四川省成都七中2015-2016学年高二下学期入学考试英语试题 Word版含答案
- 格式:doc
- 大小:200.50 KB
- 文档页数:11
成都市五校联考高2014级第四学期期中试题英语(全卷满分:150分完成时间:120分钟)第I卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Who repaired the computer?A. Tom.B. Jack.C. Pam.2. What does Tom do probably?A. A barman.B. A shopkeeper.C. A waiter.3. When will the woman go back to work?A. At 1:00 pm.B. At 1:15 pm.C. At 1:30 pm.4. What's the woman's problem?A. She's always late.B. She wastes too much time.C. She spends too much money.5. What will the man do afterwards?A. Put away his clothes.B. Buy another closet.C. Throw his old clothes away.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听下面一段对话,回答第6和第7两个小题。
6. When does Lucy bite her nails?A. When she's sad.B. When she's excited.C. When she's nervous.7. What will the speakers do next?A. Watch a video.B. Play games.C. Visit a website.听下面一段对话,回答第8和第9两个小题。
2015-2016学年四川省成都七中高二下期中数学(文)试题一、选择题1.椭圆22125x y +=上一点P 到焦点1F 的距离等于6,则点P 到另一个焦点2F 的距离为( )A .10B .8C .4D .3 【答案】C【解析】试题分析:10221==+a PF PF ,所以42=PF ,故选C. 【考点】椭圆的定义2.以下各点,在曲线2210x xy y -++=上的点为( ) A .(2,3)- B .(3,10) C .(1,0) D .(2,2) 【答案】B【解析】试题分析:将各点代入只有01102103-32=+⨯+⨯,故选B. 【考点】曲线与方程3.双曲线222x y -=-的离心率为( )A .2 D .【答案】A【解析】试题分析:化简为双曲线的标准方程是12222=-x y ,为等轴双曲线,所以离心率2==ace ,故选A. 【考点】双曲线的性质4.焦点为(2,0)的抛物线的标准方程为( )A .216y x = B .28y x = C .24y x = D .22y x = 【答案】B【解析】试题分析:2=p ,并且焦点在x 轴,所以抛物线的标准方程是x y 82=,故选B.【考点】抛物线方程5.方程22121x y m m +=++表示双曲线,则m 的取值范围是( ) A .(,2)(1,)-∞--+∞ B .(2,)-+∞ C .(,1)-∞- D .(2,1)-- 【答案】D【解析】试题分析:方程若表示双曲线,则()()012<++m m ,解得12-<<-m ,故选D.【考点】双曲线方程6.抛物线212y x =上与焦点的距离等于9的点的坐标是( )A .或(6,-B .或(4,-C .(3,6)或(3,6)-D .或(9,- 【答案】A【解析】试题分析:设点的横坐标为0x ,那么93200=+=+x px ,解得60=x ,代入抛物线方程得到726122=⨯=y ,解得26±=y ,故选A. 【考点】抛物线的几何性质 7.短轴长等于8,离心率等于35的椭圆的标准方程为( ) A .22110064x y += B .22110064x y +=或22164100x y += C .2212516x y += D .2212516x y +=或2211625x y += 【答案】D【解析】试题分析:82=b ,4=b ,53=a c ,解得162=b ,252=a ,若焦点在x 轴,那么方程是1162522=+y x ,若焦点在y 轴,那么方程是1251622=+y x ,故选D. 【考点】椭圆的标准方程8..若(2,2)C --,0CA CB ⋅=,且直线CA 交x 轴于A ,直线CB 交y 轴于B ,则线段AB 中点M 的轨迹方程是( )A .20x y ++=B .20x y -+=C .20x y +-=D .20x y --= 【答案】A【解析】试题分析:设()y x M ,,那么()0,2x A ,()y B 20,,()2,22+=x ,()222+=y ,,而根据条件可得()()0222222=+++y x ,化简为:02=++y x ,故选A.【考点】1.轨迹法;2.向量数量积.9.已知集合{(,)|(,)0}C x y f x y ==,若对于任意11(,)x y C ∈,存在22(,)x y C ∈,使12120x x y y +=成立,则称集合C 是“好集合”. 给出下列4个集合:221{(,)|9}C x y x y =+=,222{(,)|9}C x y x y =-=,223{(,)|29}C x y x y =+=,24{(,)|9}C x y x y =+=,其中为“好集合”的个数为( )A .1B .2C .3D .4 【答案】C【解析】试题分析:将问题转化为设()11,y x A ,()22,y x B ,满足条件02121=+y y x x ,即转化为对曲线C 上的任一点A,存在点B,满足OB OA ⊥,则称集合C 是“好集合”,1C 表示圆,满足条件,2C 表示等轴双曲线,渐近线互相垂直,那么对于曲线上的任一点A,都不会存在点B,满足OB OA ⊥,3C 是椭圆,对于椭圆上的任一点A,总存在点B,满足OB OA ⊥,4C 是开口向下的抛物线,同样满足条件,故满足条件的有431,,C C C ,故选C.【考点】1.曲线与方程;2.新定义.【思路点睛】主要考察了曲线与方程,属于基础题型,这类新定义问题,是我们一部分学生的难点,满足条件02121=+y y x x ,即转化为对曲线C 上的任一点A,存在点B,满足OB OA ⊥,则称集合C 是“好集合”,明白题意后,我们只需画出方程的曲线,直接判定即可,所以对于新定义的问题,认真审题是关键.10.设不等式221x y +≤表示的平面区域为D ,在区域D 内随机取一个点,则||||1x y +≥的概率是( )A .1ππ- B .2π C .1πD .2ππ-【答案】D【解析】试题分析:如图,区域D 表示单位圆的圆形区域,面积是π,满足条件的||||1x y +≥表示中间正方形外部区域,面积是2-π,所以根据几何概型的面积比值ππ2-=P ,故选D. 【考点】几何概型11.若直线10x y +-=与抛物线22y x =交于,A B 两点,则点(1,0)M 到,A B 两点的距离之积为( )A...4 D .2 【答案】D【解析】试题分析:⎩⎨⎧==-+2201x y y x 联立方程得到:0122=-+x x ,解得11-=x 或212=x ,那么设()21,-A ,⎪⎭⎫⎝⎛21,21B ,根据两点间距离()()()22201122=-+--=MA ,2221021122=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=MB ,那么2=MB MA ,故选D.【考点】直线与抛物线相交的基本问题【方法点睛】本题主要考察了直线与抛物线相交的问题,属于基础题型,当涉及直线与圆锥曲线相交时,如果不涉及参数时,可以直接选择求交点,然后代入两点间的距离公式,()()221221y y x x AB -+-=,如果含有参数,经常选择设而不求的方法,直线方程与圆锥曲线方程联立,根据韦达定理,计算根与系数的关系21x x +和21x x ,代入所需要的一些式子.12. 已知椭圆2212x y +=,过右焦点F 作一条与x 轴不垂直的直线交椭圆于,A B 两点,线段AB 的中垂线分别交直线2x =-和AB 于,P C ,则||||PC AB 的取值范围是( ) A .[2,)+∞ B .[1,)+∞ C .1[,5)2 D .3[,)2+∞ 【答案】A【解析】试题分析:有直线AB 与x 轴不垂直,设直线方程为:()1-=x k y ,()11,y x A ,()22,y x B ,将直线方程代入椭圆方程可得,()()0124212222=-+-+k x k x k ,则2221214k k x x +=+,()22212112k k x x +-=,则⎪⎪⎭⎫ ⎝⎛+-+22221,212k k k k C ,()()222122122112241kk x x x x k AB ++=-+⋅+=,若0=k ,则AB 的垂直平分线为y 轴,与左准线平行,不合题意,若0≠k ,那么直线⎪⎪⎭⎫⎝⎛+--=++222212121k k x k k k y ,()⎪⎪⎭⎫ ⎝⎛++-222152,2k k k P ,()()222221113211k k k k x x k PC P C +++=-⋅+=,42442422231622*********k k k k k k k kk k ABPC +++=+++=++=,由()42431kk k k f ++=,令2k t =, ()()03122>++=t t t t t g ,()()()()22231t t t t t g ++-=',令()0='t g ,可得1=t ,当1>t 时,()0>'t g ,()t g 单调递增,当10<<t 时,()0<'t g ,()t g 单调递减,当1=t 即1±=k 时,()t g 取得极小值,也为最小值2,()2≥k f ,所以22622=+≥ABPC ,故选A.【考点】1.直线与椭圆的位置关系;2.导数与最值.【方法点睛】本题考查了直线与椭圆的位置关系以及利用导数求函数的最值,换元等综合问题的考察,属于压轴题,当以选择题的形式考察圆锥曲线时,有些侧重性质的考察,计算量会少点,而本题计算量则比较大,本题入手同样是设直线,得到弦长公式,以及韦达定理,同时根据交点得到两点间的距离,将ABPC 表示为k 的函数,再通过换元化简,根据导数求函数的最值.二、填空题13.点M 的极坐标5(4,)6π化成直角坐标的结果是 . 【答案】(-【解析】试题分析:2365cos 4cos -=⨯==πθρx ,265sin 4sin =⨯==πθρy ,故填:(-.【考点】极坐标与直角坐标的互化 14.方程sin cos 1sin 2x y θθθ=+⎧⎨=+⎩(θ为参数)所表示曲线的准线方程是 .【答案】14y =-【解析】试题分析:()y x =+=+=θθθ2sin 1cos sin 22,所以曲线方程是y x =2,[]2,2-∈x ,那么准线方程是41-=y .【考点】参数方程与普通方程的互化15.已知圆锥曲线221x ay +=的一个焦点坐标为F ,则该圆锥曲线的离心率为 .【解析】试题分析:当0>a 且1≠a 时,曲线为椭圆,并且焦点在x 轴,标准方程为:1122=+ay x ,那么aa 41-1=,解得5=a ,那么离心率552=e ,当0<a 时,曲线为焦点在y 轴的双曲线,表示方程为:11--22=ay x ,那么a a 41-1-=,解得3-=a ,那么离心率332=e ,故填:552=e 或332=e . 【考点】1.圆锥曲线方程;2.圆锥曲线的性质.【易错点睛】考察了圆锥曲线的性质,属于基础题型,当出现曲线方程时,会误认为其是椭圆方程,这样就会出现丢解的情况,条件出现焦点坐标F ,表示焦点落在x 轴,方程里的a 可以表示正数,也可以表示负数,引导着我们对a 进行分情况讨论,得到结果.16.已知椭圆22:14x C y +=,过点(0,4)D 的直线l 与椭圆C 交于不同两点,M N (M 在,D N 之间),有以下四个结论:①若''2x x y y ⎧=⎨=⎩,椭圆C 变成曲线E ,则曲线E 的面积为4π;②若A 是椭圆C 的右顶点,且MAN ∠的角平分线是x 轴,则直线l 的斜率为2-;③若以MN 为直径的圆过原点O ,则直线l的斜率为±;④若DN DM λ= ,则λ的取值范围是513λ<≤.其中正确的序号是 . 【答案】①④【解析】试题分析:①根据点的坐标变换,代入椭圆方程12422=⎪⎭⎫⎝⎛'+'y x ,得到422='+'y x ,为圆的方程,半径为2,那么面积就是π4=S ,正确,②根据椭圆关于x 轴对称,若角平分线是x 轴,那么N M ,关于x 轴对称,直线斜率不存在,显然错误;③设直线方程4+=kx y ,与椭圆方程联立,得到()()06032414442222=+++⇔=++kx x k kx x ,2214132k k x x +-=+,2214160kx x +=,()()()16444212122121+++=++=x x k x x k kx kx y y ,根据条件,当过原点时,满足02121=+y y x x ,代入根与系数的关系,得到19±=k ,故不正确;④根据③0>∆得到4152>k ,又根据条件可得⎪⎪⎪⎩⎪⎪⎪⎨⎧>=+=+-=+14160413212221221λλx x k x x k k x x ,代入整理为()()⎪⎭⎫⎝⎛+=+=+4115256411525612222k kk λλ,整理为()1564142<+<λλ,解得3553<<λ,又1>λ,所以351<<λ,当斜率不存在时,此时35=λ,故351≤<λ故填:①④. 【考点】1.命题;2.圆锥曲线的综合问题.【易错点睛】主要考察了圆锥曲线的命题问题,属于中档题型,比较好判断前三个命题,而对于第四个命题考察了直线与圆锥曲线的位置关系问题,设直线方程与椭圆方程联立,根据韦达定理,消参后得到关于λ的不等式,计算量比较大,容易出错在忘了当斜率不存在时的情况,导致错误,所以在有限的时间判断此题时也可考虑两个临界情况,一是相切时,1=λ,因为有两个交点,所以1>λ,二是斜率不存在时,此时35=λ,能取到,这样就比较好选择此问.三、解答题17.甲、乙两人各掷一枚骰子,试解答下列各问: (1)列举所有不同的基本事件;(2)求事件“向上的点数之差为3”的概率; (3)求事件“向上的点数之积为6”的概率.【答案】(1)详见解析;(2)61;(3)91. 【解析】试题分析:(1)每掷一个骰子有6种不同的数字,两个骰子就有3666=⨯种不同的情况组合,以()y x ,的形式列举所有的情况;(2)求3=-y x 所包含的基本事件的个数,并求其概率;(3)求6=xy 所包含的基本事件的个数,并求其概率. 试题解析:(1)共有36个不同的基本事件,列举如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).(2)组成事件“向上的点数之差为3”的基本事件有(1,4),(2,5),(3,6).(6,3),(5,2),(4,1)共6种.∴向上的点数之差为3的概率为61366=. (3)组成事件“向上的点数之积为6”的基本事件有(2,3),(3,2),(1,6),(6,1)共4种. ∴向上的点数之积为6的概率为41369=. 