]。 DFT的另一个优点是,它提供了第一性原理或从头算的计算框架。在这个框架下可 以发展各式各样的能带计算方法。虽然在DFT的所有实际应用中,几乎都采用局域密度 近似(LDA),这是一种不能控制精度的近似,因而DFT方法的有效性在很大程度上要看 其结果与实验相一致的能力。人们没有任何直接的方法可以改善LDA的精度。然而 DFT允许发展别的方法作为补充,在这个方向上,已提出了例如广义梯度近似(GGA)等 方法[12~16],把密度分布n(r)的空间变化包括在方法之中,实现了可较大幅度减少LDA 误差的目的。

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似, 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122 ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??? ?????-++?-?-∑∑∑∑∑∑≠≠ (2.1) 其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p

与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A M H 2? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R AB =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,1 2121),( (2.5) 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 质量则以电子制单位表示之,即定义m e =1 。

统计学原理计算题试题及答案

电大专科统计学原理计算题试题及答案 计算题 1.某单位40名职工业务考核成绩分别为: 68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 81 单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90 分为良,90─100分为优。 要求: (1)将参加考试的职工按考核成绩分为不及格、及格、中、良、优五组并 编制一张考核成绩次数分配表; (2)指出分组标志及类型及采用的分组方法; (3)分析本单位职工业务考核情况。 解:(1) (2)分组标志为"成绩",其类型为"数量标志";分组方法为:变量分组中 的开放组距式分组,组限表示方法是重叠组限; (3)本单位的职工考核成绩的分布呈两头小, 中间大的" 正态分布"的形态, 说明大多数职工对业务知识的掌握达到了该单位的要求。 2.2004年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下

试问哪一个市场农产品的平均价格较高?并说明原因。 解: 解:先分别计算两个市场的平均价格如下: 甲市场平均价格()375.145 .5/==∑∑=x m m X (元/斤) 乙市场平均价格325.14 3 .5==∑∑= f xf X (元/斤) 说明:两个市场销售单价是相同的,销售总量也是相同的,影响到两个市场 平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同。 3.某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件, 标准差为9.6件;乙组工人日产量资料如下: 要求:⑴计算乙组平均每个工人的日产量和标准差; ⑵比较甲、乙两生产小组哪个组的日产量更有代表性? 解:(1)

统计学原理常用公式汇总及计算题目分析

《统计学原理》常用公式汇总及计算题目分析 第一部分常用公式 第三章统计整理 a)组距=上限-下限 b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距 d)缺上限开口组组中值=下限+1/2邻组组距 第四章综合指标 i.相对指标 1.结构相对指标=各组(或部分)总量/总体总量 2.比例相对指标=总体中某一部分数值/总体中另一部分数值 3.比较相对指标=甲单位某指标值/乙单位同类指标值 4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现 象总量指标 5.计划完成程度相对指标=实际数/计划数 =实际完成程度(%)/计划规定的完成程度(%) ii.平均指标

1.简单算术平均数: 2.加权算术平均数或 iii.变异指标 1.全距=最大标志值-最小标志值 2.标准差: 简单σ= ;加权σ= 3.标准差系数: 第五章抽样估计 1.平均误差: 重复抽样: 不重复抽样: 2.抽样极限误差 3.重复抽样条件下: 平均数抽样时必要的样本数目

成数抽样时必要的样本数目 4.不重复抽样条件下: 平均数抽样时必要的样本数目 第七章相关分析 1.相关系数 2.配合回归方程y=a+bx 3.估计标准误: 第八章指数分数 一、综合指数的计算与分析 (1)数量指标指数

此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。 ( - ) 此差额说明由于数量指标的变动对价值量指标影响的绝对额。 (2)质量指标指数 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。 ( - ) 此差额说明由于质量指标的变动对价值量指标影响的绝对额。 加权算术平均数指数= 加权调和平均数指数= (3)复杂现象总体总量指标变动的因素分析 相对数变动分析: = × 绝对值变动分析:

统计学原理重要公式

一.加权算术平均数和加权调和平均数的计算 加权算术平均数: ∑∑= f xf x 或 ∑ ∑ = f f x x 加权调和平均数: ∑∑∑ ∑= = f xf x m m x 频数也称次数。在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的 测量值的数目,即落在各类别(分组)中的数据个数。 再如在3.14159265358979324中,…9?出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。 频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则每个小组的频数与数据总数的比值。 在变量分配数列中,频数(频率)表明对应组标志值的作用程度。频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。 掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上?的频数是4 例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____. 解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60. 一.加权算术平均数和加权调和平均数的计算 加权算术平均数: ∑∑= f xf x 或 ∑ ∑ = f f x x x 代表算术平均数;∑是总和符合;f 为标志值出现的次数。 加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。比重也称为权重,数据 的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。加权和与所有权重之和的比等于加权算术平均数。 加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f 加权调和平均数: ∑ ∑∑ ∑==f xf x m m x 加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。

