当前位置:文档之家› 机械设计基础 第十五章 滑动轴承

机械设计基础 第十五章 滑动轴承

《滑动轴承的设计》word文档

滑动轴承的设计 § 1 滑动轴承概述 用于支撑旋转零件(转轴,心轴等)的装置通称为轴承。 按其承载方向的不同,轴承可分为: 径向轴承Radial bearing:轴承上的反作用力与轴心线垂直的轴承称为径向轴承; 推力轴承Thrust bearing:轴承上的反作用力与轴心线方向一致的轴承称为推力轴承。 按轴承工作时的摩擦性质不同,轴承可分为:滑动轴承和滚动轴承。 滑动轴承,根据其相对运动的两表面间油膜形成原理的不同,还可分为:流体动力润滑轴承(简称动压轴承)(Hydrodynamic lubrication) 流体静力润滑轴承(简称静压轴承)(Hydrostatic lubrication)。本章主要讨论动压轴承。 和滚动轴承相比,滑动轴承具有承载能力高、抗振性好,工作平稳可靠,噪声小,寿命长等优点,它广泛用于内燃机、轧钢机、大型电机及仪表、雷达、天文望远镜等方面。 在动压轴承中,随着工作条件和润滑性能的变化,其滑动表面间的摩擦状态亦有所不同。通常将其分为如下三种状态: 1、完全液体摩擦 完全液体摩擦状态(图8-1a)是指滑动轴承中相对滑动的两表面完全被润滑油膜所隔开,油膜有足够的厚度,消除了两摩擦表面的直接接触。此时,只存在液体分子之间的摩擦,故摩擦系数很小(f =0.001~0.008),显著地减少了摩擦和磨损。

2、边界摩擦 当滑动轴承的两相对滑动表面有润滑油存在时,由于润滑油与摩擦表面的吸附作用,将在摩擦表面上形成一层极薄的边界油膜(图8-1b),它能承受很高的压强而不破坏。边界油膜的厚度比一微米还小,不足以将两摩擦表面分隔开,所以,相对滑动时,两摩擦表面微观的尖峰相遇就会把油膜划破,形成局部的金属直接接触,故这种状态称为边界摩擦状态。一般而言,边界油膜可覆盖摩擦表面的大部分。虽它不能像完全液体摩擦完全消除两摩擦表面间的直接接触,却可起着减轻磨损的作用。这种状态的摩擦系数f =0.008~0.01。 3、干摩擦 两摩擦表面间没有任何物质时的摩擦称为干摩擦状态(图8-1c),在实际中,没有理想的干摩擦。因为任何金属表面上总存在各种氧化膜,很难出现纯粹的金属接触(除非在洁净的实验室,才有可能发生)。由于干摩擦状态,将产生大量的摩擦损耗和严重的磨损,故滑动轴承中不允许出现干摩擦状态,否则,将导致强烈的升温,把轴瓦烧毁。 完全液体摩擦是滑动轴承工作的最理想状况。对那些重要且高速旋转的机器,应确保轴承在完全液体摩擦状态下工作,这类轴承常称为液体摩擦滑动轴承。边界摩擦常与半液体摩擦状态、半干摩擦状态并存,通称为非液体摩擦状态。对那些在低速且有冲击条件下工作的不太重要的机器,可按非液体摩擦状态设计轴承,称为非液体摩擦滑动轴承。 § 2 滑动轴承的结构形式 一、向心滑动轴承的结构形式 1、剖分式 普通剖分式轴承结构(图8-2)由轴承盖、轴承座、剖分轴瓦和螺栓组成。轴瓦是直接和轴颈相接触的重要零件。为了安装时易对中,轴承盖和轴承座的剖分面常作出阶梯形的榫口。润滑油通过轴承盖上的油孔和轴瓦上的油沟流入轴承间隙润滑摩擦面。轴承剖分面最好与载荷方向近于垂直,以防剖分面位于承载区出现泄漏,降低承载能力。通常,多数轴承剖面为水平剖分,也称正剖分(图8-2a、8-2b),也有斜剖分的(图8-2c、8-2d)。

机械设计第12章_滑动轴承

例12.3 某对开式径向滑动轴承,已知径向载荷F=35 000N,轴颈直径d=100mm ,轴承宽度 B=100mm ,轴颈转速n=1000r/min 。选用L —AN32全损耗用油,设平均温度t m =50℃轴承的相对间隙ψ=0.001,轴颈、轴瓦表面粗糙度分别为R z1=1.6μm ,R z2=3.2μm ,试校核此轴承能否实现液体动压润滑。(注:本例题中所用到的表见题后附录) 解:按50℃查L —AN32的运动粘度,查得v 50=22cst ,换算出L —AN32 50℃时的动力粘度 s Pa v ?=??=?=--0198.0102290010665050ρη 轴颈转速 s rad n /7.1046010002602=?==ππω 承受最大载荷时,考虑到表面几何形状误差和轴颈挠曲变形,选安全系数为2。 根据最小油膜厚度公式 )1()1(min χψχδδ-=-=-=r e h 和 任意位置的油膜厚度公式 )cos x 1()cos x 1(φψr φδh +=+= 得 )()1(21z z R R S r +=-χψ 所以 808.005.00048 .021) (121=?-=+-=ψχr R R S z z 由B/d=1及χ=0.808查教材表12-7得有限宽轴承的承载量系数 C p =3.372 因为 N 00035N 00070001 .0/372.31.01.07.1040198.0/22max >=????= =ψdBC ηωF P 所以,可以实现液体动力润滑。 例12.4 有一不完全液体径向滑动轴承,轴颈直径d=60mm ,轴承宽度B=60mm ,轴瓦材料 为ZQA19—4,试求: (1)当载荷F=36 000N ,转速n=150r/min 时,校核轴承是否满足非液体润滑轴承的使 用条件; (2)当载荷F=36 000N 时,轴的允许转速n ; (3)当轴的转速n=900r/min 时的允许载荷F r ; (4)轴的允许最大转速n max 。 解:由机械设计手册查得轴瓦材料ZQA19—4的许用值为[p]=15MPa ,[v]=4m/s , [pv]=12MPa ·m/s 。 (1)校核轴承的使用条件。已知载荷Fr=36 000N ,轴的转速n=150r/min ,则 15MPa ][MPa 10606036000 =<=?==p Bd F p