【考点】1.列举法求基本事件;2.古典概型.18.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为,一个焦点的坐标为(.(1)求双曲线的方程;(2)若斜率为2的直线l 交双曲线C 交于,A B 两点,且||4AB =,求直线l 的方程.【答案】(1)12322=-y x ;(2)23y x =+或23y x =-. 【解析】试题分析:(1)根据待定系数法求双曲线方程,知道322=a ,5=c ;(2)设直线方程m x y +=2,与双曲线方程联立,得到韦达定理,根据弦长公式2121x x k AB -+=,求出直线方程.试题解析:(1)由2a =a =c = ∴2222b c a =-=,∴双曲线C 的方程为22132x y -=. (2)设直线l 的方程为2y x m =+,1122(,),(,)A x y B x y ,由222132y x m x y =+⎧⎪⎨-=⎪⎩,得2210123(2)0x mx m +++=,∴224(10)0m ∆=->,得||m∴弦长||4AB ==,解得m = ∴直线l的方程为2y x =+或2y x = 【考点】1.双曲线的定义;2.弦长公式.【方法点睛】主要考察了双曲线的基本问题,属于基础题型,尤其对于第二问,根据弦长公式求直线方程时,设直线方程,根据弦长公式2121x x k AB -+=()21221241x x x x k -++=,或是21211y y kAB -+=,这样根据直线方程与圆锥曲线方程联立,可以求参数. 19.已知P 为抛物线26y x =上一点,点P 到直线:34260l x y -+=的距离为1d . (1)求1d 的最小值,并求此时点P 的坐标;(2)若点P 到抛物线的准线的距离为2d ,求12d d +的最小值. 【答案】(1)当8(,4)3P 时,1min () 3.6d =;(2)12min () 6.1d d +=.【解析】试题分析:(1)表示点P 到直线l 的距离,表示为坐标的函数,求函数的最小值,以及点P 的坐标,(2)将点P 到焦点的距离转化为点P 到准线的距离,根据图像分析,21d d +的最小值就是点F 到直线的距离.试题解析:(1)设20(,)6y P y ,则2002101|426|12|(4)36|510y y d y -+==-+,当04y =时,1min() 3.6d =,此时200863y x ==, ∴当8(,4)3P 时,1min () 3.6d =.(2)设抛物线的焦点为F ,则3(,0)2F ,且2||d PF =, ∴121||d d d PF +=+,它的最小值为点F 到直线l 的距离9|26|2 6.15+=.∴12min () 6.1d d +=.【考点】抛物线的几何性质【方法点睛】主要考察了抛物线内的距离的最值,属于基础题型,当涉及直线上的点到抛物线px y 22=距离的最小值问题,法一,设点的坐标,代入点到直线的距离,转化为关于坐标的函数,根据函数特点求最值,法二,设与已知直线平行的直线,当直线与抛物线相切时,这时切点到直线的距离最小,所以可以令直线方程与抛物线方程联立,令0=∆,求出参数,即切线方程,再求切点;若是到py x 22=的距离的最小值,可以写成221x py =,设切点坐标,利用切点处的导数就是在这点处的切线的斜率,求切点坐标,对于第二问的最值问题,可以根据抛物线的几何意义转化,将到抛物线准线的距离转化为到焦点的距离.20.在一个盒子中装有6枚圆珠笔,其中4枚一等品,2枚二等品,从中依次抽取2枚,求下列事件的概率. (1)恰有一枚一等品; (2)有二等品. 【答案】(1)158;(2)53. 【解析】试题分析:法一:先将圆珠笔编号,抽取两枚,用()y x ,表示抽取的编号,(1)恰有一枚一等品,表示一枚一等品,一枚二等品,通过列举法求其基本事件的个数,最后除以总的基本事件的个数,(2)有二等品,表示有一个二等品或有两个二等品,也同样列举事件所表示的基本事件的个数,法二:也可用组合数表示以上事件包含的基本事件的个数.试题解析:解法一:把每枚圆珠笔上号码,一等品分别记作,,,A B C D ,二等品分别记作,E F .依次不放回从盒子中取出2枚圆珠笔,得到的两个标记分别为x 和y ,则(,)x y 表示一次抽取的结果,即基本事件. 由于是随机抽取,所以抽取到任何事件的概率相等. 用M 表示“抽到的2枚圆珠笔中有二等品”, 1M 表示“仅第一次抽取的是二等品”,2M 表示“仅第二次抽取的是二等品”, 3M 表示“两次抽取的都是二等品”. 1M 和2M 中的基本事件个数都为8,3M 中的基本事件为2,全部基本事件的总数为30. (1)由于1M 和2M 是互斥事件,记12N M M = , ∴恰有一枚一等品的概率12888()()()303015P N P A P A =+=+=. (2)由于1M ,2M 和3M 是互斥事件,且123M M M M = , ∴1238823()()()()3030305P M P M P M P M =++=++=. 解法二:(1)恰有一枚一等品的概率1142126815C C P C ==. (2)有二等品的概率11242222635C C C P C +==, 或24226231155C P C =-=-=. 【考点】古典概型21.已知抛物线C 的顶点在坐标原点O ,其图像关于y 轴对称且经过点(2,1)M . (1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦,MA MB ,设,M AM B所在直线的斜率分别为12,k k ,当221-=+k k 时,试证明直线AB 的斜率为定值,并求出该定值. 【答案】(1)y x 42=;(2)348=S ;(2)3=k ,证明详见解析.【解析】试题分析:(1)根据对称轴和点的位置,设抛物线方程为)0(22>=p py x ,代入点M 的坐标,得到抛物线方程;(2)设(,),(,)p p Q Q P x y Q x y ,根据OQ OP =,可得到P 与Q 关于x 轴对称,这样得到点的横坐标和纵坐标的关系,代入抛物线方程后,得到点的坐标,并计算面积;(3)设1122(,),(,)A x y B x y ,2114x y =,2224x y =,用坐标表示221-=+k k ,再表示直线AB 的斜率,得到定值. 试题解析:(1)设抛物线C 的方程为22(0)x py p =>, 由点(2,1)M 在抛物线C 上,得42p =,则2p =.∴抛物线C 的方程为24x y =.(2)设该等边三角形OPQ 的顶点,P Q 在抛物线上,且(,),(,)p p Q Q P x y Q x y , 则24p p x y =,24Q Q x y =,由||||OP OQ =,得2222p p Q Q x y x y +=+,即()(4)0p Q p Q y y y y -++=. 又0,0p Q y y >>,则p Q y y =,||||p Q x x =,即线段PQ 关于y 轴对称. ∴030poy ∠=,p p y =,代入24p p x y =,得p x =∴该等边三角形边长为POQ S ∆=(3)设1122(,),(,)A x y B x y ,则2114x y =,2224x y =,∴22121212121212111111144(22)2222216x x y y k k x x x x x x ----+=⋅=⋅=+++=-----. ∴1212x x +=-,又22212112212111144()34ABx xy y k x x x x x x --===+=---. 【考点】1.抛物线方程和几何性质;2.直线与抛物线的位置关系. 22.已知椭圆C的一个焦点为,且经过点1(2P . (1)求椭圆C 的标准方程;(2)已知(1,0)A ,直线l 与椭圆C 交于,M N 两点,且AM AN ⊥; (ⅰ)若||||AM AN =,求直线l 的方程; (ⅱ)若AH MN ⊥于H ,求点H 的轨迹方程.【答案】(1)1422=+x y ;(2)0y +=0y -=,或35x =-;(ⅱ)22116()(1)525x y x -+=≠. 【解析】试题分析:(1)根据焦点的位置设出椭圆方程,并且222c b a +=,然后代入点的坐标,解出2a 和2b ;(2)(ⅰ)当直线l 垂直于x 轴时,与椭圆交于两点N M ,;根据等腰直角三角形的斜边的中线是斜边的一半,得到直线方程,当直线l 不垂直于x 轴时,再就是设直线与椭圆方程联立,得到韦达定理,根据⊥,0=⋅,和斜率的中线于斜边垂直,解得直线方程;(ⅱ)由上一问可得直线是过定点⎪⎭⎫⎝⎛053-,的直线,根据数形结合可得点H 的轨迹就是以AQ 为直径的圆,但不含A 点,因为直角三角形斜边的中线等于斜边的一半.试题解析:(1)设椭圆C 为:22221(0)y x a b a b+=>>,∵椭圆C过点1(2P,且一个焦点为,∴222233114a b a b ⎧=+⎪⎨+=⎪⎩,解得2241a b ⎧=⎨=⎩. ∴椭圆C 的标准方程为2214y x +=. (2)(Ⅰ)当l x ⊥轴时,设:l x m =,代入椭圆得y =±,∵||2(1)MN m ==-,解得1m =(舍去)或35m =-, ∴直线l 方程为35x =-.当l 与x 轴不垂直时,设直线l 的方程为y kx m =+.由2214y kx m y x =+⎧⎪⎨+=⎪⎩,得222(4)240k x kmx m +++-=.222244(4)(4)0k m k m ∆=-+->,得224k m +>.设1122(,),(,)M x y N x y ,线段MN 的中点为00(,)Q x y .则12224km x x k +=-+,212244m x x k -=+,所以024km x k =-+,00244my kx m k =+=+, 由||||AM AN =,得AQ MN ⊥,则1AQ k k ⋅=-,化简得234km k =+().由AM AN ⊥,得1212(1)(1)0AM AN x x y y ⋅=--+=,∴1212(1)(1)()()0x x kx m kx m --+++=, 化简得221212(1)(1)()10k x x km x x m ++-+++=.∴22222(1)(4)2(1)1044k m km km m k k+---++=++, 化简得225230m km k +-=,解得m k =-或35m k =. 当m k =-时,()式不成立.当35m k =时,代入()式,得25k =,k =∴直线l 的方程为y =+或y =-综上所述,直线l 0y +=0y -=,或35x =-. (Ⅱ)当直线l 与x 轴不垂直时,由(Ⅰ)知,AM AN ⊥时,m k =-或35m k =.当m k =-时,直线l 为(1)y k x =-过点(1,0)A ,矛盾,故舍去.当35m k =时,直线l 为3()5y k x =+,且过定点3(,0)5Q -. 当l x ⊥轴时,直线l 的方程为35x =-,也过定点3(,0)5Q -.∴点H 的轨迹就是以AQ 为直径的圆,但不含A 点,∴点H 的轨迹方程为22116()(1)525x y x -+=≠. 【考点】1.椭圆方程;2.直线与椭圆的位置关系;3.轨迹法.。
第一卷(选择题, 共90分)第一部分英语知识运用(共两节, 满分40分)第一节单项填空(共10小题;每小题1分, 满分10分)从A, B, C, D四个选项中, 选出可以填入空白处的最佳选项, 并在答题卡上将该项涂黑。
1.In recent years _____air pollution is becoming _____ concern for many cities in China.A. the; /B. a; /C. /; /D. /; a2.The scenery in the northwest, with its rolling mountains and grassland, is quite different from _____ of the capital city, Chengdu.A. thatB. oneC. the oneD. it3. Cheng Daoming, the famous Chinese actor played the main part in the film “Coming Home”, and his acting skills always _____ the expectation of his fans.A. put up withB. end up withC. live up toD. add up to4.This is the first time I _____ to Chengdu and I am truly impressed by the life style of people here.A. comeB. am comingC. have comeD. had come5. They reached the train station, _____, only _____ that the train had just left.A. exhaustedly; learnedB. exhausted; to learnC. exhausting; learningD. exhaustingly; to learn6.It‟s impossible to live without failure _____ you live so carefully that you might as well not have lived.A. unlessB. untilC. thoughD. because7. How close parents are to their children _____ an influence on the character of the child.A have B. has C. having D. to have8. Despite the fact that his scores were good, they were hardly as excellent as a student with his intelligence _____.A. achievedB. had achievedC. would achieveD. should have achieved9. You will be paid well to write an article recording a situation _____ you find yourself extremely embarrassed because of different culture.A. thatB. whichC. whatD. where10. —Do you think French team has got a chance to win in this year‟s World Cup?—_____. It has fallen quite behind in recent years, I think.A.Of courseB. It dependsC. Don‟t mention itD. By no means第二节完形填空 (共20小题;每题1.5分, 满分30分)阅读下面短文, 掌握其大意, 然后从11—30各题所给的四个选项(A、B、C、D)中, 选出最佳答案。
