当前位置:文档之家› 传感器整理9109303920

传感器整理9109303920

传感器整理9109303920
传感器整理9109303920

传感器整理9109303920

第一章传感器概论

1、传感器的定义:传感器是能感受规定的被测量并按照一定规律转换成

可用输出信号的器件或装置。

2、传感器的输出信号形式由传感器的原理确定。

3、传感器由敏感元件和转换元件组成。敏感元件是直接感受被测量,并

输出与被测量成确定关系的某一物理量的元件。转换元件:敏感元件

的输出就是它的输入,它把输入转换成电路参量。

4、传感器的功能:感受被测信息并传送出去。

5、传感器组成方框图

6、传感器的分类:

7、结构型传感器的工作原理是以传感器中元件相对位置变化引起场的变

化为基础,而不是以材料特性变化为基础。物性型传感器的性能随材

料的不同而异

8、能量控制型传感器,在信息变化过程中,传感器将从被测对象获取的

信息能量用于调制或控制外部激励源,使外部激励源的部分能量载运

信息而形成输出信号,这类传感器必须由外部提供激励源,如电阻、

电感、电容等电路参量传感器都属于这一类传感器。基于应变电阻效

应、磁阻效应、热阻效应、光电效应、霍尔效应等的传感器也属于此

类传感器。

9、能量转换型传感器,又称有源型或发生器型,传感器将从被测对象获

取的信息能量直接转换成输出信号能量,主要由能量变换元件构成,

它不需要外电源。如基于压电效应、热电效应、光电动势效应等的传

感器都属于此类传感器

10、改善传感器的性能的技术途径有差动技术、平均技术、补偿与修正技术、

屏蔽、隔离与干扰抑制、稳定性处理。差动技术是传感器中普

遍采用的技术。它的应用可显著地减小温度变化、电源波动、外界干

扰等对传感器精度的影响,抵消了共模误差,减小非线性误差等。不

少传感器由于采用了差动技术,还可使灵敏度增大。

11、传感器的发展动向:开发新型传感器、开发新材料、新工艺的采用、集

成化、多功能化、智能化

第二章传感器的一般特性

1、传感器的基本特性指传感器的输出-输入关系特性

2、传感器所测物理量的两种基本形式为稳态形式、动态形式

3、传感器的静态特性指传感器在稳态信号作用下、其输出-输入关系。

4、衡量传感器静态特性的重要指标是线性度、灵敏度、迟滞和重复性

5、传感器的线性度指传感器输出与输入之间的线性程度。传感器的输出输入关

系或多或少地存在非线性,在非线性误差不太大的情况下,总是采用

直线拟合的办法来线性化。

6、传感器的静态特性是在静态标准条件下进行校准的,静态标准条件指没有加

速度、振动、冲击、环境温度为20+(-)5摄氏度,相对湿度小于85%,

气压101+(—)8kp的情况。

7、灵敏度是指传感器在稳态下输出变化对输入变化的比值

Sn=输出量的变化/输入量的变化==dy/dx 对于线性传感器,它的灵敏度特性就是它的静态特性斜率

8、传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为

迟滞。

9、重复性是指传感器在输入按同一方向连续多次变动时所得特性曲线不一致的

程度。

10、分辨力是指传感器能检测到的最小的输入增量。

11、静态误差是指传感器在其全量程内任一点的输出值与其理论值的偏离程度。

12、静态误差公式

13、精密度:说明测量传感器输出值的分散性,即对某一稳定的被测量,由同

一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,

其测量结果的分散程度。准确度:说明传感器输出值与真值的偏离程

度。精确度:是精密度与准确度两者的总和,精确度高表示精密度和

准确度都比较高。

14、传感器的动态特性指传感器对随时间变化的输入量的响应特性

15、研究动态特性可以从时域和频域两个方面采用瞬态响应法和频率响应法来

研究

16、在研究时域时只能有固定几种输入函数,阶跃、脉冲、斜坡

研究频域则输入函数为正弦函数

17、传感器选用原则包括:与测量条件有关的因素、与传感器有关的技术指标、

与使用环境有关的因素、与购买和维修有关的因素

第四章电阻应变式传感器

1、电阻应变式传感器工作原理:电阻应变式传感器有弹性敏感元件和电阻应变

片构成,弹性敏感元件在感受被测量时产生形变在其表面发生应变,

而粘贴在弹性敏感元件表面的电阻应变片将随着弹性敏感元件产生应

变,因此电阻应变片的阻值发生变化。

2、、电阻应变片的工作原理基于金属的应变效应。金属丝的电阻随着它所受的

机械变形的大小而发生相应的变化的现象成为金属的应变效应。

3、公式推导过程:两边取对数得lnR=lnP+lnL-lnS两边求

导得出dR/R=dp/p+dL/L-dS/S(此处详见课本61页)dr/r=-udl/l ,u为泊

松比,具体见课本61页以及打印课件。

4、应变片由电阻丝(敏感栅)、基底、引线、粘合剂构成。

5、

K越大,单位面积变形引起的电阻变化就大,故越灵敏。

6、因为电阻应变片测量需要把微小应变所引起的微小电阻变化测量出来的同时

把电阻相对变化转化为电流或者电压的变化,所以选择直流电桥和交

流电桥。

7、直流电桥和交流电桥,差动电路是重点,注意看课件。

8、减小非线性误差的方式:差动电桥、恒流源电桥

9、电阻应变片的种类丝式应变片、箔式应变片、薄膜应变片,半导体应变片

10、应变片的主要参数应变片电阻值、绝缘电阻、灵敏系数、允许电流、应变

极限、机械滞后、零漂和蠕变。

11、温度变化引起电阻变化的原因电阻丝电阻本身就是温度的函数、试件材料与

应变片材料的热膨胀系数不同

12、温度补偿方法有1敏感栅热处理或者采用两种温度系数材料相互补偿的方

2、电桥补偿法

13半导体压阻效应即固体受到作用力后电阻率发生变化

第五章、电容式传感器

(整理)传感器的含义.

