当前位置:文档之家› 串行接口标准

串行接口标准

串行接口标准
串行接口标准

串行接口标准(RS232/422/485)

RS-232串行接口标准

目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。由于其发送电平与接收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传送距离最大为约15米,最高速率为20kb/s。RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载为3~7kΩ。所以RS-232适合本地设备之间的通信。

======================================================================

RS-422与RS-485串行接口标准

1.平衡传输

RS-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中一线定义为A,另一线定义为B,通常情况下,发送驱动器A、B之间的正电平在+2~+ 6V,是一个逻辑状态,负电平在-2~6V,是另一个逻辑状态。另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“第三态”,即它是有别于逻辑“1”与“0”的第三态。

接收器也作与发送端相对的规定,收、发端通过平衡双绞线将AA与BB对应相连,当在收端AB之间有大于+200mV的电平时,输出正逻辑电平,小于-200mV时,输出负逻辑电平。接收器接收平衡线上的电平范围通常在200mV至6V之间。

====================================================================

2.RS-422电气规定

RS-422标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。典型的RS-422是四线接口。实际上还有一根信号地线,共5根线。其DB9连接器引脚定义。由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS-422支持点对多的双向通信。接收器输入阻抗为4k,故发端最大负载能力是10×4k+100Ω(终接电阻)。RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)实现。

RS-422的最大传输距离为1219米,最大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能达到最大传输距离。只有在很短的距离下才能获得最高速率传输。一般100米长的双绞线上所能获得的最大传输速率仅为1Mb/s。

RS-422需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输电缆的最远端。

====================================================================

3.RS-485电气规定

由于RS-485是从RS-422基础上发展而来的,所以RS-485许多电气规定与RS-422相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS-485可以采用二线与四线方式,二线制可实现真正的多点双向通信,而采用四线连接时,与RS-422一样只能实现点对多的通信,即只能有一个主(Mas ter)设备,其余为从设备,但它比RS-422有改进,无论四线还是二线连接方式总线上可多接到32个设备。

RS-485与RS-422的不同还在于其共模输出电压是不同的,RS-485是-7V至+12V之间,而R S-422在-7V至+7V之间,RS-485接收器最小输入阻抗为12k剑鳵S-422是4k健;旧峡梢运礡S-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。

===================================================================

RS-485有关电气规定。

RS-485与RS-422一样,其最大传输距离约为1219米,最大传输速率为10Mb/s。平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能使用规定最长的电缆长度。只有在很短的距离下才能获得最高速率传输。一般100米长双绞线最大传输速率仅为1Mb/s

RS-485需要2个终接电阻,其阻值要求等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输总线的两端。

在MCU之间中长距离通信的诸多方案中、RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域、但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷、一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障、因此提高RS-485总线的运行可靠性至关重要、

1 RS-485接口电路的硬件设计

1)总线匹配、总线匹配有两种方法、一种是加匹配电阻、位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻、以减少由于不匹配而引起的反射、吸收噪声、有效地抑制了噪声干扰、但匹配电阻要消耗较大电流、不适用于功耗限制严格的系统、

另外一种比较省电的匹配方案是RC 匹配利用一只电容C 隔断直流成分、可以节省大部分功率、但电容C 的取值是个难点、需要在功耗和匹配质量间进行折衷、除上述两种外还有一种采用二极管的匹配方案、

2) RO及DI端配置上拉电阻、异步通信数据以字节的方式传送、在每一个字节传送之前、先要通过一个低电平起始位实现握手、为防止干扰信号误触发RO(接收器输出)产生负跳变、使接收端MCU进入接收状态、建议RO外接10kΩ上拉电阻、

3)保证系统上电时的RS-485芯片处于接收输入状态、对于收发控制端TC建议采用MCU引脚通过反相器进行控制、不宜采用MCU引脚直接进行控制、以防止MCU上电时对总线的干扰、