第15章 滑动轴承

第15章 滑动轴承(计算必考) 15.4 课后习题详解 15-1 滑动轴承的摩擦状态有几种?各有什么特点? 答 滑动轴承按摩擦状态分为两种:液体摩擦滑动轴承和非液体摩擦滑动轴承。 液体摩擦滑动轴承:两摩擦表面完全被液体层隔开,摩擦性质取决于液体分子间的粘性阻力。根据油膜形成机理的不同可分为液体动压轴承和液体静压轴承。 非液体摩擦滑动轴承:两摩擦表面处于边界摩擦或混合摩擦状态,两表面间有润滑油,但不足以将两表面完全隔离,其微观凸峰之间仍相互搓削而产生磨损。 15-2 校核铸件清理滚筒上的一对滑动轴承。已知装载量加自重为18000N ,转速为min /40r ,两端轴颈的直径为mm 120,轴瓦宽径比为 1.2,材料为锡青铜ZCuSn5Pb5Zn5,润滑脂润滑。 解 (1)求滑动轴承上的径向载荷 N W F 90002 180002=== (2)求轴瓦宽度 mm d B 1441202.12.1=?== (3)查许用值 查教材表15-1,锡青铜的MPa p 8][=,s m MPa pv /15][?= (4)验算压强p ][25.0120 1449000p MPa Bd F p <=?== (5)验算pv 值 ][/13.01000 60144409000100060pv s m MPa dn Bd F pv

机械设计习题与答案22滑动轴承

二十二章滑动轴承习题与参考答案 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措

施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(m in χψ-=d h B. )1(m in χψ+=d h C. 2/)1(m in χψ-=d h D. 2/)1(m in χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制pv 值的主要目的是防止轴承 。

第12章 滑动轴承

第12章滑动轴承 轴承是用来支承轴及轴上零件、保持轴的旋转精度和减少转轴与支承之间的摩擦和磨损。轴承一般分为两大类:滚动轴承和滑动轴承。滚动轴承有着一系列优点,在一般机器中获得了广泛应用。但是在高速、高精度、重载、结构上要求剖分等场合下,滑动轴承就体现出它的优异性能。因而在汽轮机、离心式压缩机、内燃机、大型电机中多采用滑动轴承。此外,在低速而带有冲击的机器中,如水泥搅拌机、滚筒清砂机、破碎机等也采用滑动轴承。 12.1 滑动轴承的类型与结构 12.1.1 滑动轴承的类型 1.按工作表面的摩擦状态分 (1)液体摩擦滑动轴承(图12.1a) 在液体摩擦滑动轴承中,轴颈和轴承的工作表面被一层润滑油膜隔开。由于两零件表面没有直接接触,轴承的阻力只是润滑油分子间的内摩擦,所以摩擦系数很小,一般仅为0.001~0.008。这种轴承的寿命长、效率高,但要求制造精度高,并需在一定条件下才能实现液体摩擦。 (a)液体摩擦(b)非液体摩擦 图12.1 滑动轴承的摩擦状态 (2)非液体摩擦滑动轴承(图12.1b) 非液体摩擦滑动轴承的轴颈和轴承的工作表面之间虽有润滑油存在,但在表面局部凸起部分还有金属的直接接触,因此摩擦系数较大,一般为0. 1~0.3,容易磨损,但由于其结构简单,对制造精度和工作条件要求不高,故在机械中应用较广。本章主要介绍非液体摩擦滑动轴承。 2.按承受载荷的方向分 (1)径向滑动轴承(图12.2a),这种轴承又称向心滑动轴承,主要承受径向载荷。 (2)止推滑动轴承(图12.2b),只能承受轴向载荷。

(a)(b) 图12.2 滑动轴承 12.1.2 滑动轴承的结构 1.径向滑动轴承 (1)整体式径向滑动轴承. 图12.3所示是整体式径向滑动轴承。它由轴承座,整体轴瓦和紧定螺钉组成。轴承座上面有安装润滑油杯的螺纹孔。在轴瓦上有油孔,为了使润滑油能均匀分布在整个轴颈上,在轴瓦的内表面上开有油沟。 整体式滑动轴承的优点是结构简单、成本低廉。缺点是轴瓦磨损后,轴承间隙过大时无法调整。另外,只能从轴颈端部进行装拆。整体式滑动轴承多用在低速、轻载的机械设备中。 图12.3 整体式径向滑动轴承 (2)对开式径向滑动轴承 图12.4所示为对开式径向滑动轴承,因为装拆方便而应用广泛。它是由轴承座、轴承盖、剖分轴瓦和连接螺栓组成。为了安装时容易对中和防止横向错动,在轴承盖和轴承座的剖分面上做成阶梯形,在剖分面间配置调整垫片,当轴瓦磨损后可减少垫片厚度以调整间隙。轴承盖应适当压紧轴瓦,使轴瓦不能在轴承孔中转动。轴承盖上制有螺纹孔,以便安装油杯或油管。剖分轴瓦由上、下轴瓦组成。上轴瓦顶部开有油孔,以便进入润滑油。