双流中学2015-2016学年度高二(上)入学试题英语本试卷分选择题和非选择题两部分。
第I卷(选择题)1至8页,第II卷(非选择题)第9至10页,共10页;满分150分,考试时间120分钟。
注意事项:1. 答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2. 答选择题时,务必使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3. 答非选择题时,务必使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上。
4. 所有题目必须在答题卡上作答,在试卷上答题无效。
5. 考试结束后,只将答题卡交回。
第I卷(100分)第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5个小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What was the original price of the T-shirt?A. $ 14.B. $ 28.C. $ 40.2. What will Jessica do on the weekend?A. Work on her paper.B. Make some plans.C. Go shopping.3. What has the man decided to do on Saturdays?A. To meet a friend.B. To visit an exhibitionC. To attend a wedding.4. Where are the two speakers?A. In a classroom.B. At a hotel.C. In a store.5. When does the bank close on Saturday?A. At 9:00 pm.B. At 5:00 pmC. At 4:00 pm.第二节(共15个小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
七中高2016届高三“二诊”模拟考试英语试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷第一部分听力(共两节,满分30分)第一节 (共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What is the woman planning to do this summer?A. Travel.B. Work in Europe.C. Attend a summer camp.2. Which does the man probably prefer?A. Serious movies.B. Funny movies.C. Horrible movies.3. What does the woman need?A. Some meat.B. Some candies.C. Some vegetables.4. Where are the speakers?A. At home.B. In a restaurant.C. At a movie theater.5. What does the man want most?A. To meet the woman’s brother.B. To watch a football game.C. To learn something new.第二节 (共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.椭圆22125x y +=上一点P 到焦点1F 的距离等于6,则点P 到另一个焦点2F 的距离为( )A .10B .8C .4D .3 【答案】C 【解析】试题分析:10221==+a PF PF ,所以42=PF ,故选C. 考点:椭圆的定义2.以下各点,在曲线2210x xy y -++=上的点为( ) A .(2,3)- B .(3,10) C .(1,0) D .(2,2) 【答案】B考点:曲线与方程3.双曲线222x y -=-的离心率为( )A B C .2 D .【答案】A 【解析】试题分析:化简为双曲线的标准方程是12222=-x y ,为等轴双曲线,所以离心率2==ac e ,故选A. 考点:双曲线的性质4.焦点为(2,0)的抛物线的标准方程为( )A .216y x =B .28y x =C .24y x =D .22y x = 【答案】B 【解析】试题分析:2=p ,并且焦点在x 轴,所以抛物线的标准方程是x y 82=,故选B. 考点:抛物线方程5.方程22121x y m m +=++表示双曲线,则m 的取值范围是( )A .(,2)(1,)-∞--+∞B .(2,)-+∞C .(,1)-∞-D .(2,1)--【答案】D 【解析】试题分析:方程若表示双曲线,则()()012<++m m ,解得12-<<-m ,故选D. 考点:双曲线方程6.抛物线212y x =上与焦点的距离等于9的点的坐标是( )A .或(6,-B .(4,或(4,-C .(3,6)或(3,6)-D .或(9,- 【答案】A考点:抛物线的几何性质 7.短轴长等于8,离心率等于35的椭圆的标准方程为( ) A .22110064x y += B .22110064x y +=或22164100x y +=C .2212516x y +=D .2212516x y +=或2211625x y +=【答案】D 【解析】试题分析:82=b ,4=b ,53=a c ,解得162=b ,252=a ,若焦点在x 轴,那么方程是1162522=+y x ,若焦点在y 轴,那么方程是1251622=+y x ,故选D.考点:椭圆的标准方程8..若(2,2)C --,0CA CB ∙=,且直线CA 交x 轴于A ,直线CB 交y 轴于B ,则线段AB 中点M 的轨迹方程是( )A .20x y ++=B .20x y -+=C .20x y +-=D .20x y --= 【答案】A考点:1.轨迹法;2.向量数量积.9.已知集合{(,)|(,)0}C x y f x y ==,若对于任意11(,)x y C ∈,存在22(,)x y C ∈,使12120x x y y +=成立,则称集合C 是“好集合”. 给出下列4个集合:221{(,)|9}C x y x y =+=,222{(,)|9}C x y x y =-=,223{(,)|29}C x y x y =+=,24{(,)|9}C x y x y =+=,其中为“好集合”的个数为( )A .1B .2C .3D .4 【答案】C 【解析】试题分析:将问题转化为设()11,y x A ,()22,y x B ,满足条件02121=+y y x x ,即转化为对曲线C 上的任一点A,存在点B,满足OB OA ⊥,则称集合C 是“好集合”,1C 表示圆,满足条件,2C 表示等轴双曲线,渐近线互相垂直,那么对于曲线上的任一点A,都不会存在点B,满足OB OA ⊥,3C 是椭圆,对于椭圆上的任一点A,总存在点B,满足OB OA ⊥,4C 是开口向下的抛物线,同样满足条件,故满足条件的有431,,C C C ,故选C.考点:1.曲线与方程;2.新定义.【思路点睛】主要考察了曲线与方程,属于基础题型,这类新定义问题,是我们一部分学生的难点,满足条件02121=+y y x x ,即转化为对曲线C 上的任一点A,存在点B,满足OB OA ⊥,则称集合C 是“好集合”,明白题意后,我们只需画出方程的曲线,直接判定即可,所以对于新定义的问题,认真审题是关键. 10.设不等式221x y +≤表示的平面区域为D ,在区域D 内随机取一个点,则||||1x y +≥的概率是( ) A .1ππ- B .2π C .1π D .2ππ- 【答案】D考点:几何概型11.若直线10x y +-=与抛物线22y x =交于,A B 两点,则点(1,0)M 到,A B 两点的距离之积为( )A .B .C .4D .2【答案】D考点:直线与抛物线相交的基本问题【方法点睛】本题主要考察了直线与抛物线相交的问题,属于基础题型,当涉及直线与圆锥曲线相交时,如果不涉及参数时,可以直接选择求交点,然后代入两点间的距离公式,()()221221y y x x AB -+-=,如果含有参数,经常选择设而不求的方法,直线方程与圆锥曲线方程联立,根据韦达定理,计算根与系数的关系21x x +和21x x ,代入所需要的一些式子.12. 已知椭圆2212x y +=,过右焦点F 作一条与x 轴不垂直的直线交椭圆于,A B 两点,线段AB 的中垂线分别交直线2x =-和AB 于,P C ,则||||PC AB 的取值范围是( ) A .[2,)+∞ B .[1,)+∞ C .1[,5)2 D .3[,)2+∞ 【答案】A 【解析】试题分析:有直线AB 与x 轴不垂直,设直线方程为:()1-=x k y ,()11,y x A ,()22,y x B ,将直线方程代入椭圆方程可得,()()0124212222=-+-+k x k x k ,则2221214k k x x +=+,()22212112kk x x +-=,则⎪⎪⎭⎫ ⎝⎛+-+22221,212k kk k C ,()()222122122112241k k x x x x k AB ++=-+⋅+=,若0=k ,则AB 的垂直平分线为y 轴,与左准线平行,不合题意,若0≠k ,那么直线⎪⎪⎭⎫⎝⎛+--=++222212121k k x k k k y ,考点:1.直线与椭圆的位置关系;2.导数与最值.【方法点睛】本题考查了直线与椭圆的位置关系以及利用导数求函数的最值,换元等综合问题的考察,属于压轴题,当以选择题的形式考察圆锥曲线时,有些侧重性质的考察,计算量会少点,而本题计算量则比较大,本题入手同样是设直线,得到弦长公式,以及韦达定理,同时根据交点得到两点间的距离,将ABPC 表示为k 的函数,再通过换元化简,根据导数求函数的最值.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 点M 的极坐标5(4,)6π化成直角坐标的结果是 .【答案】(2)- 【解析】试题分析:2365cos 4cos -=⨯==πθρx ,265sin 4sin =⨯==πθρy ,故填:(2)-.考点:极坐标与直角坐标的互化 14.方程sin cos 1sin 2x y θθθ=+⎧⎨=+⎩(θ为参数)所表示曲线的准线方程是 .【答案】14y =- 【解析】试题分析:()y x =+=+=θθθ2sin 1cos sin 22,所以曲线方程是y x =2,[]2,2-∈x ,那么准线方程是41-=y . 考点:参数方程与普通方程的互化15.已知圆锥曲线221x ay +=的一个焦点坐标为F ,则该圆锥曲线的离心率为 .考点:1.圆锥曲线方程;2.圆锥曲线的性质.【易错点睛】考察了圆锥曲线的性质,属于基础题型,当出现曲线方程时,会误认为其是椭圆方程,这样就会出现丢解的情况,条件出现焦点坐标F ,表示焦点落在x 轴,方程里的a 可以表示正数,也可以表示负数,引导着我们对a 进行分情况讨论,得到结果.16.已知椭圆22:14x C y +=,过点(0,4)D 的直线l 与椭圆C 交于不同两点,M N (M 在,D N 之间),有以下四个结论:①若''2x x y y⎧=⎨=⎩,椭圆C 变成曲线E ,则曲线E 的面积为4π;②若A 是椭圆C 的右顶点,且MAN ∠的角平分线是x 轴,则直线l 的斜率为2-;③若以MN 为直径的圆过原点O ,则直线l 的斜率为±; ④若DN DM λ=,则λ的取值范围是513λ<≤. 其中正确的序号是 . 【答案】①④考点:1.命题;2.圆锥曲线的综合问题.【易错点睛】主要考察了圆锥曲线的命题问题,属于中档题型,比较好判断前三个命题,而对于第四个命题考察了直线与圆锥曲线的位置关系问题,设直线方程与椭圆方程联立,根据韦达定理,消参后得到关于λ的不等式,计算量比较大,容易出错在忘了当斜率不存在时的情况,导致错误,所以在有限的时间判断此题时也可考虑两个临界情况,一是相切时,1=λ,因为有两个交点,所以1>λ,二是斜率不存在时,此时35=λ,能取到,这样就比较好选择此问. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 甲、乙两人各掷一枚骰子,试解答下列各问: (1)列举所有不同的基本事件;(2)求事件“向上的点数之差为3”的概率; (3)求事件“向上的点数之积为6”的概率. 【答案】(1)详见解析;(2)61;(3)91.(2)组成事件“向上的点数之差为3”的基本事件有(1,4),(2,5),(3,6).(6,3),(5,2),(4,1)共6种.∴向上的点数之差为3的概率为61366=. (3)组成事件“向上的点数之积为6”的基本事件有(2,3),(3,2),(1,6),(6,1)共4种. ∴向上的点数之积为6的概率为41369=.考点:1.列举法求基本事件;2.古典概型.18.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为(.(1)求双曲线的方程;(2)若斜率为2的直线l 交双曲线C 交于,A B 两点,且||4AB =,求直线l 的方程.【答案】(1)12322=-y x ;(2)2y x =+或2y x =-考点:1.双曲线的定义;2.弦长公式.【方法点睛】主要考察了双曲线的基本问题,属于基础题型,尤其对于第二问,根据弦长公式求直线方程时,设直线方程,根据弦长公式2121x x k AB -+=()21221241x x x x k-++=,或是21211y y k AB -+=,这样根据直线方程与圆锥曲线方程联立,可以求参数. 19.已知P 为抛物线26y x =上一点,点P 到直线:34260l x y -+=的距离为1d .(1)求1d 的最小值,并求此时点P 的坐标;(2)若点P 到抛物线的准线的距离为2d ,求12d d +的最小值.【答案】(1)当8(,4)3P 时,1min () 3.6d =;(2)12min () 6.1d d +=.考点:抛物线的几何性质【方法点睛】主要考察了抛物线内的距离的最值,属于基础题型,当涉及直线上的点到抛物线px y 22=距离的最小值问题,法一,设点的坐标,代入点到直线的距离,转化为关于坐标的函数,根据函数特点求最值,法二,设与已知直线平行的直线,当直线与抛物线相切时,这时切点到直线的距离最小,所以可以令直线方程与抛物线方程联立,令0=∆,求出参数,即切线方程,再求切点;若是到py x 22=的距离的最小值,可以写成221x py =,设切点坐标,利用切点处的导数就是在这点处的切线的斜率,求切点坐标,对于第二问的最值问题,可以根据抛物线的几何意义转化,将到抛物线准线的距离转化为到焦点的距离.20.在一个盒子中装有6枚圆珠笔,其中4枚一等品,2枚二等品,从中依次抽取2枚,求下列事件的概率.(1)恰有一枚一等品;(2)有二等品.