第一节第一性原理计算方法综述

第一性原理计算的理论方法 随着科技的发展,计算机性能也得到了飞速的提高,人们对物理理论的认识也更加的深入,利用计算机模拟对材料进行设计已经成为现代科学研究不可缺少的研究手段。这主要是因为在许多情况下计算机模拟比实验更快、更省,还得意于计算机模拟可以预测一些当前实验水平难以达到的情况。然而在众多的模拟方法中,第一性原理计算凭借其独特的精度和无需经验参数而得到众多研究人员的青睐,成为计算材料学的重要基础和核心计算。本章将介绍第一性原理计算的理论基础,研究方法和ABINIT软件包。 1.1 第一性原理 第一性原理计算( 简称从头计算,the abinitio calculation) ,指 从所要研究的材料的原子组分出发,运用量子力学及其它物理规律,通过自洽计算来确定指定材料的几何结构、电子结构、热力学性质和光学性质等材料物性的方法。基本思想是将多原子构成的实际体系理解成为只有电子和原子核组成的多粒子系统,运用量子力学等最基本的物理原理最大限度的对问题进行”非经验”处理。【1】第一性原理计算就只需要用到五个最基本的物理常量即( m o.e.h.c.k b ) 和元素周期表中各组分元素的电子结构,就可以合理地预测材料的许多物理性质。用第一性原理计算的晶胞大小和实验值相比误差只有几个百分点,其他性质也和实验结果比较吻合,体现了该理论的正确性。

第一性原理计算按照如下三个基本假设把问题简化: 1.利用Born-Oppenheimer 绝热近似把包含原子核和电子的多粒子问题转化为多电子问题。 2.利用密度泛函理论的单电子近似把多电子薛定谔方程简化为比较容易求解的单电子方程。 3.利用自洽迭代法求解单电子方程得到系统基态和其他性质。以下我将简单介绍这些第一性原理计算的理论基础和实现方法:绝热近似、密度泛函理论、局域密度近似(LDA)和广义梯度近似(GGA)、平面波及赝势方法、密度泛函的微扰理论、热力学计算方法和第一性原理计算程序包ABINIT。 1.2量子力学与Born-Oppenheimer 近似固体是由原子核和核外的电子组成的,在原子核与电子之间,电子与电子之间,原子核与原子核之间都存在着相互作用。从物理学的角度来看,固体是一个多体的量子力学体系【2】,相应的体系哈密顿量可以写成如下形式: H (r,R) E H(r ,R) (1-1) 其中r,R 分别代表所有电子坐标的集合、所有原子核坐标的集合。在不计外场作用下,体系的哈密顿量日包括体系所有粒子( 原子核和电子) 的动能和粒子之间的相互作用能,即 H H e H N H e N (1-2) 其中,以是电子部分的哈密顿量,形式为: 22 1 e2 H e(r) r2i 1 e(1-3)