1、传感器的定义 英文名称:transducer / sensor 传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。 根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。 按照其用途,传感器可分类为: 压力敏和力敏传感器 液面传感器 速度传感器 加速度传感器 湿敏传感器 气敏传感器 真 以其输出信号为标准可将传感器分为: 模拟传感器—— 数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换) 膺数字传感器——将被测量的信号量转换成频率信号或短周期 信号的输出(包括直接或间接转换) 开关传感器——当一个被测量的信号达到某个特定的阈值时,传 感器相应地输出一个设定的低电平或高电平信号。

传感器考试资料

检测是利用各种物理、化学效应,选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检查与测量的方法赋予定性或定量结果的过程。 测量是借助专门的技术和仪表设备,采用一定的方法取得某一客观事物定量数据资料的实践过程。 所谓“定量”,就是使用一定准确度等级的测量仪器、仪表,比较准确地测得被测量的数值。 在测量过程中,被测量与仪表内部的标准量相比较,当测量系统达到平衡时,用已知标准量的值决定被测量的值,这种测量方式称为零位式测量。 在测量过程中,被测量作用于仪表内部的比较装置,使该比较装置产生偏移量,直接以仪表的偏移量表示被测量的测量方式称为偏位式测量。 微差式测量法是综合了偏位式测量法速度快和零位式测量法准确度高的优点的一种测量方法。这种方法预先使被测量与测量装置内部的标准量取得平衡。当被测量有微小变化时,测量装置失去平衡。用上述偏位式仪表表示出其变化部分的数值。 相对误差用百分比的形式来表示,一般多取正值。相对误差可分为示值相对误差和引用相对误差等。。 一个被测量值x A 与真值0A 之间总是存在着一个差值,这种差值称为绝对误差。 测量不确定度的含义是指:由于测量误差的存在,对被测量值的不能肯定的程度,也表明该结果的可信赖程度。它是测量结果质量的指标。不确定度愈小,所述结果与被测量的真值愈接近。 大气的水气含量通常用3 m 1湿空气中所含水气的克数来表示,也就是空气的水气密度,单位为3m /kg 绝对湿度。 相对湿度是空气的绝对湿度与同温度下的饱和状态空气绝对湿度的比值,它能较好地说明空气的干、湿现象。 ??→???→???→??????→?电量电参量非电量非电量(被测量)测量转换电路传感元件敏感元件 温度较高的空气所含水蒸气较多,将此空气冷却,其所含水蒸气的量没有变化,而相对温度增加。当降低到一定温度,RH 达到100%时,称为水气饱和。若将该空气继续冷却,其中一部分水蒸气将凝聚成露水。此时的温度称为露点温度。 电阻应变传感器主要由电阻应变片及测量转换电路等组成。电阻应变片是一种将被测量元件上的应变变化转换成电阻变化的传感元件,测量电路进一步将该电阻阻值的变化再转换成电流或电压的变化,以便显示或记录被测的非电量的大小。 半导体材料二氧化钛(TiO2)属于N 型半导体,对氧气十分敏感。其电阻值的大小取决于周围环境的氧气浓度。当周围氧气浓度较大时,氧原子进入二氧化钛晶格,改变了半导体的电阻率,使其电阻值增大。当氧气浓度下降时,氧原子析出,使晶格结构出现空缺,导致电阻值降低。 安全栅又称安全保持器、本安回路的安全接口等。它能在安全区和危险区之间双向传递电信号,并限制安全区的危险能量进入危险区,限制送往危险区的电压和电流。 电感传感器是利用绕组自感量或互感量的变化来实现非电量电测的一种装置。电感传感器种类很多,可分为自感式和互感式两大类。人们习惯上讲电感传感器通常是指自感传感器;而互感传感器是利用变压器原理,做成差动式,故常称为差动变压式传感器。 在绕组匝数N 确定后,若保持气隙厚度0δ为常数,则电感L 是气隙有效投影截面积 A 的函数。故称 这种传感器为变截面式电感传感器。 单绕组螺线管式电感传感器结构简单,主要元器件是一只螺线管和一根圆柱形衔铁。衔铁插入绕组后,将引起螺线管内部的磁阻的减小,电感量随插入的深度而增大。