【答案】(1)158;(2)53.(1)由于1M 和2M 是互斥事件,记12N M M =, ∴恰有一枚一等品的概率12888()()()303015P N P A P A =+=+=. (2)由于1M ,2M 和3M 是互斥事件,且123M M M M =, ∴1238823()()()()3030305P M P M P M P M =++=++=.解法二:(1)恰有一枚一等品的概率1142126815C C P C ==. (2)有二等品的概率11242222635C C C P C +==, 或24226231155C P C =-=-=. 考点:古典概型21.已知抛物线C 的顶点在坐标原点O ,其图像关于y 轴对称且经过点(2,1)M .(1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦,MA MB ,设,MA MB 所在直线的斜率分别为12,k k ,当221-=+k k 时,试证明直线AB 的斜率为定值,并求出该定值.【答案】(1)y x 42=;(2)348=S ;(2)3=k ,证明详见解析. (2)设该等边三角形OPQ 的顶点,P Q 在抛物线上,且(,),(,)p p Q Q P x y Q x y ,则24p p x y =,24Q Q x y =,由||||OP OQ =,得2222p p Q Q x y x y +=+,即()(4)0p Q p Q y y y y -++=.考点:1.抛物线方程和几何性质;2.直线与抛物线的位置关系.22.已知椭圆C 的一个焦点为,且经过点1(2P .(1)求椭圆C 的标准方程;(2)已知(1,0)A ,直线l 与椭圆C 交于,M N 两点,且AM AN ⊥;(ⅰ)若||||AM AN =,求直线l 的方程;(ⅱ)若AH MN ⊥于H ,求点H 的轨迹方程.【答案】(1)1422=+x y ;(2)0y +=0y -+=,或35x =-.;(ⅱ)22116()(1)525x y x -+=≠. 【解析】试题分析:(1)根据焦点的位置设出椭圆方程,并且222c b a +=,然后代入点的坐标,解出2a 和2b ;(2)(ⅰ)当直线l 垂直于x 轴时,与椭圆交于两点N M ,;根据等腰直角三角形的斜边的中线是斜边的一半,得到直线方程,当直线l 不垂直于x 轴时,再就是设直线与椭圆方程联立,得到韦达定理,根据⊥,0=⋅,和斜率的中线于斜边垂直,解得直线方程;(ⅱ)由上一问可得直线是过定点⎪⎭⎫ ⎝⎛053-,的直线,根据数形结合可得点H 的轨迹就是以AQ 为直径的圆,但不含A 点,因为直角三角形斜边的中线等于斜边的一半.设1122(,),(,)M x y N x y ,线段MN 的中点为00(,)Q x y . 则12224km x x k +=-+,212244m x x k -=+,所以024km x k =-+,00244m y kx m k=+=+, 由||||AM AN =,得AQ MN ⊥,则1AQ k k ∙=-,化简得234km k =+(*).由AM AN ⊥,得1212(1)(1)0AM AN x x y y ∙=--+=,∴1212(1)(1)()()0x x kx m kx m --+++=,考点:1.椭圆方程;2.直线与椭圆的位置关系;3.轨迹法.。
成都七中中美国际⾼中⼊学考试模拟试卷(英语)International High School Program2014 Entry ExamEnglish Paper SampleExam Duration:2 hoursExam Content:4 Parts-Listening,Reading,Grammar,and Writing Exam Full Mark: 150 PointsExam Instruction: Please answer all the questions in the exam paper and fill in the corresponding boxes on the answer sheet. Name (Chinese & Pin yin):Name (English):Date:Part 1. Listening (20 questions, 1.5 point each)Listening 1: Listen and circle the correct answer. 1). Why did the girl call home? A. She needs more clothes. B. She needs more money. C. She misses her mother.4). What word best describes Randy’s roommate? A. serious B. messy C. unreliable 2). What is the man’s hobby now? A. collecting stamps B. collecting baseball cards C. collecting comic books5). What does Mr. Fox have to do? A. fill out the registration card B. leave a deposit C. show a driver’s license 3). What kind of movie did the woman see? A. musical B. horror C. comedyListening 2: Listen and circle the best response.Listening 3.Listen and circle the correct answer.1.) The suitable tasks that an au pair may do in the house A. Cooking dinner B. Painting the house C. Taking care of childrenD. Mowing lawn2.) How much money should be given as pocket money? A. 14 to 20 pounds a week1). A. Isn’t that great? It fits perfectly. B. Oh, really? What seems to be the problem? 2). A. Yes, I know what you mean. B. Yes, he does. 3). A. You missed the flight. B. Terrible! Someone stole all my money. 4). A. The traffic is moving slowly. B. It’s not very expensive. 5). A. Yes, I’ll call one for you. B. Yes, of course you can. 6). A. Really? I’m not. B. So do I. 7). A. What book did you read? B. Yeah. It’s one of the best I’ve se en. 8). A. Yes, I go to concerts all the time. B. Not really. It bores me. 9). A. Yes, you can see a lot with the help of a guide. B. Yes, they’re good. I see them in souvenir shops. 10). A. Yes, ma’am. Which ones are yours? B. Yes, they’re right there at the front desk.B.15 to 20 pounds a weekC.15 to 20 pounds a monthD.50 to 60 pounds a month3.)An au pair must be a single girl agedA.Under 17B.Under 27C.More than 27D.Between 17 to 274.)The appropriate nationalities for an au pair.A.JapaneseB.TurkishC.RussiaD.ChineseBlank filling:5. An au pair is a single girl without any dependants who comes to UK to learn English ad to live asPart 2. Reading (20 Questions ,2 Points each)Passage 1Family stories are amazing to me. You hear of family members long ago and by hearing about their stories, you can find timeless wisdom that can apply to your own life.I’ll never forget the story my mom told me about Grandma. Grandma cooked for a crew of 24 farmhands so most of her days were taken up cooking breakfast, lunch, and dinner for a bunch of (⼀群) loud complaining men coming in from hunting or farming. She took care of five children as well so her house was a busy little place, but where you would find Grandma the most would be in front of her stove, stirring (搅拌) a pot of something.The kids would run in and she’d give them a hug and then she’d go back to stirring. The men would come in and clean up all the biscuits and bacon and then she’d start on the next meal, once again st anding and stirring at the stove. They’d tell her how wonderful her food was and then pour out their troubles to her as she listened and stirred.One time Ruth watched as the farmhands ate quickly and went back out to work, hearing all of them grumbling about their lives. Then one by one the children came in to tell Grandma their own worries. She would smile, give them some kind of advice, and keep stirring. Ruth watched sitting at the table and when everyone left she said,“ Mother. How can you just sit there and stir? Everyone tells you how bad their life is and you just smile and stir? Why don’t you just tell them that you’ve had enough and you can’t take anymore? Do something … Stop stirring!”Grandma looked up at Ruth and smiled … and kept stirring.“Ruth, don’t you know that the stirring is very important? You see, when I’m stirring I’m putting all my thoughts and dreams into that pot. As everyone comes in and tells me about their life I put the love and positive thoughts into my pot and stir. Then when they eat it they have been given a pot full o hope. If we have any kind of problems I envision (想象) a solution and put it in my pot and stir. My stirring is what keeps me focused on what is good in the world. So instead of worrying about all that is a round me I keep stirring knowing that all is well.”1. From the passage we know .A. women’s position was very low in those daysB. lots of people lived in the author’s familyC. the author’s grandma lived a very busy lifeD. women could not find jobs outside at that time2. The underlined phrase “grumbling about”in the passage means “”.A. talking aboutB. complaining aboutC. showing offD. commenting on3. Why did Ruth ask her mother those questions?A. She believed her mother was so great and helpful.B. She thought her mother treated the workers badly.C. She thought it was unfair for her mother to do so much work.D. She complained her mother was doing nothing but stir.4. Which of the following w ords can describe