当前位置:文档之家› 瓦楞纸箱的抗压强度与设计方法

瓦楞纸箱的抗压强度与设计方法

瓦楞纸箱的抗压强度与设计方法
瓦楞纸箱的抗压强度与设计方法

瓦楞纸箱的抗压强度与设计方法

纸箱包装要素的确定

在做商品包装纸箱设计时,设计师首先碰到这几个问题:

1. 一个纸箱内装商品数量与单箱重量究竟多少为宜?如何来确定?

2. 依据什么确定纸箱产品的内部排列方式,如何选择最好的排列组合?

3. 所设计的箱体长宽高尺寸是否有利于增强纸箱强度和节省原材料?

纸箱内装产品的数量、重量、排列,纸箱内外尺寸,以及瓦楞纸板材料规格等要素,这些都是首要的考虑内容,因为它们最终决定了包装纸箱的制造、容纳、储运、使用的效率、经济性和总体功能。

单箱重量

根据国际贸易惯例,作为消费品运输包装的瓦楞纸箱的单箱重量一般不超过20 kg为宜,最大25 kg。主要考虑到搬运工或店员的操作方便,不容易导致人体损伤等因素。我国国家标准对人工搬运的单件包装箱最大重量规定为18 kg。据此,一般消费商品的瓦楞纸箱货物的单件重量限定为20 kg当属比较合理。

当然,大中型工业产品的缓冲运输包装纸箱不应受此限制。

由内装产品的数量乘以产品单位重量可计算得到包装货物净重,整个纸箱货物重量(毛重)当然还要包含纸箱本身材料和隔衬材料的重量(皮重)。

需要说明的是,按贸易惯例规定单箱重量不大于20kg为宜。但若设计纸箱的单箱重量过小也不明智,因为小的纸箱所容纳的产品数少,材料相对耗用率高,又经历与大箱差不多的制

造过程,小箱的生产、使用、包装的总体效率不如大箱。所以,只要有可能,应尽量接近2 0kg为好,以发挥最大功能。

内容物的数量

纸箱内装产品的数量主要由纸箱最大允许重量除以产品的单位重量来计算确定。

由于要顾及内部产品的长、宽、高三个方向的排列(它决定了纸箱的综合尺寸),所以,内装物数量也不是可随意选择或确定的。设计时一般可考虑几个不同的数量方案,然后根据既合乎重量限定,又有利于排列方式可灵活调整的原则来确定。

具体来说,内装物品件数应该选择分解因子较多的数值,这样有利于长宽高尺寸的调整。举例来说,7、11、13、17、19、23、29、41、43、47……都不宜选择,因为这些数分解因子只有1和其自身,没有别的更多排列法。相反地,如选12 件,12=1×2×2×3,就有12×1×1、6×2×1、4×3×1、3×4×1、3×2×2、6×1×2等许多种可用的长宽高排列方式。而如选10件,10=1×2×5,可用的长宽高排列方式就比12要少得多。所以,在相差不太大的几个数值之间,一般应该选择可分解因子较多的数值。市场上的商品数量传统组合以1 2(一打)或其倍数用得比较多,显然有利于流通环节的模数化与标准化。

内容物的排列方式

指产品在纸箱内部的长宽高三个方向上的具体排列数。

实际上,在确定内装物数量的时候,已经考虑到产品的内部排列了。这里除了数的选择外,还涉及到纸箱的结构强度、用料量等问题。

长宽高方向排列,首先要考虑到箱体外部尺寸应合乎根据人体工学原理得出的限度。

根据纸箱强度试验,在同样周边长下,瓦楞纸箱的长宽比在1.2 ~ 1.6之间,其抗压强度为

最好。同样综合尺寸(长宽高之和)下,随着瓦楞纸箱的高度增加,其抗压强度减弱,因为堆码载荷主要分配在直立箱板上。

事实上,当采用顶部开启的箱型时,高度方向的尺寸选择余地不大。因为产品层数越多,箱体高度增加,既不方便于取物,且也不利于确保足够的抗压强度。

但若过小的高度,也有负面作用。此时用于非承载面(顶面与底面)的材料与用于承载直立箱面的材料这两者之比值,较高度大的箱体要高,故纸箱材料效能利用率差。从0200的箱坯展开图知,同样的容积下,高度小的纸箱,其相对用料率大。

箱体外部尺寸

除了特殊形状或大型工业品的运输箱,一般商品瓦楞纸箱的运输搬运中人力介入在所难免,许多消费商品在进店上柜过程中,还需要店员搬运或开箱。如果纸箱外部尺寸不合理,怀抱空间体过大,使手臂腰部用力紧张,行走困难,会导致人的操作疲劳或损伤。日本学者曾做过对不同重量、尺寸的纸箱货物的搬运试验,通过测量人体在搬运过程中心肺与肌肉等指标,推算人体的工作效率变化和疲劳极限,从而得到合乎人体工学原理的箱体外形尺寸。

一般货物纸箱的长度尺寸,长度加宽度尺寸,长宽高综合尺寸应该作如下限制:

下面介绍瓦楞纸箱尺寸的具体计算方法。

由单件产品的外部(某个方向)最大尺寸乘以此方向上的排列数,再加上衬垫材料的厚度、产品间隙公差等,就可以得到箱内(某个方向)最大尺寸Xi。

Xi= xmax n + d (n-1) + T + ki

xmax为内装物单件最大外尺寸;

n为产品排列数量;

d为内装产品间公差(或间隙)数(小型箱取±1mm/件间,中型箱取±2mm/件间,软性物品取±3mm/件间,硬质物品取+2mm/件间);

T为产品间隔档或衬垫材料厚度之和;

ki为内尺寸修正系数(L方向取5,B方向取5,H方向:小箱取2,中箱取4,大箱取6)。

纸箱制造尺寸X,是制造时模切压线要用到的尺寸,即箱坯展开图上所标注的尺寸。它是由内尺寸加上瓦楞纸板的厚度,再加上一定的修正数形成。长宽方向制造尺寸的修正数各有两个值,这是因为箱坯围折成型时叠合(钉或粘)部分箱壁厚度有所增加,但是又必须保证成型后箱内空间的几何方正度。