《传感器本》试题整理(附参考答案)解读

上海开放大学《传感器与测试基础》复习 1. 课程教材:《自动检测技术及应用》 梁森 (第2版),机械工业出版社 2. 网上课堂:视频资料,课程ppt 资料,李斌教授主讲 3. 主持教师联系方式: 25653399(周二、五);xudanli@https://www.doczj.com/doc/e210609148.html, 4. 期末考试比例(大约):单项选择20分;填空20分;多项选择12分;简答题26分;分析设计题22分。 5. 复习样题 一、填空题 1. 传感器的特性一般指输入、输出特性,有动、静之分。静态特性指标的 有 、 、 、 等。(灵敏度、分辨力、线性度、迟滞 误差、稳定性) 2. 对于测量方法,从不同的角度有不同的分类,按照测量结果的显示方式,可以分为 模拟式测量 和 数字式测量 。 3. 对于测量方法,从不同的角度有不同的分类,按照是否在工位上测量可以分为 在线测量 和 离线式测量 。 4. 对于测量方法,从不同的角度有不同的分类,按照测量的具体手段,可以分为 偏位式测量 、 微差式测量 和 零位式测量 。 5.某0.1级电流表满度值100m x mA ,测量60mA 的绝对误差为 ±0.1mA 。 6、服从正态分布的随机误差具有如下性质 集中性 、 对称性 、 有界性 。 7. 硅光电池的光电特性中,当负载短路时,光电流在很大范围内与照度与呈线性关系。 8. 把被测非电量的变化转换成线圈互感变化的互感式传感器是根据 变压器 的基本原理制成的,其次级绕组都用 差动 形式连接,所以又叫差动变压器式传感器。 9、霍尔传感器的霍尔电势U H 为 K H IB 若改变 I 或 B 就能得到变化的霍尔电势。 10、电容式传感器中,变极距式一般用来测量 微小 的位移。 11. 压电式传感器具有体积小、结构简单等优点,但不适宜测量 频率太低 的被测量,特别是不能测量 静态值 。 12、差动电感式传感器与单线圈电感式传感器相比,线性 好 灵感度提高 一 倍、测

传感器复习总结资料.doc

2电阻式传感器 电阻式传感器的种类繁多,应用广泛,其基本原理是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路而最后显示被测量值的变化。 电阻式传感器与相应的测量电路组成的测力、测压、称重、测位移、测加速度、测扭矩、测温度等测试系统。目前己成为生产过程检测以及实现生产自动化不可缺少的手段之一。 2.1电位器式传感器 电位器是一种常用的机电元件,广泛应用于各种电器和电子设备中。它主要是一种把机械的线位移或角位移输入量转换为与它成-定函数关系的电阻或电压输出的传感元件来使用。它们主要用于测量压力、高度、加速度等各种参数。 电位器式传感器具有一系列优点,如结构简单、尺寸小、重量轻、精度高、输出信号大、性能稳定并容易实现任意函数。其缺点是要求输入能量大,电刷与电阻元件Z间容易磨损。 电位器的种类很多,按其结构形式不同,可分为线绕式、薄膜式、光电式等;按特性不同,可分为线性电位器和非线性电位器。目前常用的以单圈线绕电位器居多。 空载特性(输出端不接负载或负载为无穷大) 上面讨论的电位器空载特性相当于负载开路或为无穷大时的情况,而一般情况下,电位器接有负载,接入负载时的特性为负载特性,负载特性相对于空载特性的偏差称为电位器的负载误差, 对于线性电位器负载误差即是其非线性误差。 电位器式传感器应用举例 膜盒电位器式压力传感器测小位移传感器电位器式加速度传感器 1.惯性质量; 2.片弹簧; 3.电位器; 4.电刷; 5.阻尼器; 6.壳体。 6 5 2.2应变片式传感器 问题: 1.什么是应变?什么是应变片? 2.应变片式传感器是把哪一个非电量转换成电量呢?转换成什么电量呢?如何转换的呢?它们之I'可的关系是什么呢? 电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。 敏感栅由金属细丝绕成栅形,实现应变一电阻转换的传感元件。 基底和盖片的作用是保持敏感栅和引线的几何形状和相 对位置,并且有绝缘作用。一般为厚度0.02?0.05mm的环氧 树脂,酚醛树脂等胶基材料。 引线作用:连接敏感栅和外接导线。 粘结剂作用:将敏感栅固定于基片上,并将盖片与基底粘结在一起;使用时,用粘结剂将应变片粘贴在试件的某一方向和位置,以便感受试件的应变。 电阻应变片主要特性 灵敏系数

《传感器本》试题整理(附参考答案)

《传感器本》试题整理(附参考答案)

上海开放大学《传感器与测试基础》复习 1. 课程教材:《自动检测技术及应用》梁森(第2版),机械工业出版社 2. 网上课堂:视频资料,课程ppt资料,李斌 教授主讲 3. 主持教师联系方式: 25653399(周二、五);xudanli@https://www.doczj.com/doc/e210609148.html, 4. 期末考试比例(大约):单项选择20分;填 空20分;多项选择12分;简答题26分;分析 设计题22分。 5. 复习样题 一、填空题 1. 传感器的特性一般指输入、输出特性,有 动、静之分。静态特性指标的 有、、、 等。(灵敏度、分辨力、线性度、迟滞误差、 稳定性) 2. 对于测量方法,从不同的角度有不同的分类, 按照测量结果的显示方式,可以分为模拟式测量和数字式测量。 3. 对于测量方法,从不同的角度有不同的分类, 按照是否在工位上测量可以分为在线测量和离线式测量。 4. 对于测量方法,从不同的角度有不同的分类,