the author’s grandma?A. Patient.B. Determined.C. Independent.D. Generous.5. According to the passage, which of the following statements is true?A. Grandma always put her tiredness and troubles into the pot.B. Grandma was always worried about people’s troubles and problems.C. Grandma was unconcerned with other people’s complaint and troubles.D. Grandma was always keeping a positive attitude to anything good or bad. Passage 2Touring Toronto!Toronto is a popular city, attracting thousands of tourists from all over the world each year. It is the largest city in Canada, with a population of over 4 million, located on the north shore of Lake Ontario, the smallest of the great Lakes. It tends to be hot in the summer with frequent rain storms, and very cold in the winter, with temperatures well below freezing and plenty of snow. But there is always something to do or see, no matter when you visit the city. Listed here are three tours, showing just a few of the of the many things you can do while on holiday in “Hogtown”!.Tour #1: St. Lawrence MarketThe Market has been in continuous operation at this location since 1803. You can get there by taking the Church Street Bus, or the King street car. It's open Tuesday to Saturday, and is home to 55 market stalls selling everything from meats and fish to baked goods. It's also a great place to pick up a quick bite. On the lower level of the St. Lawrence market there are food stalls where you can choose from a wide variety of Italian, Greek and other ethnic dishes as well as regular North American food. The Market also features the St. Lawrence Farmer's Market with over 49 Ontario farmers every Saturday year round. Also, each Sunday an "Antique" market is held. You can sometimes find something very nice if you get there early.Tour #2: YorkvilleTake the subway and get off at Bay, and you are in Yorkville! Located in the heart of Toronto, Yorkville offers some of the best fashion shopping experiences in town. If famouslabels 1 make your heart race, this is the place to go, but make sure you have plenty of time to shop and lots of money in your wallet. Of course high fashion is not the only attraction here.Yorkville is home to fine restaurants and boutiques, as well as world class galleries to explore.Tour #3: The BeachesThe beaches are a relaxing place close to the city, just east of downtown. To get there take the Queen streetcar or the Woodbine Bus, both of which will drop you off one block from the beach. The beaches are a favorite place to roller blade, bike or just take a relaxing stroll along the boardwalk that extends along the lake. You can also browse the many boutiques and eateries along Queen Street East. In July, the area hosts the annual Beaches Jazz Festival.1 label: 商标n.Answer the following three questions after reading the article.1. Which tours could you take if you want to buy brand name goods? ____ ___2. Which tour should you take if you just want to relax? ___ ____3. Where can you buy fresh produce? _____ __Answer the following True / False questions4. The St. Lawrence Market has been in operation for over 200 years.5. You can find some nice antiques if you go to St. Lawrence Market early on Saturdays.6. Yorkville is located in the center of Toronto.7. You can have a quick meal at the lower level of St. Lawrence Market.8. You are not allowed to ride your bike on the boardwalk along "the beaches".Give the meaning of the following:9. "a quick bite" means (line 11) __________________________________10. "year round" means (line 15) __________________________________Passage 3What is it?The Rio de Janeiro carnival, held annually in the month of February, is a spectacular celebration of life that attracts millions of people onto the streets of the Brazilian city. The whole country stops to watch, either in the city itself or on the television. It is estimated that each year 700,000 visitors come to watch from all over the world.“Samba” schoolsThe music played throughout th e carnival procession is called the “samba”. Many participants belong to “samba” schools where they learn to dance and play the music which is so popular throughout Brazil. There are about 30 “samba” schools with thousands of members. They perform for four entire nights in a huge arena called the “Sambadrome”. The schools take part in an official competition and the best of them is awarded a prize. Each school is assessed on its costumes, the theme of its performance and the quality of the music. Some “samba” schools hold street parties and perform in their local areas because many people cannot afford to buy a ticket for the official competition.From year to year...Because it is such a huge event, planning for the carnival begins many months in advance. In fact, it is true to say that as soon as one carnival finishes, rehearsals and preparations for the next one begin. Much of this work is done in “Samba City”, which consists of enormous buildings where most of the equipment and costumes are prepared.The stars of the showEach school is led by a queen followed by hundreds of drummers and brightly decorated carnival vehicles. The Carnival Queens are the biggest stars and they are chosen from amongst the most beautiful women in each community. As well as beauty, the queen has to be very fit to lead her group of drummers on the slow procession through the streets of Rio.“Blocos” parades“Blocos” parades have become an important feature of Rio’s carnival in addition to the “samba” schools. These parades ar e less formal and include groups of musicians from the same neighborhood who just want to sing, dance and have a good time. Today, they number more than 100 and the groups increase each year. They all dress in costumes or T-shirts with special themes or logos. Before the show they gather in a square, then parade through sections of the city, before performing near to the beach. Some of them have a particular place such as a café where they play and dance to attract spectators. Questions 1-5: You can cite words from the passage (you may need to modify the words slightly to suit the question) or use your own words to answer each question.1) How often is the Rio carnival held?2) Apart from Brazil, where do the spectators come from?3) What is the “Sambadrome”?4) What are the essential qualities for a Carnival Queen? Give two details.5) Where are you likely to see the “blocos” perform? Give two details. Part 3. Grammar (40 Questions, 1 point each) Section 11. Where ________ the car?a. did you parkb. did you parkedc. parked youd. you parked2. I’d like to borrow