滑动轴承设计

滑动轴承的设计准则,是根据其工作方式及特点确定的。对于非流体摩擦状态的滑动轴承,或称混和摩擦状态滑动轴承,保证其轴瓦材料的使用性能是主要任务;对于流体润滑轴承,设计重点则主要集中在如何在给定的工况下,构造具有合理几何特征的轴颈和轴瓦,使之能在工作过程中依赖流体内部的静动压力承载。 1.非流体润滑状态滑动轴承的设计准则 对于非流体润滑、混和润滑和固体润滑状态工作的滑动轴承,常用限制性计算条件来保证其使用功能。此设计条件也可作为流体润滑轴承的初步设计计算条件。 (1)轴承承载面平均压强的设计计算 由于过大的表面压强将对材料表面强度构成威胁,并会加速轴承的磨损,因此在设计中应满足: 其中:P——轴承承载面上压强,MPa;F——轴承载荷,N;A——轴承承载面积,mm2;[P]——轴承材料的许用压强,MPa。 对于径向轴承,一般只能承担径向载荷: 其中:F——轴承径向载荷,N;D——轴承直径,mm;B——轴承宽度,mm。DB是承载面在F方向上的投影面积。 推力轴承一般仅能承担轴向载荷,对于环形瓦推力轴承: 其中:F——轴承轴向载荷,N;D2、D1——轴承承载环面外径、内径,mm。 (2) 轴承摩擦热效应的限制性计算 滑动轴承工作时,其摩擦效应引起温度升高,摩擦热量的产生与单位面积上的摩擦功耗成正比,而轴承承载面压强p与速度v的乘积通常用来表征滑动轴承的摩擦功耗,称为pv值。滑动轴承设计中,用限制 pv值的办法,控制其工作温升,其设计准则为: 其中:P——轴承承载面上压强,MPa;对于径向和推力轴承;V——轴承承载面平均速度,m/s;[Pv}——轴承许用Pv值。

其中:D——轴承平均直径,0.001m;n——轴颈与轴瓦的相对转速,。这样,上式也可写为: (3) 轴承最大滑动速度的条件性计算 非液体摩擦状态工作的滑动轴承,其工作表面相互接触,当相对滑动速度很高时,其工作表面磨损加速,此项计算对于轻载高速轴承尤为重要。设计准则为: 其中:v——轴承承载面最大线速度,m/s;[v]——轴承许用线速度。 (4) 滑动轴承的几何参数 滑动轴承的轴颈和轴瓦间的间隙大小,对滑动轴承的工作性能有显著影响,滑动轴承的间隙大小用相对间隙ψ来表示: 其中:C——轴承半径间隙,即轴瓦与轴颈的半径差,mm;r——轴承半径,mm。轴承间隙较大时,轴承承载力和运转精度下降,摩擦较小,温升较低;轴承间隙较小时,轴承运转精度较高,承载力较高,但摩擦功耗及温升较大。滑动轴承设计时,ψ常在0.004~0.012范围取值。 滑动轴承的径向尺寸和宽度尺寸的比值称为宽径比B/D,有时写成L/D,轴承宽度较小时,会使润滑剂易沿轴向泄漏,不易保持于承载区,因此滑动轴承的宽径比不易过小,常推荐在0.5~1.5间选取。径向轴承径向配合推荐优先选用H9/d9和H8/f7及D9/h9和F8/h7。 2. 流体润滑状态滑动轴承的设计 流体润滑状态润滑轴承是指在稳定运转时,其轴颈与轴瓦被润滑剂完全分隔,工作于无相互接触工作状态的滑动轴承。 (1) 滑动轴承形成流体动力润滑的条件 实现流体润滑主要有两种方式,一是静压方式,即将流体直接泵入承载区承载;二是动压方式,即利用轴承相对运动表面的特殊形状及运动条件形成的压力承载。通常状态下,动压轴承的设计和工艺条件应满足如下几方面的要求,才可使流体润滑的实现成为可能。 条件1:滑动轴承相对运动表面间在承载区可以构成锲形空间,且其运动将使该区域中的流体从宽阔处流向狭窄处;即从大口流向小口;或使承载区体积有减小的趋势。 条件2:有充足的流体供给,且其具有一定的粘度;

第十二章 滑动轴承习题解答

第十二章 滑动轴承习题及参考解答 一、选择题(从给出的A 、B 、C 、D 中选一个答案) 1 验算滑动轴承最小油膜厚度h min 的目的是 。 A. 确定轴承是否能获得液体润滑 B. 控制轴承的发热量 C. 计算轴承内部的摩擦阻力 D. 控制轴承的压强P 2 在题5—2图所示的下列几种情况下,可能形成流体动力润滑的有 。 3 巴氏合金是用来制造 。 A. 单层金属轴瓦 B. 双层或多层金属轴瓦 C. 含油轴承轴瓦 D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。 A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。 A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大 6 不完全液体润滑滑动轴承,验算 ][pv pv ≤是为了防止轴承 。 A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀 7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。 A. 减少轴承的宽径比d l / B. 增加供油量 C. 减少相对间隙ψ D. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。 A. 重载 B. 高速 C. 工作温度高 D. 承受变载荷或振动冲击载荷