按照测量的具体手段,可以分为 偏位式测 量 、 微差式测量 和 零位式测量 。 5.某0.1级电流表满度值100m x mA ,测量60mA 的绝 对误差为 ±0.1mA 。 6、服从正态分布的随机误差具有如下性质 集 中性 、 对称性 、 有界性 。 7. 硅光电池的光电特性中,当负载短路时,光 电流在很大范围内与照度与呈线性关系。 8. 把被测非电量的变化转换成线圈互感变化的 互感式传感器是根据 变压器 的基本 原理制成的,其次级绕组都用 差动 形式连接,所以又叫差动变压器式传感器。 9、霍尔传感器的霍尔电势U H 为 K H IB 若改变 I 或 B 就能得到变化的霍尔电势。 10、电容式传感器中,变极距式一般用来测量 微 小 的位移。 11. 压电式传感器具有体积小、结构简单等优 点,但不适宜测量 频率太低 的被测量, 特别是不能测量 静态值 。 12、差动电感式传感器与单线圈电感式传感器相 比,线性 好 灵感度提高 一 倍、 测量精度高。 13、热电偶冷端温度有如下补偿方法: 冷端恒温法(冰浴法)、计算修正法、电桥补偿法和仪表

传感器期末复习资料)

传感器 绪论 概念: 1.传感器的定义: ①:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 ②:狭义的定义:能把外界非电信息转换成电信号输出的器件。 2.传感器组成: 传感器一般由敏感元件、转换元件、基本转换电路三部分组成。 第一章 概念: 1.传感器的一般特性:描述此种变换的输入与输出关系。 静特性:输入量为常量或变化极慢时(慢变或稳定信号)。 1) 线性度:传感器的输出与输入关系呈线性,实际上这往往是不可能的。 假设传感器没有迟滞和蠕变效应,其静态特性可用下列多项式来描述: x ——输入量; y ——输出量;a 0——零点输出;a 1——传感器的灵敏度,常用k 表示;a 2,a 3,…,a n ——非线性项系数。 ∑=+=++++=n i i i n n x a a x a x a x a a y 102210...

非线性误差(线性度)定义:输出输入的实际测量曲线与某一选定拟合直线之间的最大偏差,用相对误差γL表示其大小。即传感器的正、反行程平均测量曲线与拟合直线之间的最大偏差对满量程(F.S.)输出之比(%): γL——非线性误差(线性度);Δ ——输出平均值与拟合直线间的最 Lmax 大非线性误差;y F.S.——满量程输出。满量程输出用测量上限标称值y H与测量下限标称值y L之差的绝对值表示,即y F.S.=|y H-y L|。 大多数传感器的输出曲线是通过零点的,或者使用“零点调节”使它通过零点。某些量程下限不为零的传感器,也可以将量程下限作为零点处理。目前常用的拟合方法有:①理论拟合;②过零旋转拟合;③端点连线拟合; ④端点连线平移拟合;⑤最小二乘拟合;⑥最小包容拟合等。

(整理)传感器及其工作原理1.

第一节传感器及其工作原理1课时新授课 教学目标 1.知识与技能 了解什么是传感器,知道非电学量转化为电学量的技术意义; 认识一些制作传感器的元器件,知道这些传感器的工作原理。 2.过程与方法 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。 3.情感、态度与价值观 体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。 教学重点 认识各种常见的传感器;了解光敏电阻、热敏电阻、霍尔元件的工作原理。 教学难点 光敏电阻、热敏电阻、霍尔元件的工作原理。 教学方法 实验法、观察法、归纳法。 教学手段 磁铁、干簧管、各种常见传感器、光敏电阻、热敏电阻、霍尔元件、多用电表、热水、冷水、台灯、投影仪等 教学过程 一、引入新课 教师:今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。

教师提问:盒子里有怎样的装置,才能实现这样的控制? 学生猜测:盒子里有弹性铁质开关。 师生探究:打开盒子,用实物投影仪展示盒内的电路图(图2),了解元件“干簧管”的结构。探明原因:当磁体靠近干簧管时,两个由软磁性材料制成的簧片因磁化而相互吸引,电路导通,干簧管起到了开关的作用。 教师点拨:这个装置反过来还可以让我们通过灯泡的发光情况,感知干簧管周围是否存在着磁场。 演示实验2:教师出示一只音乐茶杯,茶杯平放桌上时,无声无息,提起茶杯,茶杯边播放悦耳的音乐,边闪烁着五彩的光芒。 教师提问:音乐茶杯的工作开关又在哪里?开启的条件是什么? 学生猜测:在茶杯底部,所受压力发生改变。 实验探究:提起茶杯,用手压杯的底部,音乐并没有停止。 学生猜测:是由于光照强度的改变。 实验探究:用书挡住底部(不与底部接触),音乐停止,可见音乐茶杯受光照强度的控制。 师生总结:现代技术中,我们可以利用一些元件设计电路,它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。 教师提问:实验1中的干簧管是怎样的传感器,实验2音乐茶杯中所用的元件又是怎样的传感器?

(整理)分别列举10种接触、非接触传感器种类及原理

分别列举10种接触、非接触传感器种类及原理 接触式位移传感器: 1位移传感器及其原理:计量光栅是利用光栅的莫尔条纹现象来测量位移的。 “莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图 1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π。 (上海德测电子科技有限公司产品) 2螺杆式空压机压力传感器螺杆式空压机压力传感器:是工业实践中最为常用 的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压力传感器。 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石

加速度计、角度传感器知识整理与解析

加速度计、角度传感器知识 整理与解析 1、传感器基础知识 (2) 2、比力 (2) 3、加速度传感器测量倾角原理 (3) 4、Question and answer (3) 5、电子罗盘 (3) 7、陀螺仪和加速度计的区别与联系 (4) 8、常用芯片介绍 (4) 交流QQ:1002100760