this book. Has Anna read it ____?a. doneb. forc. justd. yet3. She’s really keen ___ skiing.a. onb. aboutc. ind. of4. Tim ____ a letter at the moment.a. writesb. writec. is writingd. are writing5. _____ she is quite right.a. I thinkingb. I am thinkingc. I thinkd. I thinks6. The video ______ for two hours.a. is playingb. playsc. have playedd. has been playing7. Emma packed her case ______.a. since last nightb. for two daysc. nowd. yesterday8. I felt terribly nervous. I’ve _________ about it all week.a. worriesb. worriedc. worryingd. worry9. If _____ my passport, I’ll be in trouble.a. l’ll loseb. I losedc. I losed. I would lose10. S omeone suggested _____ for a walk.a. goingb. goc. of goingd. to goSection 211. We met when we …… in France.a. studiedb. were studyingc. studyd. had studied12. Try …… be late.a. notb. not toc. to notd. to not to13. This is the first time I …… a sports car.a. drivenb. am drivingc. drived. have driven14. He tried to avoid …… my questions.a. answerb. to answerc. answeringd. answered15. H ave you ever considered …… live in another country?a. goingb. going toc. to go tod. go to16. The boy apologized …… saying rude words to teachers.a. tob. forc. ind. by17. The house …… in 1486.a. was builtb. is builtc. was buildingd. built18. My Dad …… smoke, but he has quit now.a. use tob. is used toc. was use tod. used to19. I am not sure what ……a. do they want?b. do they want.c. they want.d. want them.20 … he gets, … .a. The richer… the more friends he has.b. The richer… the more he has friend s.c. Richer…more friends he has .d. The richer… the more friends has he.Section 3Complete the text by choosing one of the choices, A, B or C.Michael works in a farm tool factory. He and five of his friends are very interested (Example: __0__) singing. So they have__21__ a singing group, which is called Happy Birds. They sing __22__ songs both in Chinese and in foreign languages. They sing very __23__. The other workers and people __24__ the villages around their town really like to hear them __25__. Now New Year's Day __26__ here soon. The Happy Birds have been asked to __27__ at different places. They'd __28__to go to all of them, __29_ one friend has too much work and __30__ may have to give up his holidays. The Happy Birds can't sing without him.Example:0. [A] in [B] on [C] at answer: [A]21. [A] built [B] taken [C] formed22. [A] many [B] much [C] lot23. [A] good [B] well [C] best24. [A] in [B] at [C] to25. [A] singing [B] sing [C] to sing26. [A] will be [B] has been [C] was27. [A] arrive [B] go [C] sing28. [A] love [B] want [C] plan29. [A] so [B] but [C] when30. [A] they [B] he [C] itSection 4Complete the text by choosing one of the choices, A, B or C.Nowadays running is a very popular way to keep fit and healthy. Even if you only run a short ___31___ once or twice a week, you ___32___ to make sure you are wearing good running shoes. ___33___ are a lot of different styles and brands of running shoes today. First of all, you need to decide how ___34___ money you want to ___35___ on your shoes. But even more important, you need to find a pair that fit well; this is crucial. You may find that you have to ___36___ different sizes fo r different brands. Women’s shoes are usually narrower ___37___ men’s, but there is no ___38___ why a woman can’t wear a man’s shoes. A good fit is important ___39___ shoes which fit poorly can lead to injury. Take your time - if you ___40___ a mistake when you buy your running shoes, your may suffer later.31. a) distance b) line c) length32. a) should b) must c) need33. a) It b) There c) This34. a) long b) much c) many35. a) spend b) buy c) pay36. a) ask b) try c) look37. a) from b) as c) than38. a) choice b) fact c) reason39. a) because b) rather c) so40. a) do b) make c) arePart 4 Writing (Total marks: 40)Imagine that you are writing a letter to a friend. You have just spent a week on holiday visiting your friend at their house in UK. You shouldThank them for a lovely holiday. Talk about some of the things you did while you were visiting them.Talk about what the best thing you did or saw wasInvite them to come visit you in the futurePay attention to the punctuation, conjunctions, and sentence structures.Write at least 150 words.Dear ……………………,…………………………………………………………………………………………...…………………………………………………………………………………………...…………………………………………………………………………………………...。
满分:100分 考试时间:40分钟一、选择题:每小题5分,共40分1.函数1y x=在点4x =处的导数是( ) A .18 B .18- C .116 D .116- 2.已知函数21()cos 4f x x x =+,'()f x 是函数()f x 的导函数,则'()f x 的图象大致是( )3.已知曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,设函数()(21)f x g x =-,则曲线()y f x =在点(1,(1))f 处的切线方程为( )A .21y x =+B .41y x =-C .21y x =-D .41y x =+4.函数()f x 的定义域为(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在(,)a b 内有极小值点( )A .1个B .2个C .3个D .4个5.已知函数()3cos 2sin 2f x x x x =++,'()4a f π=,'()f x 是()f x 的导函数,则过曲线3y x =上一点(,)P a b 的切线方程为( )A .320x y --=B .4310x y -+=C .320x y --=或3410x y -+=D .320x y --=或4310x y -+=7.已知()ln f x x =,217()(0)22g x x mx m =++<,直线l 与函数(),()f x g x 的图象都相切,且与()f x 的图象的切点为(1,(1))f ,则m 等于( )A .-1B .-3C .-4D .-28.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则'(1)(0)f f 的最小值为( )A .3B .52 C .2 D .32二、填空题(每题5分,满分20分,将答案填在答题纸上)9.已知曲线23ln 14x y x =-+的一条切线的斜率为12,则切点的横坐标为 .10.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 .11.小钟和小薛相约周末去爬龙泉山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在成都七中正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是 .(用数字作答)12.已知函数()f x 是定义在R 上的奇函数,(1)0f =,'()()0xf x f x ->(0)x >,则不等式2()0x f x >的解集是 .三、解答题 (每个小题分别20分.解答应写出文字说明、证明过程或演算步骤.)13.已知函数()1xa f x x e =-+(,a R e ∈为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值.14.已知函数22()ln ()f x x a x ax a R =-+∈.(1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 在区间(1,)+∞上是减函数,求实数a 的取值范围.成都七中高2017届数学周测(理科)答案1.D2.A3. B4.A5.C6. B7. D8. C9. 3 10. }0|{<a a 11. 145457212606016⨯⨯-⨯=⨯ 12. ),1()0,1(+∞- 13.[解] (1)由()1x a f x x e =-+,得'()1x a f x e=-. 又曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,得'(1)0f =,即10a e -=,解得a e =. (2) '()1x a f x e=-, ①当0a ≤时,'()0f x >,()f x 为(,)-∞+∞上的增函数,所以函数()f x 无极值.②当0a >时,令'()0f x =,得x e a =,即ln x a =.(,ln )x a ∈-∞,'()0f x <;(ln ,)x a ∈+∞,'()0f x >,所以()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为(ln )ln f a a =,无极大值.综上,当0a ≤时,函数()f x 无极值;当0a >时,()f x 在ln x a =处取得极小值ln a ,无极大值.∵0x >,∴1x =.当01x <<时,'()0f x >;当1x >时,'()0f x <.∴函数()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减.(2)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞, ∴22'2121(21)(1)()2a x ax ax ax f x a x a x x x -++-+-=-+==. ①当0a =时,'1()0f x x=>, ∴()f x 在区间(1,)+∞上为增函数,不合题意.②当0a >时,'()0f x ≤(0)x >等价于(21)(1)0(0)ax ax x +-≥>,即1x a≥, 此时()f x 的单调递减区间为1[,)a+∞. 由110a a ⎧≤⎪⎨⎪>⎩ 得1a ≥.③当0a <时,'()0f x ≤(0)x >等价于(21)(1)0(0)ax ax x +-≥>,即12x a≥-,此时()f x 的单调递减区间为1[,)2a-+∞. 由1120a a ⎧-≤⎪⎨⎪<⎩,得12a ≤-. 综上,实数a 的取值范围是1(,][1,)2-∞-+∞.。