4)总线隔离、RS-485总线为并接式二线制接口、一旦有一只芯片故障就可能将总线“拉死”、因此对其二线口VA、VB与总线之间应加以隔离、通常在VA、VB与总线之间各串接一只4~10Ω的PTC电阻、同时与地之间各跨接5V的TVS二极管、以消除线路浪涌干扰、如没有PTC电阻和TVS二极管、可用普通电阻和稳压管代替、

5)合理选用芯片、例如、对外置设备为防止强电磁(雷电)冲击、建议选用TI的75LBC184等防雷击芯片、对节点数要求较多的可选用SIPEX的SP485R、

2 RS-485网络配置

1)网络节点数、网络节点数与所选RS-485芯片驱动能力和接收器的输入阻抗有关、如75LBC184标称最大值为64点、SP485R标称最大值为400点、实际使用时、因线缆长度、线径、网络分布、传输速率不同、实际节点数均达不到理论值、例如75LBC184运用在500m分布的RS-485网络上节点数超过50或速率大于9.6kb/s时、工作可靠性明显下降、通常推荐节点数按RS-485芯片最大值的70%选取、传输速率在1200~9600b/s之间选取、通信距离1km以内、从通信效率、节点数、通信距离等综合考虑选用4800b/s最佳、通信距离1km以上时、应考虑通过增加中继模块或降低速率的方法提高数据传输可靠性、

2)节点与主干距离、理论上讲、RS-485节点与主干之间距离(T头、也称引出线)越短越好、T头小于10m的节点采用T型、连接对网络匹配并无太大影响、可放心使用、但对于节点间距非常小(小于1m、如LED模块组合屏)应采用星型连接、若采用T型或串珠型连接就不能正常工作、RS-485是一种半双工结构通信总线、大多用于一对多点的通信系统、因此主机(PC)应置于一端、不要置于中间而形成主干的T 型分布、

3 提高RS-485通信效率

RS-485通常应用于一对多点的主从应答式通信系统中、相对于RS-232等全双工总线效率低了许多、

因此选用合适的通信协议及控制方式非常重要、

1.总线稳态控制(握手信号)、大多数使用者选择在数据发送前1ms将收发控制端TC置成高电平、使总线进入稳定的发送状态后才发送数据;数据发送完毕再延迟1ms后置TC端成低电平、使可靠发送完毕后才转入接收状态、据笔者使用TC端的延时有4个机器周期已满足要求;

2.为保证数据传输质量、对每个字节进行校验的同时、应尽量减少特征字和校验字、惯用的数据包格式由引导码、长度码、地址码、命令码、数据、校验码、尾码组成、每个数据包长度达20~30字节、在RS-485系统中这样的协议不太简练、推荐用户使用MODBUS协议、该协议已广泛应用于水利、水文、电力等行业设备及系统的国际标准中、

4 RS-485接口电路的电源、接地

对于由MCU结合RS-485微系统组建的测控网络、应优先采用各微系统独立供电方案、最好不要采用一台大电源给微系统并联供电、同时电源线(交直流)不能与RS-485信号线共用同一股多芯电缆、RS-485信号线宜选用截面积0.75mm2以上双绞线而不是平直线、对于每个小容量直流电源选用线性电源LM7805比选用开关电源更合适、当然应注意LM7805的保护:

1.LM7805输入端与地应跨接220~1000μF电解电容;

2.LM7805输入端与输出端反接1N4007二极管;

3.LM7805输出端与地应跨接470~1000μF电解电容和104pF独石电容并反接1N4007二极管;

4.输入电压以8~10V为佳、最大允许范围为6.5~24V、可选用TI的PT5100替代LM7805、以实现9~38V的超宽电压输入、

5 光电隔离

在某些工业控制领域、由于现场情况十分复杂、各个节点之间存在很高的共模电压、虽然RS-485接口采用的是差分传输方式、具有一定的抗共模干扰的能力、但当共模电压超过RS-485接收器的极限接收电压、即大于+12V或小于-7V时、接收器就再也无法正常工作了、严重时甚至会烧毁芯片和仪器设备、解决此类问题的方法是通过DC-DC将系统电源和RS-485收发器的电源隔离;通过光耦将信号隔离、彻底消除共模电压的影响、实现此方案的途径可分为:

(1)用光耦、带隔离的DC-DC、RS-485芯片构筑电路;

(2)使用二次集成芯片、如PS1480、MAX1480等、

6 RS-485系统的常见故障及处理方法

RS-485是一种低成本、易操作的通信系统、但是稳定性弱同时相互牵制性强、通常有一个节点出现故障会导致系统整体或局部的瘫痪、而且又难以判断、故向读者介绍一些维护RS-485的常用方法、

1)若出现系统完全瘫痪、大多因为某节点芯片的VA、VB对电源击穿、使用万用表测VA、VB间差模电压为零、而对地的共模电压大于3V、此时可通过测共模电压大小来排查、共模电压越大说明离故障点越近、反之越远;

2)总线连续几个节点不能正常工作、一般是由其中的一个节点故障导致的、一个节点故障会导致邻近的2~3个节点(一般为后续)无法通信、因此将其逐一与总线脱离、如某节点脱离后总线能恢复正常、说明该节点故障;

3)集中供电的RS-485系统在上电时常常出现部分节点不正常、但每次又不完全一样、这是由于对RS-485的收发控制端TC设计不合理、造成微系统上电时节点收发状态混乱从而导致总线堵塞、改进的方法是将各微系统加装电源开关然后分别上电;

4)系统基本正常但偶尔会出现通信失败、一般是由于网络施工不合理导致系统可靠性处于临界状态、最好改变走线或增加中继模块、应急方法之一是将出现失败的节点更换成性能更优异的芯片;

5)因MCU故障导致TC端处于长发状态而将总线拉死一片、提醒读者不要忘记对TC端的检查、尽管RS-485规定差模电压大于200mV即能正常工作、但实际测量:一个运行良好的系统其差模电压一般在1.2V 左右(因网络分布、速率的差异有可能使差模电压在0.8~1.5V范围内)、

串行同步通信

串行接口同步通信协议 [摘要]:接口在微型计算机系统的设计和应用中占有极为重要的地位。在微型计算机系统中,CPU要与存储器和输入/输出设备之间交换信息,这些信息的交换要借助接口来实现。接口是沟通微处理机和外部设备之间的桥梁,它减轻了CPU的负担,使CPU能够充分的发挥任务管理和逻辑判断作用,使CPU和外部设备能更加协调的完成输入/输出工作,从而提高整机的工作效率和系统功能。串行接口是使用串行方式进行数据传输的输入/输出接口,根据在串行通信中数据的定时的不同,串行通信可分为同步通信和异步通信。同步通信中为保证通信的正确,发送装置和接收装置事先必须有一个双方共同遵守的协议,这就是串行接口同步通信协议。 [关键词]:输入/输出接口,串行接口,同步通信,协议,SDLC/HDLC 规程 一、串行接口 在计算机领域内,有两种数据传送方式:串行传送和并行传送。并行数据传送中,数据在多条并行1比特宽的传输线上同时由源传送到目的,这种传送方式也称为比特并行或字节串行。串行数据传送中,数据在单条1比特宽的传输线上,1比特1比特

的按顺序分时传送。 串行通信一般使用在计算机与计算机之间、计算机和远程终端之间、终端与终端之间的通信中,传输距离通常从几米到数千公里。与典型设备相关的串行接口,数据传输的速率每秒在0~2百万比特的范围内。串行传输的速率和距离成反比,数据传输速率和距离的关系如图所示。 串行通信接口的信号电平常采用RS-232-C信号电平或20mA 电流环路操作方法。 串行数据的发送由发送时钟控制。数据发送过程:把并行的数据序列送入移位寄存器,然后通过移位寄存器由发送时钟触发进行移位输出,数据位的时间间隔可由发送时钟周期来划分。发送时钟、待发送的二进制数据和出现在传输线上的信号波形三者的关系如图所示。