X = Xi + km

Km 为制造尺寸修正数,与瓦楞纸板厚度有关,即纸板厚度加一公差数,见表1。

表1 0200类瓦楞纸箱制造尺寸系数Km(单位:mm)

纸箱成型后形成其外部最大尺寸,叫纸箱外部尺寸X0 ,也是运输纸箱外面标示尺寸。它是由制造尺寸加上纸板厚度,再加上一定的修正数形成。

Xo= X+ ko= xmaxn +d(n-1)+T+ki +km+ko

ko为外部尺寸修正数,与瓦楞纸板厚度有关,见表2。

表2 瓦楞纸箱外尺寸修正系数Ko(单位:mm)

纸箱材料

纸箱抗压强度主要源自于纸板或原纸的有关材料指标与技术性能。包装纸箱的功能主要取决于瓦楞纸板的楞型及楞型组合、厚度、等级、性能等。所以纸箱设计时,需要考虑形成瓦楞纸板的面纸、里纸、芯纸、夹芯纸(双层瓦楞板中)的定量(g/m2)、等级,及其配比组合。

我们不应忘记除了纸的克重,纸的致密度与质量等级也很重要。采用高克重面纸也许是提高纸板性能的最简单方法,但这样会使材料成本显著上升。为提高瓦楞纸板的性能而一味提高原纸的克重,从性价比角度看,不是好办法,因为瓦楞纸板中原纸的价格远高于瓦楞芯纸的价格。提高芯纸的质量等级或克重,但不增加太多成本,也可以显著改善瓦楞纸板的强度性能。

纸箱箱型标准中0900系列为纸箱内的各种隔档、衬垫、支撑件。合理运用这些附件,对提高瓦楞纸箱的整体抗压强度有很大的作用。可惜在我国纸箱制造业和用户中没有引起足够的重视,利用率很低,其实这是个成本低、省资源、有效果的设计选择。

纸箱相对用料率RS

在同样容积下,不同长宽高尺寸的0201型纸箱耗用纸板材料的情况显然是不同的。

由于受到实际使用条件的限制,真正选择0201箱型中最省料(按数学方法计算)的长宽高比例2:1:2的情况不多。如能对大量使用的各种尺度的箱体进行简单的相对用料率计算,以判断制造该种纸箱时材料消耗率,则很有实际意义。

所谓相对用料率,即某种纸箱材料消耗相对于最省料箱体(2:1:2)材料消耗的比率。

根据0201箱型展开图,可得到箱体表面积表达式:

S=2(LH+LB+BH+BB)

设纸箱容积为V,长宽高尺寸单位数值为K,

则当L:B:H =2:1:2 时,V= 4K3 , K =(V/4)1/3,

此时S= 2(2+4+2+1)K2=7.15(V)2/3 ,可作为其他箱体用料比较计算的基准。

依照上述计算法,可得到其他各尺寸比例的箱体的相对用料率,见表3 。表 3 0201型各种长宽高比例纸箱的相对用料率

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

影响瓦楞纸箱抗压强度的因素

影响瓦楞纸箱抗压强度的因素 1)瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合, 瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 2)纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响 在用料和楞型相同的情况下,纸箱周长的增长与抗压强度的增长会形成一种变化的曲线,开始纸箱的周长越长,抗压强度越高,但随着纸箱周长的加大,增加了纸箱的不稳定性,在纸箱周长达到一定阶段后,所能承受的抗压强度会呈现按一定比例的递减。 纸箱的高度影响 高度在100~350mm时,抗压强度随着纸箱的高度增加而稍有下降;高度在350~650mm 之间时,纸箱的抗压强度几乎不变;高度大于650mm时,纸箱的抗压强度随着高度增加而降低。主要原因是随着纸箱的高度增加,其稳定性也会相应地增加。 纸箱的长宽比影响 一般情况下,纸箱的长宽比在1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中纸箱的长宽比RL=1.2~1.5时,纸箱的抗压强度最高。纸箱的长宽比为2:1时,其抗压强度下降约20%,因此确定纸箱尺寸时,长宽比不宜超过2,否则会造成成本浪费。(图1 纸箱的长宽比与抗压强度的关系)

如何提高瓦楞纸箱抗压强度

如何提高瓦楞纸箱抗压强度 纸箱最重要的功能在于它对商品具有良好的保护性,而纸箱的整体抗压强度则是纸箱保护性能的综合体现,抗压强度对纸箱的重要性是不言而喻的。近几年来,随着我国包装业的迅猛发展,许多工厂对纸箱的认识逐渐从凭手感判定纸箱的优劣发展到运用各种仪器对纸箱的物理性能进行测试分析的阶段,很多厂家还配备了抗压仪对纸箱抗压强度进行测试。不仅如此,许多客户特别是国外一些大型跨国公司对纸箱的认识也发生了深刻变化,即从关注纸板耐破强度逐渐转向纸箱的抗压强度,并将抗压强度作为质量验收的最重要指标。 如此一来,如何为客户提供满足抗压强度要求的纸箱便成为众多纸箱厂关注的焦点。特别是近二年原纸价格居高不下,纸箱利润空间一缩再缩的情况下,制造出用纸成本最省而又能满足客户抗压要求的纸箱已成为众多纸箱厂共同的目标。 在此着重就影响纸箱抗压强度的因素、纸箱抗压强度的推算方法、抗压强度的用纸配置方法及抗压强度的测试方法等几个方面对纸箱的抗压强度进行综合论述与分析。有些地方难免会有孔见之嫌,但希望能为广大同行提供有益的参考。 影响纸箱抗压强度的因素: 影响纸箱抗压强度的因素有很多,大致可归纳为边压强度、结构尺寸、加工工艺、水分及装箱后的堆码运输方式等。由于各因素的交互影响,常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。 瓦楞纸板的边压强度 边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的坑型组合及纸板的粘合强度有关。 瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。一般来讲,克重较高、造纸材料质量较好及紧度较高的原纸,其横向环压强度也相应越高。但并非克重高的原纸环压就一定比克重低的原纸高。以箱板纸为例,进口牛皮横向环压指数可达到12N·m/g以上,而内地一些小型造纸厂生产的箱板纸仅为8 N·m/ g,相差了30个百分点。也就是说克重为175 g / m2的进口牛卡,其环压强度相当于260 g / m2。因此,鉴定纸箱保护性能的好坏,不能以纸箱用纸克重而论。 瓦楞纸板的结构设计是很科学的,其瓦楞的楞形就如一个个连接的小小拱形门,排成一排,相互支撑,形成三角结构体,强而有力,而且平面上也能承受一定压力,富有弹性,缓冲力强,能起到防震和保护商品的作用。瓦楞形状依圆弧半径不同一般分为U形、V形和UV形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C 楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种坑型及其组合,就单坑纸板来说,一般A坑纸箱抗压强度最高,但易受到损坏; B坑强度较差,但稳定性好;C坑抗压力及稳定性居中。A型瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B型瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B型瓦