成都市龙泉一中高2014级第四学期4月月考英语试题第一部分听力理解(共30分)第一节(共 5 小题;每小题 1.5 分,共 7.5 分)听下面 5 段对话,每段对话有一道小题,从每题所给的 A、B、C 三个选项中选出最佳选项,听完每段对话后,你将有 10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
1. Where does the man want to go?A. The City Center.B. The City Hall.C. The City Concert Hall.2. How long will the meeting last?A. For an hour.B. For 45 minutes.C. For 75 minutes.3. What is the man most likely to do this evening?A. Watch TV.B. Read.C. See the woman.4. Why does the girl come here?A. To get an assistant.B. To read an advertisement.C. To find a job.5. Why does the woman thank the man ?A. Because he lent her some money.B. Because he gave her a 5-pound bill.C. Because he returned her money found.第二节(共 15 小题;每小题 1.5 分,共 22.5 分)听下面 5 段对话或独白。
每段对话或独白后有几道小题,从每题所给的 A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有 5 秒钟的时间阅读每小题。
听完后,每小题将给出 5 秒钟的作答时间。
每段对话或独白你将听两遍。
2015-2016学年四川省成都七中高二(下)入学数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.(5分)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β2.(5分)若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1B.﹣2C.1或﹣2D.﹣1或23.(5分)如图,正方体ABCD﹣A1B1C1D1中,E为CC1中点,则下列结论中不正确的是()A.BD⊥A1C1B.AC1∥平面BDEC.平面BDE∥平面AB1D1D.平面A1BD⊥平面BDE4.(5分)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A.B.C.D.5.(5分)若过点A(4,0)的直线l与曲线(x﹣2)2+y2=1有公共点,则直线l的斜率的取值范围为()A.B.C.D.6.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.7.(5分)已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1B.(x﹣2)2+(y+2)2=1C.(x+2)2+(y+2)2=1D.(x﹣2)2+(y﹣2)2=18.(5分)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于()A.B.C.D.9.(5分)如图,矩形ABCD中AB=2,BC=,M,N分别为AB,CD中点,BD与MN交于O,现将矩形沿MN折起,使得二面角A﹣MN﹣B的大小为,则折起后cos ∠DOB为()A.B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D 为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.11.(5分)不共面的四个定点到平面α的距离都相等,这样的平面α共有()A.3个B.4个C.6个D.7个12.(5分)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域的面积是()A.B.1C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.14.(5分)若x,y满足约束条件则z=3x﹣y的最小值为.15.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2;则此棱锥的体积为.16.(5分)已知点A、B、C在单位圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的取值范围是.三、解答题:本大题共6小题,共70分,要求过程应写出文字说明、证明过程或演算步骤. 17.(10分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点.(1)证明BC1∥平面A1CD(2)设AA1=AC=CB=2,AB=2,求三菱锥C﹣A1DE的体积.18.(12分)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.19.(12分)学校从参加高二年级期末考试的学生中抽出一些学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),所得数据整理后,列出了如下频率分布表.(Ⅰ)在给出的样本频率分布表中,求A,B,C的值;(Ⅱ)补全频率分布直方图,并利用它估计全体高二年级学生期末数学成绩的众数、中位数;(Ⅲ)现从分数在[80,90),[90,100]的9名同学中随机抽取两名同学,求被抽取的两名学生分数均不低于90分的概率.20.(12分)已知直线l:3x+4y﹣12=0与x轴、y轴分别相交于A、B.(1)求过点P(1,2)且在x轴、y轴上截距均相等的直线的方程;(2)求与直线l、x轴、y轴都相切的圆的方程.21.(12分)如图,AB是圆的直径,P A垂直圆所在的平面,C是圆上异于A、B的点.P A=AB,∠BAC=60°,点D,E分别在棱PB,PC上,且DE∥BC.(1)求证:BC⊥平面P AC;(2)当D为PB的中点时,求AD与平面PBC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.22.(12分)长为2线段EF的两上端点E、F分别在坐标轴x轴、y轴上滑动,设线段中点为M,线段EF在滑动过程中,点M形成轨迹为C.(1)求C的方程;(2)过点P(0,1)直线l与轨迹C交于A、B两点.①写出的取值范围,可简要说明理由;②坐标平面内是否存在异于点P的定点Q,当l转动时,总有恒成立?若存在,请求出Q点坐标;若不存在,请说明理由.2015-2016学年四川省成都七中高二(下)入学数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.1.【解答】解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选:C.2.【解答】解:∵直线l1:ax+2y+a+3=0,l2:x+(a+1)y+4=0,l1∥l2,∴=≠,解得a=1或a=﹣2.∵当a=1时,两直线重合,∴a≠1.∴a=﹣2.故选:B.3.【解答】解:由正方体ABCD﹣A1B1C1D1中,E为CC1中点,知:在A中:∵BD⊥AC,AC∥A1C1,∴BD⊥A1C1,故A正确;在B中:连结AC、BD,交于点O,连结OE,∵ABCD是正方形,∴O是AC中点,∵E为CC1中点,∴OE∥AC1,∵AC1⊄平面BDE,OE⊂平面BDE,∴AC1∥平面BDE,故B正确;在C中:∵AB1∥BC1,BC1∩BE=B,AD1∥DC1,DC1∩DE=D,AB1、AD1⊂平面AB1D1,BC1、DC1⊂平面BDE,∴平面BDE与平面AB1D1相交,故C错误;在D中:设正方体ABCD﹣A1B1C1D1中棱长为2,连结A 1D、A1B、A1O、A1E,则,OA1==,=,OE==,A1E==3,∴∠A1OE是二面角A1﹣BD﹣E的平面角,∵=6+3=9=,∴∠A1OE=90°,∴平面A1BD⊥平面BDE,故D正确.故选:C.4.【解答】解:∵扇形ADE的半径为1,圆心角等于90°∴扇形ADE的面积为S1=×π×12=同理可得,扇形CBF的在,面积S2=又∵长方形ABCD的面积S=2×1=2∴在该矩形区域内随机地选一地点,则该地点无信号的概率是P===1﹣故选:A.5.【解答】解:设直线方程为y=k(x﹣4),即kx﹣y﹣4k=0,直线l与曲线(x﹣2)2+y2=1有公共点,圆心到直线的距离小于等于半径,得4k2≤k2+1,k2≤,故选:C.6.【解答】解:经过第一次循环得到S=,满足进入循环的条件,k=2,经过第二次循环得到S=+=,满足进入循环的条件,k=3,经过第三次循环得到S=+=,满足进入循环的条件,k=4,经过第四次循环得到S=+=,满足进入循环的条件,k=5,经过第五次循环得到S=+=,不满足进入循环的条件,执行输出,故输出结果为:,故选:D.7.【解答】解:圆C1:(x+1)2+(y﹣1)2=1的圆心坐标(﹣1,1),关于直线x﹣y﹣1=0对称的圆心坐标为(2,﹣2)所求的圆C2的方程为:(x﹣2)2+(y+2)2=1故选:B.8.【解答】解:根据题意,袋中共有6个球,从中任取2个,有C62=15种不同的取法,6个球中,有2个白球和3个黑球,则取出的两球为一白一黑的情况有2×3=6种;则两球颜色为一白一黑的概率P==;故选:B.9.【解答】解∵矩形ABCD中AB=2,BC=,M,N分别为AB,CD中点,BD与MN 交于O,现将矩形沿MN折起,使得二面角A﹣MN﹣B的大小为,∴BO=DO==,如图,以N为原点,NM为x轴,NC为y轴,过N垂直于平面NMBC的直线为z轴,建立空间直角坐标系,则B(,1,0),D(0,),|BD|==,∴cos∠DOB===,∴折起后cos∠DOB=.故选:C.10.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.11.【解答】解:空间中不共面的四个定点构成三棱锥,如图:三棱锥D﹣ABC,①当平面一侧有一点,另一侧有三点时,即对此三棱锥进行换底,则三棱锥有四种表示形式,此时满足条件的平面个数是四个,②当平面一侧有两点,另一侧有两点时,即构成的直线是三棱锥的相对棱,因三棱锥的相对棱有三对,则此时满足条件的平面个数是三个,所以满足条件的平面共有7个,故选:D.12.【解答】解:∵a≥0,b≥0t=ax+by最大值在区域的右上取得,即一定在点(0,1)或(1,0)取得,故有by≤1恒成立或ax≤1恒成立,∴0≤b≤1或0≤a≤1,∴以a,b为坐标点P(a,b)所形成的平面区域是一个正方形,所以面积为1.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:某城地区有学校150+75+25=250所,现在采用分层抽样方法从所有学校中抽取30所,每个个体被抽到的概率是=,∵某地区有小学150所,中学75所,大学25所.∴用分层抽样进行抽样,应该选取小学×150=18所,选取中学×75=9所.故答案为:18,9.14.【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小结合图形可知,当直线z=3x﹣y过点C时z最小由可得C(0,1),此时z=﹣1故答案为:﹣115.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵,∴=,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴,∴V三棱锥S﹣ABC==.故答案为.16.【解答】解:由题意,AC为直径,所=|2|.当P,B,O共线时,其中B为(﹣1,0)时,|2|≤7.当B(1,0)时,=|2|≥5.所以|的取值范围为[5,7]三、解答题:本大题共6小题,共70分,要求过程应写出文字说明、证明过程或演算步骤. 17.【解答】(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.因为DF⊂平面A1CD,BC1不包含于平面A1CD,所以BC1∥平面A1CD.(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.由AA1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A1D2+DE2=A1E2,即DE⊥A1D.所以三菱锥C﹣A1DE的体积为:==1.18.【解答】解:(1)设C(m,n),∵AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x ﹣2y﹣5=0.∴,解得.∴C(4,3).(2)设B(a,b),则,解得.∴B(﹣1,﹣3).∴k BC==∴直线BC的方程为y﹣3=(x﹣4),化为6x﹣5y﹣9=0.19.【解答】(本小题满分12分)解:(Ⅰ)(Ⅱ)众数为最高的小矩形区间中点65,中位数为;(Ⅲ)设Ω={从分数在[80,100]的10名同学中随机抽取两名同学},.A={两名学生分数均不低于9(0分)},n(A)=1,根据古典概型计算公式,.20.【解答】解:(1)设直线在x轴为a,y轴截距为b.①当a=b=0时,直线过点(1,2)和(0,0),其方程为=2,即3x﹣2y=0.②当a=b≠0时,直线方程为+=1,把点(1,2)代入,得+=1,解得a=3,则该直线方程为x+y=3.(2)解:由题意A(4,0),B(0,3),设圆的半径为r,则由等面积可得×(3+4+5)r=×3×4,∴r=1,∴圆的方程(x﹣1)2+(y﹣1)2=1.21.【解答】证明:(1)∵P A⊥底面ABC,∴P A⊥BC,又∠BCA=90°,∴AC⊥BC,又P A∩AC=A,∴BC⊥平面P AC.解:(2)过A作AH⊥PC于H,∵BC⊥平面P AC,BC⊂面PBC,∴面PBC⊥面P AC,∴AH⊥平面PBC,∴∠ADH为AD与面PBC所成角,依题意,设P A=AB=2,则AD=PB=,AC=1,在Rt△P AC中,P A=2,AC=1,则AH==,在Rt△AHD中,AD=,AH=,∴sin=,∴AD与平面PBC所成的角的正弦值为.(3)∵DE∥BC,又由(1)知BC⊥平面P AC,∴DE⊥平面P AC,又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A﹣DE﹣P的平面角,∵P A⊥底面ABC,∴P A⊥AC,∴∩P AC=90°,∴在棱PC上存在一点E,使得AE⊥PC,此时∠AEP=90°,∴存在点E使得二面角A﹣DE﹣P为直二面角.22.【解答】解:(1)长为2线段EF的两上端点E、F分别在坐标轴x轴、y轴上滑动,设线段中点为M(x,y),可得|OM|=.线段EF在滑动过程中,点M形成轨迹为C:x2+y2=2;(2)①设直线l与轨迹C交于A、B两点,当直线的斜率不存在时,|AP|的最小值为:1,最大值为:,|PB|的最小值为:1,最大值为:,可知∈[,],即:∈[3﹣2,3+2].②当直线的斜率存在时设为k,过点P(0,1)直线l:y=kx+1,A、B的坐标分别为A(x1,y1)、B(x2,y2),由消去y并整理得:(1+k2)x2+2kx﹣1=0,∵△=(4k)2+4(1+2k2)>0,∴x1+x2=,x1x2=,由|QA|•|PB|=|QB|•|P A|可得,知QP为∠AQP的角平分线,由对称性易知,点Q必在y轴上,设Q(0,m),于是有K QA+K QB=0,∴+=0,即(y1﹣m)x2+(y2﹣m)x1=0,且y1=kx1+1,y2=kx2+1,∴(kx1+1﹣m)x2+(kx2+1﹣m)x1=0,∴2kx1x2+(1﹣m)(x1+x2)=0,∴2k•+(1﹣m)=0,∴[﹣1﹣(1﹣m)]=0,对任意k∈R恒成立,则﹣1﹣(1﹣m)=0,解得m=2,特别的,当直线l的斜率不存在时,此时A(0,),B(0,﹣),Q(0.2),P(0,1)==,=,综上,平面上存在定点Q(0,2)时,当l转动时,总有恒成立。