串口通信实验讲解

课程名称:Zigbee技术及应用实验项目:串口通信实验指导教师: 专业班级:姓名:学号:成绩: 一、实验目的: (1)认识串口通信的概念; (2)学习单片机串口通信的开发过程; (3)编写程序,使单片机与PC通过串口进行通信。 二、实验过程: (1)根据实验目的分析实验原理; (2)根据实验原理编写C程序; (3)编译下载C程序,并在实验箱上观察实验结果。 三、实验原理: 串行通信是将数据字节分成一位一位的形式在一条传输线上逐个地传送,此时只需要一条数据线,外加一条公共信号地线和若干条控制信号线。因为一次只能传送一位,所以对于一个字节的数据,至少要分8位才能传送完毕,如图3-1所示。 图2-1串行通信过程 串行通信制式: (1)单工制式 这种制式是指甲乙双方通信时只能单向传送数据,发送方和接收方固定。 (2)半双工制式 这种制式是指通信双方都具有发送器和接收器,即可发送也可接收,但不能同时接收和发送,发送时不能接收,接收时不能发送。

(3)全双工制式 这种制式是指通信双方均设有发送器和接收器,并且信道划分为发送信道和接收信道,因此全双工制式可实现甲乙双方同时发送和接收数据,发送时能接收,接收时能发送。 三种制式分别如图3-2所示 图3-2串行通信制式 3.1硬件设计原理 CC2530有两个串行通信接口USART0和USART1,两个USART具有同样的功能,可已分别运行于UART模式和同步SPI模式。 CC2530的两个串行通信接口引脚图分布如表3-1所示 表3-1 CC2530串行通信口引脚图分布 本实验CC2530模块使用的是USART1的位置2,P1_6和P1_7。

串行口通信实验 单片机实验报告

实验六串行口通信实验 一、实验内容 实验板上有RS-232接口,将该接口与PC机的串口连接,可以实现单片机与PC机的串行通信,进行双向数据传输。本实验要求当PC机向实验板发送的数字在实验板上显示,按实验板键盘输入的数字在PC机上显示,并用串口助手工具软件进行调试。 二、实验目的 掌握单片机串行口工作原理,单片机串行口与PC机的通信工作原理及编程方法。 三、实验原理 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通信。进行串行通讯信要满足一定的条件,比如电脑的串口是RS232电平(-5~-15V为1,+5~+15V为0),而单片机的串口是TTL电平(大于+2.4V为1,小于- 0.7V为0),两者之间必须有一个电平转换电路实现RS232电平与TTL电平的相互转换。 为了能够在PC机上看到单片机发出的数据,我们必须借助一个Windows软件进行观察,这里我们可以使用免费的串口调试程序SSCOM32或Windows的超级终端。 单片机串行接口有两个控制寄存器:SCON和PCON。串行口工作在方式0时,可通过外接移位寄存器实现串并行转换。在这种方式下,数据为8位,只能从RXD端输入输出,TXD端用于输出移位同步时钟信号,其波特率固定为振荡频率的1/12。由软件置位串行控制寄存器(SCON)的REN位后才能启动,串行接收,在CPU将数据写入SBUF寄存器后,立即启动发送。待8位数据输完后,硬件将SCON寄存器的T1位置1,必须由软件清零。 单片机与PC机通信时,其硬件接口技术主要是电平转换、控制接口设计和远近通信接口的不同处理技术。在DOS操作环境下,要实现单片机与微机的通信,只要直接对微机接口的通信芯片8250进行口地址操作即可。WINDOWS的环境下,由于系统硬件的无关性,不再允许用户直接操作串口地址。如果用户要进行串行通信,可以调用WINDOWS的API 应用程序接口函数,但其使用较为复杂,可以使用KEILC的通信控件解决这一问题。 四、实验电路 [参考学习板说明书P27]