瓦楞纸箱抗压特性分析

瓦楞纸箱抗压特性 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。 影响瓦楞纸箱抗压强度的因素较多,这些因素交互发生作用,只有充分认识弄清这些因素影响的规律,才能准确预测出瓦楞纸箱的抗压强度值,以满足顾客需求。 瓦楞纸板的边压强度对抗压强度的影响 计算瓦楞纸箱抗压强度最常用的是Kellicutt 凯里卡特公式: P=ECT{4 ax2/Z}2/3·Z·J 式中:ECT—纸板边压强度(lb / in); ax2—瓦楞常数; J—楞型常数; Z—纸箱周长(in ); P—纸箱抗压强度(lb) 比较简易的计算公式是: P=5.874×ECT× √T×C 式中:P—抗压强度,N ECT—边压强度,N/m

T —纸板厚度,m C —纸箱周长,m 从瓦楞纸箱抗压强度的计算公式可以看出,瓦楞纸箱抗压强度主要取决于纸板边压强度,又称为垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 瓦楞纸板边压强度基本取决于箱纸板和瓦楞原纸的环压强度,并且与瓦楞纸板的生产工艺、瓦楞纸板的结构、楞形、黏合剂的质量等因素有关,计算公式为: 瓦楞纸板边压强度(N/m) ECT=各层原纸的环压强度值之和×(1+δ) 式中:δ—楞型系数之和,参考值如下: A型瓦楞一般为:0.12; B型瓦楞一般为:0.08; C型瓦楞一般为:0.10 原纸的环压强度值=环压指数×定量。 瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为 A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合,瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响

瓦楞纸箱抗压强度基本知识

瓦楞纸箱抗压强度基本知识 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入瓦楞纸箱耐压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为纸箱抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。影响瓦楞纸箱抗压强度的因素较多,这些因素交互影响,满足顾客对抗压强度的要求。常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。纸箱抗压试验机瓦楞纸板的边压强度边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的楞型组合及纸板的粘合强度有关。测试时需要使用纸板纸箱边压强度试验机,平压强度试验机,粘合强度试验机,环压强度试验机。纸张的防水性能也很重要,特别是冷藏箱对纸张的防水性能要求更高,有时虽然纸箱的抗压强度很高,但由于纸张不防水,纸箱存放在冷库中就容易吸潮,造成塌库。瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。瓦楞纸板的波形分为U形、V形和UV 形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种楞型及其组合,就单瓦纸板来说,一般A瓦纸箱抗压强度最高,但易受到损坏;B瓦强度较差,但稳定性好;C瓦抗压力及稳定性居中。A瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B瓦楞单位长度内瓦楞数较多,与面纸有较多的支承点,因而不易变形,且表面较平。在印刷时有较强抗压能力,可得到良好印刷效果。C瓦楞兼有A和B瓦楞的特点,它的防震性能与A瓦楞相近,平面抗压能力接近B瓦楞。E瓦楞是最细的一种瓦楞,单位长度内的瓦楞数目最多,能承受较大的平面压力,可适应胶版印刷需要,能在包装面上印出质量较高的图文,这种瓦楞纸板和硬纸板强度差不多。根据纸箱箱型选择合适的楞型也很关键在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,容易忽视楞型对变形量的影响。楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长,有效力值与最终力值偏差过大。 三种楞型比较表瓦楞种类平面压力垂直压力平行压力 A:3 1 3 B :1 3 1 C:2 2 2 注:1. 平面压力是指垂直于瓦楞纸板平面的压力。 2. 垂直压力是指与瓦楞方向一致的压力,平行压力是指垂直于瓦楞方向的压力。 3. “1”代表最强。根据上述不同类型瓦楞的不同特点,单瓦楞纸箱用A型和C型为宜;双瓦楞纸箱用AB型, BC型相结合最为理想;接近表面的用B型,能起到抗冲击力较强的作用;接近内层的用A型或C型弹性足、缓冲力强;采有用AB型或BC型结合,使纸箱的物理性能发挥两个

纸箱的检验方法及标准

纸箱的检验方法及标准 一、外观质量: 1、印刷质量:图案、字迹印刷清晰,色度一致,光亮鲜艳;印刷位置误差大箱不超过7mm,小箱不超过4mm; 2、封闭质量:箱体四周无漏洞,各箱盖合拢后无参差和离缝; 3、尺寸公差:箱体内径与设计尺寸公差应保持在大箱±5mm,小箱±3mm,外形尺寸基本一致; 4、盖折叠次数:瓦楞纸箱摇盖经开、合180度往复折叠5次以上,一、二类箱的面层和里层、三类箱里层裂缝长度总和不大于70mm; 此外,要求接合规范,边缘整齐,不叠角,箱面不允许有明显损坏或污迹等. 二、纸箱耐压强度及影响因素 纸箱耐压强度是许多商品包装要求的最重要的质量指标,测试时将瓦楞纸箱放在两压板之间,加压至纸箱压溃时的压力,即为纸箱耐压强度,用KN表示。 1、预定纸箱耐压强度 纸箱要求有一定的耐压强度,是因为包装商品后在贮运过程中堆码在最低层的纸箱受到上部纸箱的压力,为了不至于压塌,必须具有合适的抗压强度,纸箱的耐压强度用下列公式计算: P=KW(n-1) 式中P----纸箱耐压强度, W----纸箱装货后重量, n----堆码层数