1 / 11 绝密★启用前 考试时间:2016年2月 高2017届高二下期入学考试英语试卷
考试时间:120分钟 总分:150分 第Ⅰ卷 注意事项: 1. 答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清 楚。请认真核准准考证号、姓名和科目。 2. 每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干 净后,再选涂其他答案标号,在.试.题.卷.上.作.答.无.效.。 第一部分 听力(共两节,满分30分) 第一节 (共5小题;每小题1.5分,满分7.5分) 听下面5段对话。每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。每段对话仅读一遍。 1. When are the lines at the supermarket the longest? A. In the evenings. B. On weekday mornings. C. On the weekend. 2. What will the woman do? A. Write a poem. B. Read the man's poem. C. Ask the man for some advice. 3. Where will the woman go this weekend? A. To America and Mexico. B. To Mexico and France. C. To America and France. 4. What has the woman been doing? A. Studying. B. Resting. C. Playing. 5. Where does the conversation probably take place? A. On a train. B. At a subway station. C. At a bus stop. 第二节(共15小题;每小题1.5分,满分22.5分) 听下面5段对话或独白,每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。每段对话或独白读两遍。 听第6段材料,回答第6、7题。 6. Where does this conversation take place? A. In a parking lot. B. On a busy street. C. In a police station. 7. What did the woman do? A. Called the police. B. Drove through the red light. C. Intended to take a left turn. 听第7段材料,回答第8、9题。 8. Why did the woman join the club mainly? A. To lose weight. B. To make friends. C. To become a professor. 9. What does the man ask the woman to do? A. Just listen to him. B. Try a new diet immediately. C. Try a systematic training program. 听第8段材料,回答第10至12题。 2 / 11
10. What does the woman plan to do? A. Buy all the furniture for her new house. B. Buy some study supplies for herself. C. Buy some office supplies for her husband. 11. Which of the following is mentioned in the conversation? A. Office Depot. B. Office Deposit. C. Offence Depot. 12. What is the most probable relationship between the two speakers? A. Teacher and student. B. Colleagues. C. Customer and salesperson. 听第9段材料,回答第13至16题。 13. Who might the woman be? A. A librarian. B. A high school teacher. C. A college professor. 14. How many famous writers did the woman mention? A. 2. B. 3. C. 4. 15. About which section does the man need the woman's suggestion? A. The literature room. B. The exhibition gallery. C. The dance studio. 16. What will the man send the woman? A. A list of paintings. B. A list of plays. C. A list of books. 听第10段材料,回答第17至20题。 17. What kind of gifts is the woman talking about? A. Thanksgiving Day gifts. B. Birthday gifts. C. Christmas gifts 18. How many grandchildren does the woman have? A. Four. B. Seven. C. Eleven. 19. Where did the woman's granddaughter put her gift? A. In a bag. B. In a box. C. In an envelope. 20. What impressed the woman most about the gift? A. That her granddaughter used French to express herself. B. That her granddaughter showed great love with simple words. C. That her granddaughter bought the gift with all her money. 第二部分 阅读理解 (共20题,满分40分) 阅读下列短文 ,从每题所给的四个选项 (A ,B ,C和D)中 ,选出最佳选项 ,并在题卡上将该项涂黑。 A Sea Life Melbourne Aquarium (水族馆) The all-new Sea Life Melbourne Aquarium, situated in the heart of Melbourne’s CBD, is one of Victoria’s leading visitor attractions and an unforgettable outing for the whole family. Having 12amazing zones of discovery, Sea Life Melbourne Aquarium is the very place that you cannot miss when you visit the city. * Opening Times Sea Life Melbourne Aquarium is open from 9:30 am until 6:00 pm every day of the year, including public holidays. Last admission is at 5:00 pm, one hour before closing. * Location ( 位置) Sea Life Melbourne Aquarium is located on the corner of Flinders Street and King Street, Melbourne. It is situated on the Yarra River, opposite Crown Entertainment Complex. 3 / 11
* Getting to Sea Life Melbourne Aquarium Train The Sea Life Melbourne Aquarium train stop is located on the free City Circle Tram route (公交线路) and also routes 70 and 75. City Circle trams run every 10 minutes in both directions. Shuttle Bus The Sea Life Melbourne Aquarium is a free bus service, stopping at key tourist attractions in and around the City. Running daily, every 15 minutes from 10:00 am to 4:00 pm. Car Parking While there is no public car parking at Sea Life Melbourne Aquarium, there are several public car parking lots available only a short walk away. * Wheelchair Access Sea Life Melbourne Aquarium provides people in wheelchairs with full access to all 12 zones.Each floor also has wheelchair accessible toilets. * Terms Tickets will be emailed to you immediately after purchase or you can download and print yourticket once payment has been accepted. Please print out all tickets purchased and present at the frontentrance of Sea Life Melbourne Aquarium. No ticket, no entry! 21. Sea Life Melbourne Aquarium _________ . A. is located at the center of the CBD in the city B. has 12 most attractive places in Melbourne C. admits visitors from 9:30 am until 6:00 pm D. is beside Crown Entertainment Complex 22. Getting to Sea Life Melbourne Aquarium, visitors can take ________. A. trains from southern Cross train station B. shuttle buses around the train station C. boats across the Yarra River D. either tram route 70 or 75 23. Sea Life Melbourne Aquarium offers visitors ________. A. free car parking B. wheelchair access C. Internet connection D. transportation service 24. Tickets to Sea Life Melbourne Aquarium ________ . A. are free to all visitors B. can be purchased by email C. are checked at the entrance D. can be printed at the ticket office B SIGN YOUR CHILD UP FOR “FLY TO THE MOON CLUB” AND ENJOY A FREE * FLIGHT TO ANY DESTINATION IN ASIA! With a registration fee of just $50 per child, children under the age of 12 can join Eagle Airways’ FLY TO THE MOON CLUB as members. They can then enjoy the same benefits onboard Eagle Airways’ newest Boeing-797 to any destination in the world! BENEFITS YOU CAN’T MISS! • A free * flight to any destination in Asia • 30% off any course at Tanya Language School