1、传感器基础知识 陀螺和加速度计是惯性器件,是用来测量相对惯性空间的角速度(或对于积分类型的陀螺来说是角增量)和加速度。 在三维空间中,描述一个刚体运动要六轴,三轴加速度,三轴角速度。 加速度传感器:测量加速度的值,是指直线运动,一般以重力加速度g为单位。 角度传感器:测量角度的传感器,范围比较广泛各种角度与倾角传感器有些不一样。角度传感器可以是垂直的,各种安装方式都行,是指相对角度。多数的角度传感器是以加速计为基础,通过重力加速度分量估算角度,通常也会要求在静态下测量。 倾角传感器:倾角传感器其实是个绝对角度,原型是加速度传感器,是指被测物体与地球引力(垂直地球)的夹角。所以它应该是个绝对值。 加速度是测量轴向的力,由F=ma,m已知,就可以知道力(加速度)的大小,所以惯导系统的里都是讲“比力”,因为力是比较出来的。 2、比力 比力:单位质量上作用的非引力外力。 通常我们说“用加速度计测量载体的运动加速度”,实际上这个说法并不确切,因为加速度计测量的不是载体的运动加速度,而是载体相对惯性空间的绝对加速度和引力加速度之差,称作“比力”---艾弗里尔B,查特菲尔德著.高精度惯性导航基础.北京:国防工业出版社,2002. 在一般线加速度计中测量的是比力(a+g)不能分辨出重力加速度g和运动加速度a。一个加速度计只能测量一个方向的比力,测量矢量必须使用三个加速度计;测量值与安装方向、姿态有关,且受安装精度影响。 三个加速度计垂直安装可测量比力矢量,进而得到运动加速度。

传感器原理及应用期末复习资料全

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的畴分类:物理量传感器、化学量传感器、生物量传感器 按传感器的输出信号分类:模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传

传感器考点整理

填空: 1. 传感器的静态特性 定义:传感器在被测量的各个值处于稳定状态时,输出量与输入量之间的关系成为静态特性。 指标:线性度(拟合基准曲线方法:端基法,最小二乘法)灵敏度,精确度,迟滞,重复性,零点漂移,温漂 2. 金属应变片的温度补偿条件: 1. R1和R2同一型号 2. 膨胀系数相同 3. 两应变片处于同一温度环境中 3 .热电偶冷端温度补偿方法: 1. 补偿导线法 2. 冷端温度计算矫正法 3. 冰浴法 4. 补偿电桥法 4.差动变压器产生误差因素 1. 激励电压的幅值和频率影响 2. 温度变化影响 3. 零点残余电压 5.智能传感器的特点 1、具有自校零、自标定、自校正功能: 2、具有自动补偿功能: 3、具有数据存储、记忆与信息处理能力; 4、具有自动检验、自选量程、自寻故障功能: 5、具有双向通信、标准化数字输出或者符号输出功能: 6、具有判断、决策处理功能; 6、软件干扰抑制技术 软件处理方法: 限幅滤波; 中值滤波; 平方值滤波;

复合滤波; 7. 传感器的组成及各部分的作用; 敏感元件、转换元件、测量电路; 简答题: 1. 电涡流传感器的检测原理 结构:主要由在框架上的扁平圆形线圈构成; 电涡流:当导体置于交变磁场或在磁场中运动时,就会在导体中产生感生 电流,这种电流在导体内是自行闭合的。 涡流效应:从能量角度看,电涡流的产生必然要消耗一部分能量,从而使产生磁场 的激励线圈电参数发生变化。 电涡流式传感器是利用涡流效应,将非电量转换为阻抗、电感、品质因数等参数的变化而进行测量的。 2. 解释纵向压电效应 沿石英晶体的x轴(电轴)方向受力产生的压电效应称为"纵向压电效应"。 石英晶体有三个晶轴:Z轴又称光轴,它与晶体的纵轴线方向一致;X 轴又称电轴,它通过六面体相对的两个棱线并垂直于光轴;y轴又称机械轴,它垂直于两个相对的晶柱棱面。 如果从石英晶体中切下一个平行六面体并使其晶面分别平行于Z-Z、Y-Y、X-X轴线。 沿石英晶体的x轴(电轴)方向受力产生的压电效应称为"纵向压电效应" 3. 简述光栅传感器原理 由光源、透镜、主光栅、指示光栅和光电元件组成,光栅式传感器的基本工作原理是用光栅的莫尔条纹现象进行测量的. 当主光栅沿垂直于栅线X每移动过一个栅距W时,莫尔条纹近似沿栅线Y方向移过一个条纹间隔,用光电器件接收莫尔条纹信号,经电路处理后计数器计数可得主光栅移动的距离。