K----堆码安全系数 堆码层数n根据堆码高度H与单个纸箱高度h求出,n=H/h 堆码安全系数根据货物堆码的层数来确定,国标规定: 贮存期小于30d取K=1.6 贮存期30d-100d取K=1.65 贮存期大于100d取K=2.0 2、据原料计算出纸箱抗压强度 预定了纸箱抗压强度以后,应选择合适的纸箱板、瓦楞原纸来生产瓦楞纸箱,避免盲目生产造成的浪费; 根据原纸的环压强度计算出纸箱的抗压强度有许多公式,但较为简练实用的是kellicutt公式,它适合于用来估算0201型纸箱抗压强度。 3、确定纸箱抗压强度的方法 由于受生产过程中各种因素的影响,最后用原料生产的纸箱抗压强度不一定与估算结果完全一致,因此最终精确确定瓦楞纸箱抗压强度的方法是将纸箱恒温湿处理后用纸箱抗压试验机测试;对于无测试设备的中小型厂,可以在纸箱上面盖一木板,然后在木板上堆放等量的重物,来大致确定纸箱抗压强度是否满足要求;4、影响纸箱抗压强度的因素 1)原材料质量 原纸是决定纸箱压缩强度的决定性因素,由kellicutt公式即可看出。然而瓦楞纸板生产过程中其他条件的影响也不允许忽视,如粘合剂用量、楞高变化浸渍、涂布、复合加工处理等。 2)水分

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算 公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/)

Rmn ——瓦楞芯纸环压强度测试值(N/) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 公式中的(cm)为测定原纸环压强度时的试样长度。Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表 类纸箱抗压强度计算公式:

P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数,

凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式 P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式:

包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N);Pm ——瓦楞纸板边压强度(N/m)a——常数 b——常数 ⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。 a——箱面分类系数;

瓦楞纸箱抗压强度计算中凯里卡特公式的应用

瓦楞纸箱抗压强度计算中凯里卡特公式的应用: 瓦楞纸箱抗压强度的计算公式很多: 常用的有凯里卡特(K.Q.Kellicutt)公式、马丁荷尔特(Maltenfort)公式、沃福(Wolf)公式、马基(Makee)公式、澳大利亚APM公司计算公式,等等。 其中,凯里卡特公式常被应用于0201型瓦楞纸箱抗压强度的计算。 凯里卡特公式表达式: 美国的凯里卡特根据瓦楞纸箱的边压强度和周长提出了计算纸箱抗压强度的公式 BCT=ECT×(4aXz/Z)2/3×Z×J 式中BCT——瓦楞纸箱的抗压强度(lb) ECT——瓦楞纸板的边压强度(lb/in) Z ——瓦楞纸箱的周长(lb) aXz——瓦楞常数 J ——纸箱常数 相应的瓦楞纸箱常数见表1。 倘若知道瓦楞纸箱的外尺寸和楞型,可根据瓦楞纸板的边压强度ECT推测瓦楞纸箱的抗压强度BCT,或者根据瓦楞纸箱的抗压强度BCT推测瓦楞纸板的边压强度ECT。 例如,29英寸彩电包装纸箱采用AB型瓦楞纸板 ? 纸箱外尺寸为904×644×743mm; ? 毛重G=48Kg; ? 经多次使用修正确定安全系数为K=6.5; ? 堆码层数为N=300/74.3=4(堆码限高为3米, 堆码层数取整数); 因为1磅(lb)=0.454千克(Kg)=4.453牛顿(N),1英寸(in)=2.54厘米(cm),所以空箱抗压强度为: BCT=KG(N?1) =6.5×48×9.81×(4-1) =9182.16(N) =2061.67(lb) 因为瓦楞纸箱的周长Z=(90.4+64.4)×2=309.6(cm)=121.89(in), 瓦楞常数aXz=13.36, 纸箱常数J=0.54, 故瓦楞纸板的边压强度: ECT=BCT/【(4aXz/Z)2/3×Z×J】 =2061.67/【(4×13.36 /121.89)2/3×121.89×0.54】 =54.27(lb/in) =95.2(N/cm) =9520 (N/m) 1

瓦楞纸箱塌箱原因及解决对策

瓦楞纸箱塌箱原因及解决对策 众所周知,瓦楞纸箱最主要的力学指标就是空箱抗压强 度。在实际使用过程中,瓦楞纸箱可能会受到来自外界局部应力的破坏性冲击,但在正常运输条件下,这种局部应力发生的概率很小,尤其对托盘集合包装而言,这种应力发生的情况几乎可以忽略。然而,瓦楞纸箱包装件一般都会有堆码的情况,并且最底部的瓦楞纸箱不仅承受来自其顶部载荷的静态压力,还要承受运输过程中因振动、冲击等造成的动态压力。在这种情况下,瓦楞纸箱具有足够的抗压强度是保护内装物的必要前提。 但瓦楞纸箱在实际使用过程中经常会发生塌箱现象,这 对于少部分非销售包装,内装产品可以承压且不容易损坏的产品而言,瓦楞纸箱塌箱问题的出现并非不可接受,而对于大部分运输包装和销售产品来说,瓦楞纸箱塌箱问题的出现完全是不可接受的,外包装箱的严重变形极有可能导致内装产品出现问题,没有消费者会为一个内装物可能损坏的产品买单。因此,对于瓦楞纸箱塌箱问题必须引起足够的重视,否则将会对最终的产品销售产生严重的负面影响。 塌箱原因分析造成瓦楞纸箱塌箱的原因有很多,从最初的原纸质量到 最后的仓储销售,各个环节都有可能导致瓦楞纸箱塌箱,主要原因归纳如下。 1)原纸质量。由于原纸本身不具备防潮性,而且没 有进行相应的防潮处理,因此使得其制成的普通瓦楞纸箱在放入冷库储存到搬至库外的过程中,由于温差极易导致瓦楞纸箱吸潮,含水率迅速从10%升至19%,从而使得瓦楞纸箱 抗压强度急剧下降,产生卧箱和破损现象,进而影响内装物质量。 2)原纸含水率偏高。原纸含水率太高,容易造成瓦