9 温度升高时,润滑油的粘度 。 A. 随之升高 B. 保持不变 C. 随之降低 D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。 A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油 C. 轴颈和轴承表面之间有相对滑动 D. 润滑油温度不超过50℃ 11 运动粘度是动力粘度与同温度下润滑油 的比值。 A. 质量 B. 密度 C. 比重 D. 流速 12 润滑油的 ,又称绝对粘度。 A. 运动粘度 B. 动力粘度 C. 恩格尔粘度 D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。 A. 中、小型减速器齿轮轴 B. 电动机转子 C. 铁道机车车辆轴 D. 大型水轮机主轴 14 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。 A. 液体摩擦 B. 半液体摩擦 C. 混合摩擦 D. 边界摩擦 15 液体动力润滑径向滑动轴承最小油膜厚度的计算公式是 。 A. )1(min χψ-=d h B. )1(min χψ+=d h C. 2/)1(min χψ-=d h D. 2/)1(min χψ+=d h 16 在滑动轴承中,相对间隙ψ是一个重要的参数,它是 与公称直径之比。 A. 半径间隙r R -=δ B. 直径间隙d D -=? C. 最小油膜厚度h min D. 偏心率χ 17 在径向滑动轴承中,采用可倾瓦的目的在于 。 A. 便于装配 B. 使轴承具有自动调位能力 C. 提高轴承的稳定性 D. 增加润滑油流量,降低温升 18 采用三油楔或多油楔滑动轴承的目的在于 。 A. 提高承载能力 B. 增加润滑油油量 C. 提高轴承的稳定性 D. 减少摩擦发热 19 在不完全液体润滑滑动轴承中,限制 pv 值的主要目的是防止轴承 。 A. 过度发热而胶合 B. 过度磨损 C. 产生塑性变形 D. 产生咬死 20 下述材料中, 是轴承合金(巴氏合金)。 A. 20CrMnTi B. 38CrMnMo C. ZSnSb11Cu6 D. ZCuSn10P1 21 与滚动轴承相比较,下述各点中, 不能作为滑动轴承的优点。 A. 径向尺寸小 B. 间隙小,旋转精度高 C. 运转平稳,噪声低 D. 可用于高速情况下 22 径向滑动轴承的直径增大1倍,长径比不变,载荷不变,则轴承的压强 p 变为原来的 倍。 A. 2 B. 1/2 C. 1/4 D. 4 23 径向滑动轴承的直径增大1倍,长径比不变,载荷及转速不变,则轴承的pv 值为原来的 倍。 A. 2 B. 1/2 C. 4 D. 1/4

最新机械设计基础教案——第15章 轴承

第15章 轴承 (一)教学要求 1、 掌握轴承的类型与特点,了解其受载及失效情况 2、 掌握寿命计算方法和轴承的组合结构设计 (二)教学的重点与难点 1、 轴承的类型、特点、代号,轴承的疲劳点蚀 2、 寿命计算、当量动、静载荷,轴承的组合结构设计 3、 轴承的润滑 (三)教学内容 15.1 滚动轴承的概述 滚动轴承由于是滚动摩擦,∴摩擦阻力小,发热量小,效率高,起动灵敏、维护方便,并且已标准化,便于选用与更换,因此使用十分广泛。 一、滚动轴承的构造 标准滚动轴承的组成:内圈1、外圈2、滚动体3(基本元件)、保持架4(图15-1) 一般内圈随轴一起回转,外圈固定(也有相反)内外圈上均有凹的滚道,滚道一方面限制滚动体的轴向移动,另一方面可降低滚动体与滚道间的接触应力。 保持架能使滚动体均匀分布以避免滚动体相互接触引起磨损与发热(图15-3) 二、滚动轴承的材料 内、外圈、滚动体;GCr15、GCr15-SiMn 等轴承钢,热处理后硬度:HRC60~65 保持架:低碳钢、铜合金或塑料、聚四氟乙烯 三、滚动轴承的特点 优点:1)f 小起动力矩小,η高;2)运转精度高(可用预紧方法消除游隙);3)轴向尺寸小;4)某些轴能同时承受Fr 和Fa ,使机器结构紧凑;5)润滑方便、简单、易于密封和维护;6)互换性好(标准零件) 缺点:1)承受冲击载荷能力差;2)高速时噪音、振动较大;3)高速重载寿命较低;4)径向尺寸较大(相对于滑动轴承) 应用:广泛应用于中速、中载和一般工作条件下运转的机械设备。 15.2 滚动轴承的类型与选择 一、滚动轴承的主要类型与特点 类型——按承载方向: 向心轴承——?=0α,主要承受径向载荷,可受一定Fa ,如深沟球、圆柱滚柱轴承等,1、4、6、N 、NA 、2调心滚子等 推力轴承 向心推力轴承 按滚动体形状:球~——承载能力低,极限转速高 滚子~——承载能力高,极限转速低

机械设计基础复习精要:第15章 滑动轴承

191 第15章 滑动轴承 15.1考点提要 15.1.1 重要术语及基本概念 轴瓦、轴承衬、油沟与油孔、宽径比、不完全液体润滑、液体动力润滑、止推轴承、摩擦的特点及状态(干摩擦,边界摩擦,液体摩擦,混合摩擦),静压轴承 15.1.2 滑动轴承的材料和主要失效形式 滑动轴承的主要失效形式有磨粒磨损、刮伤、胶合、疲劳剥落和腐蚀等。针对滑动轴承的主要失效形式,轴瓦和轴承衬的材料统称为轴承材料。轴承材料的性能应着重满足良好的减摩性、耐磨性和抗咬粘性,良好的摩擦顺应性、嵌入性和磨合性,足够的强度和抗腐蚀能力,良好的导热性、工艺性、经济性等。常用轴承材料及性能详见教材。 15.1.3 滑动轴承设计 设计内容包括:1)决定轴承的结构型式;2)选择轴瓦和轴承衬的材料;3)决定轴承结构参数;4)选择润滑剂和润滑方法;5)计算轴承工作能力。 在设计滑动轴承时,如果速度高,温升大,可相对间隙大些,速度低时,温升小,可相对间隙小些,有利于提高承载能力。滑动轴承的承载能力与相对间隙的平方成反比,因此载荷大时,相对间隙应取小些,载荷小时则可取大些,有利于温度降低。 不完全液体润滑径向滑动轴承处于混合润滑,这类径向滑动轴承的计算准则是p ≤[]p 、pv ≤[]pv 和v ≤[]v 。设计中,轴承所承受径向载荷F (单位为:N),轴径转速n (单位为: min /r ) ,轴颈直径d (单位为:mm)。然后进行以下验算: (1)轴承的平均压力P (单位为:Mpa ) ][p dB F p ≤= (15-1) 式中:B —轴承宽度,单位为mm ;][p —轴瓦材料的许用应力,单位为Mpa (2)轴承的pv 值(单位为:s m Mpa /.) ][19100100060pv B Fn dn Bd F pv ≤=?= (15-2) 式中:v —轴颈圆周速度,单位为s m / (3)滑动速度v (单位为:s m /) ][v v ≤ (15-3) 非液体摩擦滑动轴承的计算内容是:限制压强p ,以保证润滑油不被过大的压力挤出,使得轴瓦不至于过度磨损。限制pv 值是为了限制轴承的温升,从而保证油膜不破裂,因为