第一性计算原理

Vasp 我所用第一原理是基于密度泛函(DFT)的从头计算,是以电子密度作为基本变量(HK定理),通过求解kohn-sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质。还有一种是基于hartree-fock自洽计算,通过自洽求解HF方程,获得体系的波函数,求基态性质。KS方程的计算水平达到了HF水平,同时还考虑了电子间的交换关联作用。关于DFT中密度泛函的Function其实是交换关联泛函,包括LDA,GGA,杂化泛函等等。一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PE.RPBE等方案。 在处理计算体系中原子的电子态时有两种方法,一种是考虑所有电子叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);另一种是只考虑价电子而把芯电子和原子核构成离子实放在一起考虑即赝势法,一般贋势法是选取一个截断半径,截断半径以内波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且贋势法得到的本征值和全电子法应该相同。贋势的测试标准应是贋势与全电子法计算结果的匹配度,而不是贋势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。 关于Ecut的收敛测试。一般情况下,总能相对于不同Ecut做计算,当截断能增大时总能变化不明显即可。但是在需要考虑体系应力时,还需要对应力进行收敛测试,而且应力相对于截断能要比总能更为苛刻。也就是某个截断能下总能已经收敛了,但应力未必收敛。(力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。) K点也是需要经过测试的。 何时需要考虑自旋?例如BaTiO3中,三个元素分别为=+2,+4,-2价,离子全部为各个轨道满壳层的结构,此时就不必考虑自旋了。对于BaMnO3中,由于Mn+4价时d轨道还有电子但未满,因此需要考虑Mn(4s23d5)的自旋,Ba和O就不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用。 几何优化包括晶格常数和原子位置的优化,一般情况下也有不优化几何结构直接计算电子结构的,但是对于缺陷形成的计算则往往要优化。 软件大致分为基于平面波的软件,如CASTEP,PWSCF.ABINIT等,计算量大概和体系原子数目的三次方相关;还有基于原子轨道线性组合的软件,比如openmx等,计算量和体系原子数目相关,一般可模拟较多原子数目的体系。 V ASP是使用贋势和平面波基组,进行从头量子力学分子动力学计算的软件包。V ASP中的方法基于有限温度下的局域密度近似(用自由能作为变量)以及对每一MD步骤用有效矩阵对角方案和有效Pulay混合求解瞬时电子基态。这些技术可以避免元氏的Car-Parrinello 方法存在的一切问题,而后者是基于电子、离子运动方程同时积分的方法。离子和电子的相互作用超缓Vanderbilt贋势(US-PP)或投影扩充波(PAW)方法描述。两种技术都可以相当程度地减少过度金属或第一行元素的每个原子所必须的平面波数量。V ASP可以很容易地计算力与张力,用于把原子衰减到其瞬时基态中。!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V ASP程序亮点: 1、使用PAW方法或超软贋势,因此基组尺寸非常小,描述材料一般需要原子不超过100 个平面波,大多数情况下甚至每原子50个平面波就能得到可靠结果。 2、2. 在平面波程序中,某些部分代码的执行是三次标度。在VASP中,三次标度部分的前 因子足可忽略,导致关于体系尺寸的高效标度。因此可以在实空间求解势的非局域贡献,

财务分析第一章习题

第一章财务会计报告分析认知 一、单项选择题 1.财务会计报表是对会计主体财务状况、经营成果和现金流量的结构性表述,是由( C )组成的。 A.资产负债表和利润表 B.资产负债表、利润表和现金流量表 C.资产负债表、利润表、现金流量表和所有者权益变动表及其附表 D.资产负债表、所有者权益变动表 2.财务会计报表项目中的数字来源于( D )。 A.原始凭证B.记帐凭证C.明细帐簿D.账簿记录 3.下列报表中,不属于企业对外报告的会计报表的是( D )。 A.资产负债表B.利润表C.现金流量表D.销售日报表 4.下列报告中,不属于中期财务会计报告的是( C )。 A.半年度财务会计报告B.季度财务会计报告 C.月度产品成本报表D.月度财务会计报告 5.编制资产负债表的理论依据是( A )。 A.资产=负债+所有者权益B.收入-费用=利润 C.资产+费用=负债+所有者权益+收入D.以上都不对 6.最关心企业偿债能力的是( C )。 A.所有者B.经营者C.债权人D.政府管理部门 7.最关心企业投资回报情况的是(A )。 A.投资人B.经营者C.债权人D.政府管理部门

8.在下列会计报表分析主体中,必须对企业营运能力、偿债能力、盈利能力及发展能力全部信息予以了解和掌握的是(C )。 A.短期投资人B.企业债权人 C.企业经营者D.财政税务机关 9.下列不属于比率指标的是(D )。 A.构成比率B.效率比率C.相关比率D.净利润 10.下列指标中,不属于效率比率的是(A )。 A.流动比率B.资本利润率C.总资产报酬率D.销售利润率 11.差额分析法与连环替代法的不同是(D )。 A.基本原理不同B.操作程序不同 C.需要列示替代过程D.不需要列示替代过程 12.在企业内部经营管理者进行内部业绩考核时,一般使用的标准是 (A )。 A.预算标准B.历史标准C.经验标准D.行业标准 13.趋势分析法一般选择的分析期为(C )。 A.1—3年B.2—3年C.3—5年D.5—10年 14.(A)是独立核算的基层单位,根据账簿记录和其他有关资料编制的会计报表。 A.单位会计报表B.个别会计报表 C.汇总会计报表D.合并会计报表 15.会计报表是以(B )作为主要计量单位对会计核算资料进行加工、整理和汇总的。

相关主题
文本预览
相关文档 最新文档