传感器复习资料(答案) Microsoft Word 文档

《传感器技术复习思考题》 复习重点: 第3章:掌握各种传感器的工作原理、特点;温度传感器的选择、热电偶冷端补偿方法;位移、压力、温度、流量、几种常用开关传感器的特性和选择。 第4章:光栅磁栅传感器的工作原理、细分和判向电路工作原理;常见数字编码器的特点。 第6章:掌握传感器的主要应用电路,电桥电路(单臂、双臂、全桥)、应变片的安排(贴法);简单运算放大器电路设计、测量放大器的工作原理和特点;隔离放大器的作用;常用信号变换电路的作用。 第1章1.2节误差的基本概念 第2章2.1传感器的定义与组成 第7章7.2硬件抗干扰技术7.3软件抗干扰技术 第8章8.1应变的测量8.3位移的测量8.5温度的测量(配合第3章、第6章) 必须掌握的习题: 1.1、1.3、1.4、1.8 3.1~3.9、3.18、3.21、3.24、3. 28 4.1~4.5、4.8、4.11、4.12 6.1、6.3、6.4、6.7 补充题:设计一个放大器 7.2、7、3、7.4 8.3、8.4、8.6 一、填空题 1.Z目前传感器正迅速地从模拟式、数字式向(微型化)、(多功能)、(智能化)方向发展。2.测量值A x与被测量真值A0之间的差值称为(绝对误差)引用误差是绝对误差 与(仪表量程L)的比值,通常以(百分数)表示。 3.Z对于稳态线性系统,测量仪器的输出增量与输入增量之比称为(灵敏度)。 4.偏差超出了3倍标准偏差的测量数据应该(抛弃)。 5.Z测量的最大误差与全量程之比称为(线性度)。 6.传感器的信号一般不能直接应用,必须进行(信号处理)。 7.Z目前标准化工业自动化仪表通常采用(4~20mA)信号,为了和A/D的输入形式相适应,必须经I/V变换成(1~5V)的电压信号;同样,D/A转换器的输出也应经V/I变换为(电流)信号。8.Z传感器的信号处理电路对微弱电信号,如热电偶信号,它必须经放大、滤波。这些处理包括信号形式的变换、(量程调整)、(环境补偿)、(线性化)等。 9.Z测量放大器也称为(仪表放大器)是采用三个运算放大器构成的(差分)放大器。 10.隔离放大器隔离方式有(变压器耦合)方式和(光电耦合)方式两种。 11.光栅的摩尔条纹具有(平均效应)、(放大作用)和移动的对应关系。 12.测量流量的传感器主要有差压流量计、(电磁流量计)、(涡轮流量计)、(超声波流量计)、

《传感器本》试题整理(附参考答案)

开放大学《传感器与测试基础》复习 1. 课程教材:《自动检测技术及应用》 梁森 (第2版),机械工业 2. 网上课堂:视频资料,课程ppt 资料,斌教授主讲 3. 主持教师联系方式: 25653399(周二、五);https://www.doczj.com/doc/e210609148.html, 4. 期末考试比例(大约):单项选择20分;填空20分;多项选择12分;简答题26分;分析设计题22分。 5. 复习样题 一、填空题 1. 传感器的特性一般指输入、输出特性,有动、静之分。静态特性指标的 有 、 、 、 等。(灵敏度、分辨力、线性度、迟滞 误差、稳定性) 2. 对于测量方法,从不同的角度有不同的分类,按照测量结果的显示方式,可以分为 模拟式测量 和 数字式测量 。 3. 对于测量方法,从不同的角度有不同的分类,按照是否在工位上测量可以分为 在线测量 和 离线式测量 。 4. 对于测量方法,从不同的角度有不同的分类,按照测量的具体手段,可以分为 偏位式测量 、 微差式测量 和 零位式测量 。 5.某0.1级电流表满度值100m x mA ,测量60mA 的绝对误差为 ±0.1mA 。 6、服从正态分布的随机误差具有如下性质 集中性 、 对称性 、 有界性 。 7. 硅光电池的光电特性中,当负载短路时,光电流在很大围与照度与呈线性关系。 8. 把被测非电量的变化转换成线圈互感变化的互感式传感器是根据 变压器 的基本原理制成的,其次级绕组都用 差动 形式连接,所以又叫差动变压器式传感器。 9、霍尔传感器的霍尔电势U H 为 K H IB 若改变 I 或 B 就能得到变化的霍尔电势。 10、电容式传感器中,变极距式一般用来测量 微小 的位移。 11. 压电式传感器具有体积小、结构简单等优点,但不适宜测量 频率太低 的被测量,特别是不能测量 静态值 。 12、差动电感式传感器与单线圈电感式传感器相比,线性 好 灵感度提高 一 倍、测

最常用的传感器用途简介

目录 1.常用传感器分类 (1) 1.1生活常见类 (1) 1.2光电类传感器 (2) 1.3力学方面传感器 (3) 1.4 其他常见方面的传感器 (4) 2传感器功能分类 (5) 2.3电阻式传感器 (5) 2.4. 变频功率传感器 (5) 2.5称重传感器 (6) 2.6电阻应变式传感器 (6) 2.7压阻式传感器 (6) 2.8热电阻传感器 (6) 2.9 激光传感器 (6) 2.10. 霍尔传感器 (6) 2.11无线温度传感器 (6) 2.12智能传感器 (7) 2.13光敏传感器 (7) 2.14生物传感器 (7) 2.15 位移传感器 (7) 2.16. 压力传感器 (8) 2.17. 24GHz雷达传感器 (8) 2.18 液位传感器 (8) 2.18.1、浮球式液位传感器 (8) 2.18.2、浮简式液位传感器 (8) 2.18.3、静压或液位传感器 (8) 1.常用传感器分类 1.1生活常见类 DS18b20温度传感器 作用:检测温度 湿度传感器: 检测湿度 温湿度传感器 作用:检测室内温度跟湿度 烟雾传感器 作用:检测烟雾浓度