滑动轴承项目规划设计方案

滑动轴承项目规划设计方案 规划设计/投资方案/产业运营

摘要说明— 轴承是用于确定旋转轴与其他零件相对运动位置,起支承或导向作用 的零部件。轴承的主要功能是支承旋转轴或其它运动体,引导转动或移动 运动并承受由轴或轴上零件传递而来的载荷。根据轴承工作时的摩擦性质,可分为滑动轴承和滚动轴承两大类。滑动轴承与滚动轴承相比较,各有优 缺点,各有不同的适用场合。滚动轴承已实现标准化、系列化、通用化, 且适用范围广泛,但某些特殊的工况,如高速、重载、高精度等场合下, 通常只能配套使用滑动轴承,并且需要根据不同的工况进行定制化生产。 该滑动轴承项目计划总投资17091.80万元,其中:固定资产投资13645.03万元,占项目总投资的79.83%;流动资金3446.77万元,占项目 总投资的20.17%。 达产年营业收入27044.00万元,总成本费用20322.90万元,税金及 附加315.00万元,利润总额6721.10万元,利税总额7963.15万元,税后 净利润5040.83万元,达产年纳税总额2922.33万元;达产年投资利润率39.32%,投资利税率46.59%,投资回报率29.49%,全部投资回收期4.89年,提供就业职位424个。 报告内容:概述、背景和必要性研究、市场分析、建设规划、选址可 行性分析、土建工程研究、项目工艺原则、环境保护、清洁生产、项目安

全保护、风险应对说明、项目节能概况、实施方案、项目投资估算、项目盈利能力分析、项目综合评价结论等。 规划设计/投资分析/产业运营

滑动轴承项目规划设计方案目录 第一章概述 第二章背景和必要性研究 第三章建设规划 第四章选址可行性分析 第五章土建工程研究 第六章项目工艺原则 第七章环境保护、清洁生产第八章项目安全保护 第九章风险应对说明 第十章项目节能概况 第十一章实施方案 第十二章项目投资估算 第十三章项目盈利能力分析 第十四章招标方案 第十五章项目综合评价结论

第十二章 滑动轴承

第十二章滑动轴承 一、选择与填空题 12-1 宽径比B/d是设计滑动轴承时首先要确定的重要参数之一,通常取B/d=___________。 (1)1~10 (2)0.1~1 (3)0.3~1.5 (4)3~5 12-2 轴承合金通常用于做滑动轴承的__________。 (1)轴套(2)轴承衬(3)含油轴瓦(4)轴承座 12-3 在不完全液体润滑滑动轴承设计中,限制p值的主要目的是___________________;限制pv值的主要目的是___________________ 。 12-4 径向滑动轴承的偏心距e随着载荷增大而_________;随着转速增高而__________。12-5 ______________不是静压滑动轴承的特点。 (1)起动力矩小(2)对轴承材料要求高(3)供油系统复杂(4)高、低速运转性能均好 二、分析与思考题 12-6 试分别从摩擦状态、油膜形成的原理以及润滑介质几方面对滑动轴承进行分类。 12-7 为什么滑动轴承要分成轴承座和轴瓦,有时又在轴瓦上敷上一层轴承衬? 12-8 在滑动轴承上开设油孔和油槽时应注意哪些问题? 12-9 一般轴承的宽径比在什么范围内?为什么宽径比不宜过大或过小? 12-10 提高液体动力润滑径向滑动轴承的运动稳定性和油膜刚度是设计时应考虑的重要问题,其具体措施有哪些? 12-11 采用扇形块可倾轴瓦时,可倾轴瓦的支承点与轴的旋转方向有何关系?轴是否允许正反转? 12-12 滑动轴承常见的失效形式有哪些? 12-13 对滑动轴承材料的性能有哪几方面的要求? 12-14 对滑动轴承材料的基本要求之一是耐磨,而表面淬硬的钢材是很耐磨的,试问是否可用表面淬硬的钢制轴颈和钢制轴瓦配对,以达到耐磨的要求? 12-15 在设计滑动轴承时,相对间隙ψ的选取与速度和载荷的大小有何关系? 12-16 某离心泵用径向滑动轴承,轴颈表面圆周速度v=2.5m/s,工作压力P=3~4MPa,设计中拟采用整体式轴瓦(不加轴承衬),试选择一种合适的轴承材料。 12-17 验算滑动轴承的压力p、速度v和压力与速度的乘积pv,是不完全液体润滑轴承设计中的内容,对液体动力润滑轴承是否需要进行此项验算?为什么? 12-18 试分析液体动力润滑轴承和不完全液体润滑轴承的区别,并讨论它们各自适用的场合。 12-19 不完全液体润滑轴承与液体动力润滑轴承的设计计算准则有何不同? 12-20 试说明液体动压油膜形成的必要条件。 12-21 对已设计好的液体动力润滑径向滑动轴承,试分析在仅改动下列参数之一时,将如何影响该轴承的承载能力。 (1)转速由n=500r/min改为n=700r/min; (2)宽径比B/d由1.0改为0.8; (3)润滑油由采用46号全损耗系统用油改为68号全损耗系统用油; (4)轴承孔表面粗糙度由R z=6.3μm改为R z=3.2μm。