楞变形、瓦楞纸箱抗压强度降低,干燥后又容易产生瓦楞纸板翘曲变形等物理损伤。 3)在瓦楞纸制造过程中,由于施胶量控制不当,影 响了成品后瓦楞纸板的黏合强度,从而造成塌箱。 4)印刷工艺和过程控制中压力控制不当。压力过大 时,导致瓦楞变形。 5)运输过程中车辆的振动和冲击,造成瓦楞纸箱的 变形破损,甚至内装物的损坏。这种损坏是无法避免的。 6)人工搬运、周转次数多。人工搬运次数多,瓦楞 纸箱不可避免地受到较大的外部冲击,从而造成瓦楞纸箱本身的强度降低。 7)仓储湿度。商品库存周期有长有短,南北方空气 湿度差异较大,对于库存周期较长而湿度又大的仓储条件, 瓦楞纸箱抗压性能下降较多。 8)仓储时间。即使在恒定温湿度条件下,仓储时间 过长也会导致瓦楞纸箱慢慢“老化” ,瓦楞纸箱本身的强度也会随之降低。 9)仓储堆码方式。如悬臂式堆码、错落式堆码、狼 牙交叉式堆码以及无货架堆码等大高度堆码方式,将大大降低瓦楞纸箱的抗压强度。 10)其他因素。模切加工工艺、手提孔的位置、添加 内衬、纸箱结构以及远洋运输环境等因素都会影响瓦楞纸箱的抗压强度。 塌箱解决对策上述塌箱问题的原因可以简单归纳为生产工艺、运

纸箱强度计算

包装设计过程中可能要涉及强度计算方面的内容,主要有两个方面的应用: 1.已知最大堆叠高度,需选择适当的瓦楞纸板; 2.产品包装已确定,需计算出允许的最大堆叠高度。 对包装强度影响最大的就是选用的瓦楞纸板了。 1. 瓦楞纸板的构造及分类在介绍乏味的内容之前,我们先了解一下瓦楞纸板的构造及分类。 瓦楞纸板主要由面纸和波形的瓦楞(flute)通过粘合而成。根据瓦楞的不同大小瓦楞可以分为A型,B型,C型,D型,E型,F型,G型楞。如下图: B型和C型瓦楞比较常用,B型楞排列密度大,制成的瓦楞纸板表面平整,承压力高,适于印刷;C型楞有较好的挺度和抗冲击性。 根据需求,瓦楞纸板可以加工成单面瓦楞纸板、三层瓦楞纸板、五层、七层、十一层等瓦楞纸板。层是中文的表述,对应于英文的Layer,但是更常用的一种表述是Wall。通过下面的图你就可以知道它们表示什么含义了。

瓦楞纸板的标注方式 2. 瓦楞纸板的强度包装箱上一般在底部会有一个如下的标识: 纸箱厂商证书 上图是两家厂商的包装箱上的标识,它上面包含的信息有:厂商名称,地址以及关于纸箱的强度参数: ?Edge Crush Test, ECT: 边压强度。边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 ?Brusting Test: ?Size Limt: ?Groos WT LT: 瓦楞纸箱加上内装物总重量极限值

Min Comb WT Facings: Min Combined Weight on Facings 上面两张图片使用的参数不太一样,前面一个用的是Edge Crush Test,后面一个用的是Bursting Test也称为Mullen Test。 边压强度衡量的是瓦楞纸板的堆叠性能强度,而Mullen衡量瓦楞纸的抗破损强度。简单地说前者是沿纸板方向施压,后者是沿纸板垂直方向施压进行测试。Mullen测试更适合于包装比较重的物体,而ECT测试适合比较轻的物体时需考虑其堆叠特性。 ECT 和Brusting Test 的对应值大体如下表所示: Max Wt. Box/Contents (lbs.) Min. Burst Test Single/Double Wall (lbs. per sq. in.)* Min. Edge Crush Test (E (lbs. per in. width) Single Wall Corrugated Boxes 20 125 23 35 150 26 50 175 29 65 200 32 80 250 40 95 275 44 120 350 55 Double Wall Corrugated Boxes 80 200 42 100 275 48 120 350 51 140 400 61 160 500 71 180 600 82 Triple Wall Corrugated Boxes 240 700 67 260 900 80 280 1100 90 300 1300 112

纸箱抗压强度的影响因素

影响瓦楞纸箱抗压强度的因素 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。 影响瓦楞纸箱抗压强度的因素较多,这些因素交互发生作用,只有充分认识弄清这些因素影响的规律,才能准确预测出瓦楞纸箱的抗压强度值,以满足顾客需求。 瓦楞纸板的边压强度对抗压强度的影响 计算瓦楞纸箱抗压强度最常用的是Kellicutt 凯里卡特公式: P=ECT{ 4 ax2/Z}2/3·Z·J 式中:ECT—纸板边压强度(lb / in); ax2—瓦楞常数; J—楞型常数; Z—纸箱周长(in ); P—纸箱抗压强度(lb) 比较简易的计算公式是: P=5.874×ECT× √T×C 式中:P—抗压强度,N ECT—边压强度,N/m T —纸板厚度,m C —纸箱周长,m 从瓦楞纸箱抗压强度的计算公式可以看出,瓦楞纸箱抗压强度主要取决于纸板边压强度,又称为垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 瓦楞纸板边压强度基本取决于箱纸板和瓦楞原纸的环压强度,并且与瓦楞纸板的生产工艺、瓦楞纸板的结构、楞形、黏合剂的质量等因素有关,计算公式为: 瓦楞纸板边压强度(N/m) ECT=各层原纸的环压强度值之和×(1+δ) 式中:δ—楞型系数之和,参考值如下:

A型瓦楞一般为:0.12; B型瓦楞一般为:0.08; C型瓦楞一般为:0.10 原纸的环压强度值=环压指数×定量。 瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合,瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响 在用料和楞型相同的情况下,纸箱周长的增长与抗压强度的增长会形成一种变化的曲线,开始纸箱的周长越长,抗压强度越高,但随着纸箱周长的加大,增加了纸箱的不稳定性,在纸箱周长达到一定阶段后,所能承受的抗压强度会呈现按一定比例的递减。(图1 纸箱周长与抗压强度的关系) 图1 纸箱周长与抗压强度的关系 纸箱的高度影响 高度在100~350mm时,抗压强度随着纸箱的高度增加而稍有下降;高度在350~650mm之间时,纸箱的抗压强度几乎不变;高度大于650mm时,纸箱的抗压强度随着高度增加而降低。主要原因是随着纸箱的高度增加,其稳定性也会相应地增加。 纸箱的长宽比影响 一般情况下,纸箱的长宽比在1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中纸箱的长宽比RL=1.2~1.5时,纸箱的抗压强度最高。纸箱的长宽比为2:1时,其抗压强度下降约20%,因此确定纸箱尺寸时,长宽比不宜超过2,否则会造成成本浪费。(图2 纸箱的长宽比与抗压强度的关系) 错误!

瓦楞纸箱抗压强度的分析

瓦楞纸箱抗压强度的分析、设计与控制 双击自动滚屏发布者:0412ch 发布时间:2006-12-9 阅读:147次 瓦楞纸箱抗压强度是指在压力试验机均匀施加动态压力下至箱体破损的最大负荷及变形量。 抗压测试过程分四个阶段:第一是预加负荷阶段,确保纸箱与抗压机压板接触;第二是横压线被压下阶段,此时负荷略有增加,变形量变化很大;第三是纸箱侧壁受压阶段,此时负荷增加快,变形量增加缓慢;第四是纸箱被完全破坏时,此时为纸箱的压溃点。因为在纸箱的整个承压过程中主要是四个角受力,约占整个受力总量的三分之二,所以在生产过程中,我们应尽量减少对纸箱四个角周围瓦楞的破坏。 纸箱的抗压强度分为有效值与最终值。抗压测试时力值的变化有时是由慢到快直接至溃点,有的是平稳递加至溃点。在长期的抗压测试中我们发现,力值的变化有时有一定的缓冲:即当力值与变形量增加到一定程度后,力值停止而变形量继续增加,经过一段时间以后,力值继续增加,直至纸箱的溃点。我们可以把缓冲前的力值称为有效力值,缓冲前的变形量称为有效变形量。缓冲以后,虽然力值可以继续增加,但是纸箱已开始变形,不能达到使用要求了,所以判定纸箱抗压强度好坏的标准应该是抗压测试时的有效力值。 一般三层A楞箱变形量在10mm以下,三层B楞箱变形量在7mm以下,三层C楞箱变形量在9mm以下,五层BC楞箱变形量在18mm以下,测试力值应达到抗压强度的有效力值。 纸箱的质量越好,抗压强度的有效值越高,有效值和最终值的偏差越小。分析瓦楞纸箱的抗压强度一般要通过一组多个实验(≥3个)的平均值来表示,每个实验数据之间的偏差越小,纸箱的抗压性能越稳定。我们可以通过力值与变形量的变化过程,结合影响纸箱抗压的各种因素,进一步分析纸箱的质量。 0201型瓦楞纸箱抗压强度的快速设计 我国瓦楞纸箱包装业二十多年来有了很大发展,近几年的变化更是日新月异,一些高精尖的科学技术已经运用到行业中来,但由于起步较晚,我们所采用的瓦楞纸箱设计工艺有一些还是沿用国外的,特别是瓦楞纸箱空箱抗压强度的计算方法。国外的公式过于烦琐且不易理解,很难使国内纸箱的价格设计与空箱抗压强度设计结合起来,容易造成原材料的浪费或纸箱成型后抗压方面的质量问题。 为弥补这些不足,增强纸箱制作前抗压强度的可预测性,经过长期的测算与验证,我找到了一种用原纸的物理性能计算纸箱空箱抗压强度的简单有效的计算方法,即瓦楞纸箱抗压强度设计的抗氏计算公式,写出来与大家一起探讨。本文只论述此方法中关于0201型三层瓦楞纸箱抗压强度设计的部分。

瓦楞纸箱检测项目汇总

瓦楞纸箱检测项目汇总 [图片] 瓦楞纸箱检测项目汇总 瓦楞纸箱以其特点和环保优势被广泛应用于商品的外包装,在商品的运输、保存和销售中起到了重要的保护作用。在使用过程中,要求纸箱必须达到一定的牢固度和耐用性。 当前,激烈的市场竞争,使各纸箱生产企业在生产工艺和管理上不断的进行改进以获得最大利润,这就使得纸箱用户在使用纸箱的过程中遇到了或多或少的质量问题,如纸箱堆码后垮塌、破裂等造成了许多不必要的损失。 为避免出现这样的情况,生产出合格的纸箱产品,必须对瓦楞纸箱进行检测,使瓦楞纸箱的生产过程得到有效的控制。所以,正确认识和了解瓦楞纸箱的检测项目和检测方法,具有十分重要的意义。 一、基本检测项目 1、外观质量 合格的纸箱要求印刷图案、字迹清晰,无断线和缺失情况;图案色度一致,光亮鲜艳而且印刷位置误差小,大纸箱误差在7mm以内,小纸箱误差在4mm 以内。表面质量要完好无破损,无污迹,箱体四周无漏洞,各箱盖合拢后无缝隙。对纸箱形状来说,箱体内径与设计尺寸公差应保持在大箱±5mm,小箱±3mm之内,外形尺寸大小基本一致。瓦楞纸箱摇盖经开、合180度往复折叠5次以上,一、二类纸箱的面层和里层、三类纸箱里层裂缝长度总和不大于70mm。此外,还要求箱体接合规范,边缘整齐,不叠角等。 2、含水率 所谓含水率是指瓦楞原纸或纸板中的水分含量大小,用百分比表示,含水率对纸箱箱体强度有很大的影响,是纸箱3个重缺陷检验项目之一。 瓦楞原纸具有一定的耐压、抗张,抗戳穿和耐折性能,若水分含量过高,纸质就显得柔软,挺度差,压楞和粘合质量也差。如果水分含量过低,纸质就过脆,压楞时就容易破裂,且耐折度也差。如果瓦楞纸和箱板纸的水分含量悬殊过大时,单面机加工出来的瓦楞纸板,就容易出现卷曲,裱合时,就容易出现起泡和脱胶现象。成型的纸箱如果在保存时吸湿受潮,会使纸箱的强度明显下降,影响使用。 瓦楞纸箱的含水率标准为(12±4)%。纸箱含水率的测定,比较准确的检测方法是烘干法,即从纸板或箱体不同部位分别取样若干块,用天平称取约

影响纸箱抗压强度试验的原因.