作用:安卓手机上的的屏幕旋转 防水型DS18B20 作用:防水也可测温度 声音检测传感器 作用:可以用于声控灯,配合光敏传感器做声光报警,以及声音控制,声音检测的 驻极体话筒传感器 作用:声控开关 煤气传感器 作用:预防火灾 1.2光电类传感器 超声波传感器 作用:测距离 红外避障传感器 作用:避障 反射式光电管RP220 作用:可应于小车、机器人等黑白线寻迹 光敏电阻P1201-04传感器 作用:可见光控制电阻阻值 U型光电传感器 作用:常用于工件计数、测量电机的转速、电机转的圈数 红外接收头HS0038 作用:可应于红外信号检测 CHQ1838传感器 作用:接收红外线 红外光电传感器 作用:光电开关,红外光电开关的种类很多,有镜反射式、漫反射式、槽式、对射式和光纤式等。 接触传感器 作用:识别障碍物 开环式电流传感器 作用:测量磁场 闭环式电流传感器 作用:测量磁场 霍尔开关传感器 作用:可用于电机测速/位置检测等场地,主要作为开关使用 防跌落传感器 作用:饭跌落 防碰撞传感器: 作用:防碰撞

传感器整理

一、引言 目前,我国传感器行业规模仍然较小,应用范围较窄。为此,我们亟须转变观念.将传感器的研发由单一物性型传感器的研发,转化为高度集成的新型传感器研发。新型传感器的开发和应用已成为现代系统的核心和关键.它将成为21世纪信息产业新的经济增长点。 二、传感器行业发展趋势及展望 目前,传感器行业呈现八大发展趋势,即传感器的产业化发展模式、传感器产品全面、协调、持续发展、企业生产规模(年生产能力)向规模经济发展、生产格局向专业化方向发展、传感器大生产技术向自动化方向发展、企业的重点技术改造向引进技术的消化吸收与自主创新的方向转变、企业经营要加快从国内市场为主向国内与国外两个市场相结合的国际化方向发展、企业将向“大、中、小并举”、“集团化、专业化生产共存”的格局发展。但是,由于经济发展水平和生产研发资金的限制,我国传感器行业总体技术水平还是相对比较落后的,规模和应用领域都较小。今天活跃在国际传感器市场上的仍然是德国、日本、美国、俄国等老牌工业国家的企业。在这些国家里,传感器的应用范围很广,许多厂家的生产都实现了规模化,有些企业的年生产能力已达到几千万只甚至几亿只。相比之下,中国传感器的应用范围还比较窄,更多的应用仍然停留在工业测量与控制等基础应用领域。 可以预见,未来中国传感器市场的总需求将继续扩大。国内品牌将通过增加投资、合资等方式逐步渗透到高端市场。而中低端产品出口将成为国内品牌厂商的选择。国外新技术输人和应用技术将会带动市场需求向更个性化、分散化的方向发展,国内厂商之间的并购与整合也将很快形成趋势。 三、传感器原理与结构概述 1、传感器原理 无线传感器的组成模块封装在一个外壳内,在工作时,它将由电池或振动发电机提供电源,构成无线传感器网络节点。它可以采集设备的数字信号通过无线传感器网络传输到监控中心的无线网关,直接送入计算机,分析处理。如果需要,无线传感器也可以实时传输采集的整个时间历程信号。监控中心也可以通过网关把控制、参数设置等信息无线传输给节点。数据调理采集处理模块把传感器输出的微弱信号经过放大,滤波等调理电路后,送到模数转换器,转变为数字信号,送到主处理器进行数字信号处理,计算出传感器的有效值,位移值等。 (原理图) 无线通讯模块采用基于IEEE802.15.4标准的无线协议进行数据传输。IEEE802.15.4主要针对工业,建筑,传感器的无线数据采集和监控,油田,电力,矿山和物流管理等应用领域。它具有低功耗,传输可靠性高,抗干扰能力强,网络容量大,能够自动组网等特点。

最新传感器复习提纲、资料及答案知识讲解

传感器复习提纲 第1章概述 1.现代信息技术的三大支柱是什么? 传感器技术、通信技术与计算机技术 2. 什么是传感器?传感器定义有哪3个含义? 从广义的的角度来说,可以把传感器定义为:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 从狭义角度对传感器的定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准对传感器的定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置。 3.传感器的总体发展趋势是什么?现代传感器有哪些特征,采用什么物理量输出? 发展趋势主要体现在这样几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 特征:集成化、数字化、多功能化、微(小)型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。 输出: 4.传感器基本结构,由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换元件和基本电路三部分组成。 敏感元件感受被测量,转换元件将响应的被测量转换成电参量,基本电路

把电参量接入电路转换成电量。 5.了解传感器的分类方法。有哪三大类? 按照我国传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类。 6.了解传感器的图形符号,其中符号内容代表什么含义。 7.一个自动检测系统的组成包括哪几部分,画出结构框图。 第2章传感器的基本特性 (静态特性;传递函数;动态特性) 1.传感器的性能参数反映了传感器的什么关系? 2.静态特性:特性参数有哪些?(线性度、迟滞、重复性、灵敏度、分辨率、稳定性),各种参数代表什么意义,描述了传感器的哪些特征? 线性度是表征实际特性与拟合直线不吻合的参数。 迟滞用来描述传感器在正反行程期间特性曲线不重合的程度。 重复性是指在相同条件下,输入量按同一方向做全量程多次测量时,所得传感器输出特性曲线不一致的程度。 灵敏度是指传感器在稳定工作状态下,输出微小变化增量与引起此变化的输入微小变量的比值。 分辨率是指当传感器的输入从非零值缓慢增加时,在超过某一增量时,输出发生可观测的变化,这个输入增量称为传感器的分辨率,即最小输入增量。 稳定性表示传感器在一较长时间内保持性能参数的能力,故又称长期稳定性。3.传递函数:传感器的传递函数在数学上的定义是什么?