第九章滑动轴承设计

第二篇 第九章滑动轴承设计

第三章摩擦、磨损与润滑 §3-0 引言 §3-1 摩 擦 §3-2 磨 损 §3-3润滑 §3-4 流体动力润滑的基本原理

概述 用于支撑和约束旋转零件(转轴,心轴等)的装置通称为轴承。 一、按轴承工作时的摩擦性质不同,轴承可分为: 1.滑动轴承 2.滚动轴承。 二、按其承载方向的不同,轴承可分为: 1.径向轴承:承受径向载荷 2.推力轴承:承受轴向载荷 三、按相对运动的两表面间油膜形成原理的不同分类 1、流体动力润滑轴承(简称动压轴承) 2、流体静力润滑轴承(简称静压轴承)

?滑动轴承是一种工作在滑动摩擦状态下的轴承,其基本结构包括轴承座、轴套(瓦)和轴颈。滑动轴承具有一些独特的优点,主要应用于以下几种情况: ?工作转速特高的轴承 ?要求对轴的支承位置特别精确的轴承 ?特重型的轴承 ?承受巨大的冲击和振动载荷的轴承 ?装配要求做成剖分式的轴承(如曲轴的轴承) ?特殊条件下(如水或腐蚀性介质中)工作的轴承 ?在径向空间尺寸受到限制时,也常采用滑动轴承

?对轴承的基本要求: ①方向精度(置中,定向); ②运转灵便性; ③对温度变化的不敏感性; ④耐磨性; ⑤承载能力; ⑥成本; ⑦装配调整、维修是否方便。?按结构形式可分为: ①圆柱形滑动轴承; ②圆锥形滑动轴承; ③球形滑动轴承。

第一节圆柱形滑动轴承 圆柱性滑动轴承——轴颈与轴承的配合部分为圆柱形表面。它是轴承中应用最广的一种,圆柱形滑动轴承主要用来支承水平轴。 特点: ①接触面大,承载能力强,能承受冲击和振动; ②置中精度差,特别是磨损后,精度要更低; ③摩擦力矩大; ④对温度变化比较敏感。

12第十二章 轴承

第十二章轴承§12-1 滚动轴承 选择题 1、滚动轴承内圈通常装在轴颈上,与轴()转动。 A、一起 B、相对 C、反向 2、可同时承受径向载荷和轴向中载荷,一般成对使用的滚动轴承是()。 A、深沟球轴承 B、圆锥滚子轴承 C、推力球轴承 3、主要承受径向载荷,外圈内滚道为球面,能自动调心的滚动轴承是()。 A、角接触球轴承 B、调心球轴承 C、深沟球轴承 4、主要承受径向载荷,也可同时承受少量双向轴向载荷,应用最广泛的滚动轴承是()。 A、推力球轴承 B、圆柱滚子轴承 C、深沟球轴承 5、能同时承受较大的径向和轴向载荷且内外圈可以分离,通常成对使用的滚动轴承是()。 A、圆锥滚子轴承 B、推力球轴承 C、圆柱滚子轴承 6、圆柱滚子轴承与深沟球轴承相比,其承载能力()。 A、大 B、小 C、相同 7、深沟球轴承的滚动轴承类型代号是()。 A、 4 B、 5 C、 6 8、滚动轴承类型代号是QJ,表示是()。 A、调心球轴承 B、四点接触球轴承 C、外球面球轴承 9、实际工作中,若轴的弯曲变形大,或两轴承座孔的同心度误差较大时,应选用()。 A、调心球轴承 B、推力球轴承 C、深沟球轴承 10、工作中若滚动轴承只承受轴向载荷时,应选用()。 A、圆锥滚子轴承 B、圆锥滚子轴承 C、推力球轴承 11、()是滚动轴承代号的基础。 A、前置代号 B、基本代号 C、后置代号 12、圆锥滚子轴承的()与内圈可以分离,故其便于安装和拆卸。 A、外圈 B、滚动体 C、保持架 13、盘形凸轮轴的支承,应当选用()。 A、深沟球轴承 B、推力球轴承 C、调心球轴承