串行接口实验—双机通信

数学与信息技术学院 《计算机应用课程设计》设计报告

摘要 微机与外部的信息交换称为通信,基本方式有并行与串行两种。本文主要说明串行方式,主要掌握微机串行通信的连接方法,熟悉其工作方式及其功能,运用程序流程图说明了其工作过程 详细介绍了使用串行接口芯片8251A实现双CPU系统数据传输的设计和方法,接着从8251A的基本原理、工作方式,以及硬件和软件设计方面进行了详细的说明。并在两台微处理器的目标机上,用串口通信模式实现了两机之间的高效通信。 关键词: 8251A;串口通信;数据传送

Abstract Exchange of information between computer and external as communications.Basic methods are both parallel and serial.This paper shows the serial mode, the main control computer serial communication connection method, familiar with their work and their functions, the use of process flow chart illustrates the process of their work. Described in detail using the serial interface chip 8251A dual CPU system design and method of data transmission, then the basic principle from 8251A, work, and hardware and software design aspects in detail. Two microprocessors in the target machine, achieved with a serial communication mode efficient communication between the two machines. Keywords: 8251A; serial communication; data transfer

串口通信

一. 实验目的及实验环境 <1>实验环境 Java eclipse下 <2>实验目的 了解串行通信的背景知识后,通过三线制制作一条串口通信线(PC-PC),并编程实现两台PC间通过RS-232C通信。要求两台PC机能进行实时的字符通信,并了解工业自动化控制中的基本通信方式。 二.实验内容 1、检查PC是否具有串行通信接口,并按其针脚类准备一条串口通信线缆。 2、串口包的安装,下载javacomm20-win32.zip并解压,将win32com.dll复制到\bin目录下;将comm.jar复制到\lib;把https://www.doczj.com/doc/e19895018.html,m.properties 也同样拷贝到\lib目录下,再将上面提到的文件放到JRE相应的目录下就可以了。 三、方案设计 1、将实验所需RS-232缆线准备好,并将JAVA串口包复制到相应地目录下。 2、查找有关串口通信的书籍以及在网上查找相应地串口通信代码。 3、用JAVA编程软件JCreator编写代码。 四.测试数据及运行结果 图一主界面

图二发送消息 图三接收消息 五.总结 1、实验过程中遇到的问题及解决办法; 串口包的安装配置比较难完成,最后在网上看各种博客和论坛,才将问题解决。还有一些代码问题,最后找同学调试好了。 2、对设计及调试过程的心得体会。 通过本次串口实验,我对串口通信的知识了解的更透彻,这是在刚开始对串口通信知识不了解的情况下就编程而造成许多错误之后才得到的结果。在网上查找资料的时候也接触到了不少其他的编程语言例如VB,delphi,C#等,这也让我对这些从没有学过的语言有所了解,我想这些知识对以后的实验工作都有帮助。我也进一步发现了自己动手能力和自学能力都得到很多的进步,同时也对串口的发送与接收信息有了进一步的了解。 六.附录:源代码

北理工微机原理实验三 使用8251A的串行接口应用实验

本科实验报告 实验名称:实验三使用8251A的串行接口应用实验 课程名称:计算机原理与应用实验实验时间: 任课教师:实验地点: 实验教师: 实验类型:□原理验证■综合设计□自主创新 学生姓名: 学号/班级:组号:学院:同组搭档:专业:成绩:

1. 实验目的 1) 掌握串行通信原理及半双工和全双工的编程方法; 2) 掌握用8251A接口芯片实现微机间的同步和异步通信; 3) 掌握8251A芯片与微机的接口技术和编程方法。 2. 实验原理和内容 8251A是一种可编程的同步/异步串行通信接口芯片,具有独立的接收器和发送器,能实现单工、半双工、双工通信。 1) 8251A内部结构 8251A通过引脚D0~D7和系统数据总线直接接口,用于和CPU传递命令、数据、状态信息。读写控制逻辑用来接收CPU的控制信号、控制数据传送方向。CPU对8251A的读写操作控制表如表3-4所示。 表3-4 CPU对8251A的读写操作控制表 2) 8251A的方式控制字和命令控制字 方式控制字确定8251A的通信方式(同步/异步)、校验方式(奇校/偶校/不校)、字符长度及波特率等,格式如图3-10所示。 命令控制字使8251A处于规定的状态以准备收发数据,格式如图3-11所示。 方式控制字和命令控制字无独立的端口地址,8251A 根据写入的次序来区分。 CPU对8251A初始化时先写方式控制字,后写命令控制字。