传感器课后答案解析

第1章概述 1.什么是传感器? 传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。 1.2传感器的共性是什么? 传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。 1.3传感器由哪几部分组成的? 由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。 1.4传感器如何进行分类? (1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。 1.5传感器技术的发展趋势有哪些? (1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化 1.6改善传感器性能的技术途径有哪些? (1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制 (5)稳定性处理 第2章传感器的基本特性 2.1什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些? 答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。 2.2传感器输入-输出特性的线性化有什么意义?如何实现其线性化? 答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。 2.3利用压力传感器所得测试数据如下表所示,计算其非线性误差、迟滞和重复性误差。设压力为0MPa 时输出为0mV,压力为0.12MPa时输出最大且为16.50mV. 非线性误差略 正反行程最大偏差?Hmax=0.1mV,所以γH=±?Hmax0.1100%=±%=±0.6%YFS16.50 重复性最大偏差为?Rmax=0.08,所以γR=±?Rmax0.08=±%=±0.48%YFS16.5 2.4什么是传感器的动态特性?如何分析传感器的动态特性? 传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即输出对随时间变化的输入量的响应特性。 传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。瞬态响应常采用阶跃信号作为输入,频率响应常采用正弦函数作为输入。

传感器与检测技术复习资料

传感器与检测技术复习资料(总6页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第一章 by YYZ 都是老师上课给的应该全都有了。 1.传感器是一种以一定精确度把被测量(主要是非电量)转换为与之有确定 关系、便与应用的某种物理量(主要是电量)的测量装置。 2.传感器的组成:信号从敏感元件到转换元件转换电路。 3.敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一物理 量的元件。 4.转换元件:敏感元件的输出就是它的输入,它把输入转换成为电路参数。 5.转换电路:将电路参数接入转换电路,便可转换为电量输出。 6.误差的分类:系统误差(测量设备的缺陷),随机误差(满足正态分 布),粗大误差。 7.系统误差:在同一条件下,多次测量同一量值时绝对值和符号保持不变, 按一定规律变化的误差称为系统误差。材料、零部件及工艺的缺陷,标准测量值,仪器刻度的标准,温度,压力会引起系统误差。 8.随机误差:绝对值和符号以不可预定的变化方式的误差。仪表中的转动部 件的间隙和摩擦,连接件的弹性形变可引起随机误差,随机误具有随机变量的一切特点。 9.粗大误差:超出规定条件下的预期的误差。粗大误差明显歪曲测量结果, 应该舍去不用。 10.精度:反映测量结果与真值接近度的值。 11.精度可分为准确度、精密度、精确度。 12.准确度:反映测量结果中系统误差的影响程度。 13.精密度:反映测量结果中随机误差的影响程度。 14.精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特 征可以用测量的不确定度(或极限误差)表示。 15.精密度高的准确度不一定高,准确度高的精密度不一定高,但精确度高, 则精密度和准确度都高。

传感器 第三版 内容整理

测量技术概述 信息获取是信息流地一环; 获取信息是仪器科学地基本任务; 仪器仪表是信息工业地源头; 检测基本概念: 确定被测对象地属性和量值为目地地全部操作 检测过程: 信号采集、信号处理、信号显示、信号输出 检测方法分类: . 直接测量(绝对测量、相对测量)间接测量 . 开环测量与闭环测量 . 偏差法、零位法、微差法 现代检测技术发展趋势: 智能化、虚拟化、网络化、微型化、软测量技术 传感器概述 什么是传感器? 传感器是能感受规定地被测量并按照一定地规律将其转换成可用输出信号地器件或装置. 传感器地输出信号通常是电量; 通常传感器由敏感元件和转换元件组成; 传感器地分类方法: 按被测参数分类, 如温度压力、位移、速度等 按传感器地工作原理分类, 如应变式、电容式、压电式、磁电式等静态特性: 指被测量地值处于稳定状态时地输出输入关系.只考虑传感器地静态特性时, 输入量与输出量之间地关系式中不含有时间变量.文档来自于网络搜索 重要指标是线性度、灵敏度, 迟滞和重复性、分辨率与阈值、稳定性、静态误差等. 传感器地校准与标定:传感器地标定分为静态标定和动态标定. 动态特性: 指其输出对随时间变化地输入量地响应特性.当被测量随时间变化,是时间地函数时, 则传感器地输出量也是时间地函数,其间地关系要用动态特性来表示.一个动态特性好地传感器, 其输出将再现输入量地变化规律, 即具有相同地时间函数.文档来自于网络搜索 传感器地输入量随时间变化地规律是各种各样地, 下面在对传感器动态特性进行分析时,采用最典型、最简单、易实现地正弦信号和阶跃信号作为标准输入信号.文档来自于网络搜索对于正弦输入信号, 传感器地响应称为频率响应或稳态响应对于阶跃输入信号, 则称为传感器地阶跃响应或瞬态响应.文档来自于网络搜索 传感器地瞬态响应是时间响应,在研究传感器地动态特性时, 有时需要从时域中对传感器地响应和过渡过程进行分析.这种分析方法是时域分析法文档来自于网络搜索 应变式传感器 概述: 应变式传感器是电阻式传感器地一种,电阻式传感器主要是使用传感器阻值地变化来检测被测量 工作原理: 电阻应变片地工作原理是基于应变效应, 即在导体产生机械变形时, 它地电阻值相应发生变化.

相关主题
文本预览
相关文档 最新文档