14、斜齿轮传动中,轴的支承一般选用()。 A、推力球轴承 B、圆锥滚子轴承 C、深沟球轴承 15、针对以下应用要求,找出相应的轴承类型代号。 (1)主要承受径向载荷,也可以承受一定轴向载荷的是()。 (2)只能承受单向轴向载荷的是()。 (3)可同时承受径向载荷和单向轴向载荷的是()。 A、6208 B、51308 C、31308 二、判断题 1、()轴承性能的好坏对机器的性能没有影响。 2、()调心球轴承不允许成对使用。 3、()双列深沟球轴承比深沟球轴承承载能力大。 4、()双向推力球轴承能同时承受径向和轴向载荷。 5、()角接触球轴承的公称接触角越大,其承受轴向载荷的能力越小。 6、()滚动轴承代号通常都压印在轴承内圈的端面上。 7、()圆锥滚子轴承的滚动轴承类型代号是N。 8、( )滚动轴承代号的直径系列表示同一内径轴承的各种不同宽度。 9、()在妹子使用要求的前提下,应尽量选用精度低、价格便宜的滚动轴承。 10、( )载荷小且平稳时,应选用球轴承;载荷大且有冲击时,宜选用滚子轴承。 11、()球轴承的极限转速比滚子轴承低。 12、()同型号的滚动轴承精度等级越高,其价格越贵。 13、()在轴承商店,只要告诉售货员滚动轴承的代号,就可以买到所需要的滚动轴承。 14、( ) 在轴的一端安装一只调心球轴承,在轴的另一端安装一只深沟球轴承,则可起调心作用。 15、()滚动轴承的前置代号、后置代号是轴承基本代号的补充代号,不能省略。 三、填空题 1 轴承的功用是支承及,并保持轴的正常和。 2、按摩擦性质不同,轴承可分为和。

滑动轴承设计

滑动轴承 1 概述 1.1滑动轴承的分类 滑动轴承按照承受载荷的方向主要分为:1)径向滑动轴承,主要承受径向载荷;2)推力滑动轴承,承受轴向载荷。 按照滑动表面间润滑状态的不同可分为:1)液体润滑轴承;2)不完全液体润滑轴承;3)自润滑轴承。 按照液体润滑承载机理不同,液体润滑轴承又分为1)液体动压润滑轴承;2)液体静压润滑轴承。 1.2滑动轴承的特点及应用 与滚动轴承相比,滑动轴承有如下特点:1)在高速重载下能正常工作,寿命长;2)精度高;3)滑动轴承能做成剖分式的,能满足特殊结构需要;4)液体摩擦轴承具有很好的缓冲和阻尼作用,可以吸收振动、缓和冲击;5)滑动轴承的径向尺寸比滚动轴承小;6)启动摩擦阻力较大;7)非液体摩擦滑动轴承具有结构简单、使用方便等优点。 2 滑动轴承的主要结构形式 2.1径向滑动轴承 2.1.1整体式径向滑动轴承 组成:轴承座(常为铸铁)、轴瓦(开油孔,内表面开油沟以送油)。 优点:结构简单。 缺点:1)磨损后,间隙无法调整;2)轴颈只能从一端装入,对中间轴颈的轴无法安装。 2.1.2剖分式径向滑动轴承 它是由轴承盖、轴承座、剖分轴瓦和联接螺栓等所组成。轴承中直接支承轴颈的零件是轴瓦。为了安装时容易对心,在轴承盖与轴承座的中分面上做出阶梯形的梯口。轴承盖应当适度压紧轴瓦,使轴瓦不能在轴承孔中转动。轴承盖上制有螺纹孔,以便安装油杯或油管。

当载荷垂直向下或略有偏斜时,轴承的中分面常为水平方向。若载荷方向有较大偏斜时,则轴承的中分面也斜着布置(通常倾斜45°,使中分平面垂直于或接近垂直于载荷)。 2.2推力滑动轴承 轴上的轴向力应采用推力轴承来承受。止推面可以利用轴的端面,也可在轴的中段做出凸肩或装上推力圆盘。后面将论述两平行平面之间是不能形成动压油膜的,因此须沿轴承止推面按若干块扇形面积开出楔形。 实心式空心式 单环式多环式

滑动轴承设计1

§13—5 液体动力润滑径向滑动轴承的设计计算一、动压油膜和液体摩擦状态的建立过程 流体动力润滑的工作过程:起动、不稳定运转、稳定运转三个阶段 起始时n=0,轴颈与轴承孔在最下方位置接触 1、起动时,由于速度低,轴颈与孔壁金属直接接触,在摩擦力作用下,轴颈沿孔内壁向右上方爬开。 2、不稳定运转阶段,随转速上升,进入油楔腔内油逐渐增多,形成压力油膜,把轴颈浮起推向左下方。(由图b→图c) 3、稳定运转阶段(图d):油压与外载F平衡时,轴颈部稳定在某一位置上运转。转速越高,轴颈中心稳定位置愈靠近轴孔中心。(但当两心重合时,油楔消失,失去承载能力)

图13-12向心轴承动压油膜形成过程 从上述分析可以得出动压轴承形成动压油膜的必要条件是 (1)相对运动两表面必须形成一个收敛楔形 (2)被油膜分开的两表面必须有一定的相对滑动速度v s,其运动方向必须使润滑从大口流进,小口流出。 (3)润滑油必须有一定的粘度,供油要充分。 v 越大,η 越大,油膜承载能力越高。 实际轴承的附加约束条件: 压力 pv值 速度 最小油膜厚度 温升 二、最小油膜厚度h min 1、几何关系

图13-13 径向滑动轴承的几何参数和油压分布 O—轴颈中心,O1—轴承中心,起始位置F与OO1重合,轴颈直径-d,轴承孔直径D ∴直径间隙:(13-6-1) 半径间隙:(13-6) 相对间隙:(13-7) 偏心距:(13-8) 偏心率:(13-9) 以OO1为极轴,任意截面处相对于极轴位置为φ处对应油膜厚度为h, (13-10)

h的推导:在中,根据余弦定律可得 (13-11)略去高阶微量,再引入半径间隙,并两端开方得 (13-12) 三.流体动力润滑基本方程(雷诺方程) 流体动力润滑基本方程(雷诺方程)是根据粘性流体动力学基本方程出发,作了一些假设条件后简化而得的。 假设条件是: 1)忽略压力对润滑油粘度的影响;2)流体为粘性流体;3)流体不可压缩,并作层流;4)流体膜中压力沿膜厚方向是不变的; 2)略去惯性力和重力的影响。 可以得出: ∴(13-13)一维雷诺流体动力润滑方程 上式对x取偏导数可得 (13-14) 若再考虑润滑油沿Z方向的流动,则