影响纸箱抗压强度试验的原因 纸箱耐压强度是许多商品包装要求的最重要的质量指标,测试时将瓦楞纸箱放在两压板之间,加压至纸箱压溃时的压力,即为纸箱耐压强度,用KN表示。 1、预定纸箱耐压强度 纸箱要求有一定的耐压强度,是因为包装商品后在贮运过程中堆码在最低层的纸箱受到上部纸箱的压力,为了不至于压塌,必须具有合适的抗压强度,纸箱的耐压强度用下列公式计算: P=KW(n-1) 式中P----纸箱耐压强度,N W----纸箱装货后重量,N n----堆码层数 K----堆码安全系数 堆码层数n根据堆码高度H与单个纸箱高度h求出,n=H/h 堆码安全系数根据货物堆码的层数来确定,国标规定: 贮存期小于30d取K=1.6 贮存期30d-100d取K=1.65 贮存期大于100d取K=2.0 2、据原料计算出纸箱抗压强度 预定了纸箱抗压强度以后,应选择合适的纸箱板、瓦楞原纸来生产瓦楞纸箱,避免盲目生产造成的浪费; 根据原纸的环压强度计算出纸箱的抗压强度有许多公式,但较为简练实用的是kellicutt公式,它适合于用来估算0201型纸箱抗压强度。 3、确定纸箱抗压强度的方法

由于受生产过程中各种因素的影响,最后用原料生产的纸箱抗压强度不一定与估算结果完全一致,因此最终精确确定瓦楞纸箱抗压强度的方法是将纸箱恒温湿处理后用纸箱抗压试验机测试;对于无测试设备的中小型厂,可以在纸箱上面盖一木板,然后在木板上堆放等量的重物,来大致确定纸箱抗压强度是否满足要求; 4、影响纸箱抗压强度的因素 1)原材料质量 原纸是决定纸箱压缩强度的决定性因素,由kellicutt公式即可看出。然而瓦楞纸板生产过程中其他条件的影响也不允许忽视,如粘合剂用量、楞高变化浸渍、涂布、复合加工处理等。 2)水分 纸箱用含水量过高的瓦楞纸板制造,或者长时间贮顾在潮湿的环境中,都会降低其耐压强度。纤维是一种吸水性很强的,在梅雨季节及空气中湿度较大时,纸板中水分与大气环境的湿平衡关系很重要。 3)箱型 箱型是指箱的类型和同种类型箱的尺寸比例,它们对抗压强度有明显的影响。有的纸箱箱体为双层瓦楞纸板构成,耐压强度较同种规格的单层箱明显提高;在相同条件下,箱体越高,稳定性就越差,耐压强度越低。 4)印刷与开孔 印刷会降低纸箱抗压强度。包装有透气要求的商品在箱面开孔,或在箱侧冲切提手孔,都会降低纸箱强度,尤其开孔面积大,偏向某一侧等,影响更为明显。 5)加工工艺偏差 在制箱过程中压线不当,开槽过深,结合不牢等,也会降低成箱耐压强度。

瓦楞纸箱抗压强度计算公式

一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L0+B0) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm) B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数,

凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式 P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 ⑤APM 计算公式

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算, 据瓦楞纸板的测试强度进行计算。 ① 凯里卡特(K.Q.Kellicutt )公式 a.凯里卡特公式 4 Y - P ――瓦楞纸箱抗压强度(N ); Px ---瓦楞纸板原纸的综合环压强度(N/cm ); aXz ---- 瓦楞常数; Z ----瓦楞纸箱周边长(cm ); J ----纸箱常数 瓦楞纸板原纸的综合环压强度计算公式如下 Rn ――面纸环压强度测试值(N/0.152m ) Rmn ――瓦楞芯纸环压强度测试值(N/0.152m ) C ――瓦楞收缩率,单瓦楞纸板来说 尸二片+尽4凡. J 15.2 双瓦楞纸板 公式中的15.2(cm )为测定原纸环压强度时的试样长度。 Z 值计算公式 另一类则直接根 爲一马+竖+盘1「+

Z=2(L0+B0) Z --- 纸箱周边长(cm); L o --- 纸箱长度外尺寸(cm) B o --- 纸箱宽度外尺寸(cm); a z X、J、C值可查表 b.06类纸箱抗压强度计算公式: P = l,29(^ +7^)-1050 P T6类纸腐拉七强度卓); 主体箱板抗压强度<N)5 P L Pg--- 端咬抗压强度 已=^0201' ~ - .B P R =兄DI() L+ B 舛呦——与主体箱板同村I讥0201纸箱抗压强度<N); ——与端板同材质0201纸箱抗压强度(N). &但卷式纸箱抗压强度计算公式 ^WA ~^0201 ' 0 Q 1.6 曰 硼—一包卷武纸箱抗压强度(N); 尽趴——舟凯里卡特公式计算的0201纸箱抗压强度(N):F揺盖长度 筑——纸箱宽度外尺寸(皿》 e.其他箱型抗床强度计算