第十二章滑动轴承问答题

问答题 1.问:滑动轴承的主要失效形式有哪些? 答:磨粒磨损、刮伤、胶合、疲劳剥落和腐蚀等。 2.问:什么是轴承材料? 答:轴瓦和轴承衬的材料统称为轴承材料。 3.问:针对滑动轴承的主要失效形式,轴承材料的性能应着重满足哪些要求? 答:良好的减摩性、耐磨性和抗咬粘性,良好的摩擦顺应性、嵌入性和磨合性,足够的强度和抗腐蚀能力,良好的导热性、工艺性、经济性等。 4.问:常用的轴承材料有哪几类? 答:常用的轴承材料可分为三大类:1)金属材料,如轴承合金、铜合金、铝基合金和铸铁等;2)多孔质金属材料;3)非金属材料,如工程塑料、碳-石墨等。 5.问:滑动轴承设计包括哪些主要内容? 答:1)决定轴承的结构型式;2)选择轴瓦和轴承衬的材料;3)决定轴承结构参数;4)选择润滑剂和润滑方法;5)计算轴承工作能力。 6.问:一般轴承的宽径比在什么范围内? 答:一般轴承的宽径比B/d在0.3~1.5范围内。 7.问:滑动轴承上开设油沟应注意哪些问题? 答:油沟用来输送和分布润滑油。油沟的形状和位置影响轴承中油膜压力分布情况。油沟不应开在油膜承载区内,否则会降低油膜的承载能力。轴向油沟应比轴承宽度稍短,以免油从油沟端部大量流失。 8.问:选择动压润滑轴承用润滑油的粘度时,应考虑哪些因素? 答:应考虑轴承压力、滑动速度、摩擦表面状况、润滑方式等条件。可以通过计算和参考同类轴承的使用经验初步确定。 9.问:在不完全液体润滑滑动轴承设计中,限制p值的主要目的是什么? 答:主要目的是为了不产生过度磨损。 10.问:在不完全液体润滑滑动轴承设计中,限制pv值的主要目的是什么? 答:限制轴承的温升。 11.问:液体动压油膜形成的必要条件是什么? 答:润滑油有一定的粘度,粘度越大,承载能力也越大;有足够充分的供油量;有相当的相对滑动速度,在一定范围内,油膜承载力与滑动速度成正比关系;相对滑动面之间必须形成收敛性间隙(通称油楔)。 12.问:保证液体动力润滑的充分条件是什么? 答:应保证最小油膜厚度处的表面不平度高峰不直接接触。 13.问:试分析液体动力润滑轴承和不完全液体润滑轴承的区别,并讨论它们各自适用的场合。 答:不完全液体润滑轴承:表面间难以产生完全的承载油膜,轴承只能在混合摩擦润滑状态下工作。这种轴承一般用于工作可靠性要求不高的低速、重载或间歇工作场合。液体动力润滑轴承:表面间形成足够厚的承载油膜,轴承内摩擦为流体摩擦,摩擦系数达到最小值。

第七部分滑动轴承设计

第七部分滑动轴承设计 1.考研重点和难点 【重点】非液体摩擦滑动轴承的设计计算; 【难点】形成液体摩擦的条件; §滑动轴承的特点、类型及应用 滑动轴承的运动形式是以轴颈与轴瓦相对滑动为主要特征,也即摩擦性质为滑动摩擦。实践表明,由于滑动轴承的润滑条件不同,会出现不同的摩擦状态。轴承工作面的摩擦状态分为干摩擦状态、边界摩擦状态、混合摩擦状态和流体摩擦状态四类,如图所示。 两摩擦表面直接接触,相对滑动,又不加入任何润滑剂,称为干摩擦;两摩擦表面被流体(液体或气体)层完全隔开,摩擦性质仅取决于流体内部分子之间粘性阻力称为流体摩擦;两摩 图13-1 擦表面被吸附在表面的边界膜隔开,摩擦性质取决于边界膜和表面吸附性质的称为边界摩擦状态;实际上,干摩擦状态和边界摩擦状态很难精确区分,所以这两种摩擦状态也常常归并为边界摩擦状态。在实际应用中,轴承工作表面有时是边界摩擦和流体摩擦并存的混合状态,称为混合摩擦。边界摩擦和混合摩擦又长称为非液体摩擦。 所以,滑动轴承按其摩擦性质可以分为液体滑动摩擦轴承和非液体滑动摩擦轴承两类。 1)液体滑动摩擦轴承:由于在液体滑动轴承中,轴颈和轴承的工作表面被一层润滑油膜隔开,两零件之间没有直接接触,轴承的阻力只是润滑油分子之间的摩擦,所以摩擦系数很小,一般仅为~。这种轴承的寿命长、效率高,但是制造精度要求也高,并需要在一定的条件下才能实现液体摩擦。 2)非液体滑动摩擦轴承:非液体滑动摩擦轴承的轴颈与轴承工作表面之间虽有润滑油的存在,但在表面局部凸起部分仍发生金属的直接接触。因此摩擦系数较大,一般为~,容易磨损,但结构简单,对制造精度和工作条件的要求不高,故此在机械中得到广泛使用。 干摩擦的摩擦系数大,磨损严重,轴承工作寿命短。所以在滑动轴承中应力求避免。 所以,高速长期运行的轴承要求工作在液体摩擦状态下,一般工作条件下轴承则维持在边界摩擦或混合摩擦状态下工作。因此本章主要讨论非液体滑动摩擦轴承。

相关主题
文本预览
相关文档 最新文档