影响瓦楞纸箱抗压强度之要素资料

影響瓦楞紙箱抗壓強度之要素(1)--------上海源鶴 點擊數:675 錄入時間:2008-8-26 概述: 紙箱最重要的功能在於它對商品具有良好的保護性,而紙箱的整體抗壓強度則是紙箱保護性能的綜合體現,抗壓強度對紙箱的重要性是不容忽視的。近幾年來,隨著我國包裝業的快速發展,許多工廠對紙箱的認識逐漸從憑手感判斷紙箱的優劣發展到運用各種儀器對紙箱的物理性能進行測試分析的階段,很多廠家還配備了抗壓儀對紙箱抗壓強度進行測試。不僅如此,許多客戶特別是國外一些大型跨國公司對紙箱的認識也發生了深刻變化,即從關注紙板耐破強度逐漸轉向紙箱的抗壓強度,並將抗壓強度作為品質驗收的最重要的指標。 如此一來,如何為客戶提供滿足抗壓強度要求的紙箱便成為眾多紙箱廠關注的焦點。特別是近二年原紙價格居高不下,紙箱利潤空間一縮再縮的情況下,製造出用紙成本最省而又能滿足客戶抗壓要求的紙箱已成為眾多生產廠家的共同目標。 以下將著重就影響紙箱抗壓強度的因素、紙箱抗壓強度的推算方法、抗壓強度的用紙配置方法及抗壓強度的測試方法等幾個方面對紙箱的抗壓強度進行綜合論述與分析,有些地方難免會有疏漏,期望能為同行提供有益的參考。 影響紙箱抗壓強度的因素:

影響紙箱抗壓強度的因素有很多,大致可歸納為邊壓強度、結構尺寸、加工工藝及水分四類。由於各 因素的交互影響,常常導致我們對抗壓強度的預測產生一定偏差。同時,生產廠家往往因為對這些因素 認識不足,在設計、印刷及後加工過程中處理不當,造成巨大的成本浪費及客戶投訴。因此,弄清這些 因素的影響規律是十分必要的。 一、瓦楞紙板的邊壓強度 邊壓強度又叫垂直抗壓強度,是對瓦楞紙板試樣以垂直方向施加壓力,施壓過程中紙板所能承受的最大力即為紙箱的邊壓強度。紙箱抗壓強度的高低主要取決於紙板邊壓強度,而邊壓強度則與組成瓦楞紙板的各層原紙的橫向環壓強度、紙板的坑型組合及紙板的粘合強度有關。 瓦楞紙板的邊壓強度主要與各層原紙的橫向環壓強度有關,一般來講,克重較高、造紙品質較好及緊度較高的原紙,其橫向環壓強度也相應越高。但並非克重高的原紙環壓就一定比克重低的原紙高。以箱板紙為例,進口牛皮紙的橫向環壓指數可達到12N·m/g以上,而內地一些小型造紙廠生產的箱板紙僅為8N·m/g,相差30%。也就是說克重為175g/m2的進口牛卡其環壓強度相當於260g/m2的國產箱板紙。因此,鑒定紙箱保護性能的好壞,不能以紙箱用紙克重而論。 瓦楞紙板的結構設計是很科學的,其瓦楞的愣形就如一個個連接的拱形門,排成一排,相互支撐,形成三角結構體,強而有力,而且平面上也能承受一定壓力,富有彈性,緩衝力強,能起到防震和保護商品的作用。瓦楞形狀依圓弧半徑不同一般分為U形、V形和UV形三種。 U形的頂峰圓弧半徑較大,呈圓弧形,如B楞、C楞; V形的波峰半徑較小,且尖,如A楞;

纸箱抗压强度计算.

纸箱抗压强度计算 发布时间:10-07-22 来源:点击量:1960 字段选择:大中小 抗压力试验 纸箱抗压能力是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最高压力值。 抗压能力的N。 取箱体和箱面不得破损和有明显碰、戳伤痕的样箱三个。 抗压力试验的设备是包装容器整体抗压试验机 包装容器整体抗压试验机的主要技术参数是: 测量范围:0-50kN 负荷准确度:±2% 压板面积:1200mm×1200mm 上、下板平行度:2/1000 上压板有效行程:标准速度 10mm/mm 无极调速 1-100/min 抗压力试验的检测方法是将三个样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体。然后启动加压标准速度,直至箱体屈服。读取实测值。 对测试的结果,求出算术平均值。 被测瓦楞纸箱的抗压力值按下列公式计算: P=K×G(H/h-1)×9.8 式中:P:-抗压力值,N K:-劣变系数(强度系数); G:-单件包装毛重;kg H:-堆积高度;m h:-箱高;m

H/h:-取整位数。 根据SN/T0262-93《出口商品运输包装瓦楞纸箱检验规程》中的计数规定,H/h取速位数。小数点后面无论大、小都入上,就高不就低。 SN/T0262-93检验规程关于劣变系数的规定(表二十五): 表二十五 贮存期小于30天30天-100天100天以上 劣变系数K1.61.652 注:劣变系数(强度系数)K根据纸箱所装货物的贮存条件决定。 抗压力试验合格准则的判定为:当所测三个样箱的抗压力值均大于标准抗压力值时,该项试验为合格。若其中有一个样箱不合格,则该项试验为不合格。 纸板边压强度的推算方法 瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和,对于坑纸,其环压值为原纸环压强度乘以对应的瓦楞伸长系数。 单瓦楞纸板Es= (L1+L2+r×F) 双瓦楞纸板Ed= (L1+L2+L3+r×F+r1×F1) 三瓦楞纸板Et= (L1+L2+L3+L4+r×F+r1×F1+r2×F2) 式中 L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度(N/m); r、r1、r2表示瓦楞伸长系数(见表二); F、F1、F2表示芯纸的环压强度(N/m); 表二不同楞型的伸长系数及纸板厚度 楞型 A C B E 伸长系数(r) 1.53 1.42 1.40 1.32 纸板厚度 5 4 3 1.5 注:1. 不同瓦线设备,即使是同一种楞型,由于其瓦楞辊的尺寸不同,瓦楞伸长系数也存在偏差,所以纸箱企业在使用表二进行推算时需根据工厂的设备情况对伸长系数进行调整。

相关主题
文本预览
相关文档 最新文档