3) 状态寄存器 8251状态寄存器用于寄存8251A的状态信息,供CPU查询,定义如图3-12所示。TXRDY位:当数据缓冲器空时置位,而TXRDY引脚只有当条件( 数据缓冲器空?/CTS?TXE)成立时才置位。 溢出错误:CPU没读走前一个字符,下一个字符又接收到,称为溢出错误。

串口通信的接线方法

目前较为常用的串口有9针串口(DB9)和25针串口(DB25),通信距离较近时(<12m),可以用电缆线直接连接标准RS232端口(RS422、RS485较远),若距离较远,需附加调制解调器(MODEM)。最为简单且常用的是三线制接法,即地、接收数据和发送数据三脚相连,本文只涉及到最为基本的接法,且直接用RS232相连。 1、DB9和DB25的常用信号脚说明 2、RS232C串口通信接线方法(三线制) 首先,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连同一个串口的接收脚和发送脚直接用线相连对9针串口和25针串口,均是2与3直接相连; 两个不同串口(不论是同一台计算机的两个串口或分别是不同计算机的串口) 图2 上面表格是对微机标准串行口而言的,还有许多非标准设备,如接收GPS数据或电子罗盘数据,只要记住一个原则:接收数据针脚(或线)与发送数据针脚(或线)相连,彼些交叉,信号地对应相接,就能百战百胜。 3、串口调试中要注意的几点: 不同编码机制不能混接,如RS232C不能直接与RS422接口相连,市面上专门的各种转换器卖,必须通过转换器才能连接; 线路焊接要牢固,不然程序没问题,却因为接线问题误事;

串口调试时,准备一个好用的调试工具,如串口调试助手、串口精灵等,有事半功倍之效果; 强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口易损坏。 RS232C标准串口接线方法 (第二版) 检验仪器与微机的通讯主要是以RS232C标准接口为主,而串口的接线方法也有一定的标准,在此谈谈几种常用的串口接法,仅作参考: 一、标准接法 1、9对9(包括9针对9孔,9孔对9孔,9针对9针): 说明:以下的孔、针指串口线两端的串口,不过2、3有可能不交换 2-------------3 3-------------2 4-------------6 5-------------5 6-------------4 7-------------8 8-------------7 2、9对25(包括9孔对25孔,9孔对25针) 2-------------3 (备注:2、3有可能不交换) 3-------------2 4-------------6 5-------------7 6-------------20 7-------------5 8-------------4

串行接口实验报告

课程实验报告实验名称:串行接口 专业班级: 学号: 姓名: 同组人员: 指导教师: 报告日期:

实验二 1. 实验目的 (3) 2. 实验内容 (3) 3. 实验原理 (3) 4. 程序代码 (6) 5. 实验体会 (13)

实验二 1.实验目的 1.熟悉串行接口芯片8251的工作原理 2.掌握串行通讯接收/发送程序的设计方法 2.实验内容 通过对8251芯片的编程,使得实验台上的串行通讯接口(RS232)以查询方式实现信息在双机上的。具体过程如下: 1. 从A电脑键盘上输入一个字符,将其通过A试验箱的8251数据口发送出去,然后通过B试验箱的8251接收该字符,最后在B电脑的屏幕上显示出来。 2.从A试验箱上输入步进电机控制信息(开关信息),通过A试验箱的8251数据口发送到B试验箱的8251数据口,在B试验箱上接收到该信息之后,再用这个信息控制B试验箱上的步进电机的启动停止、转速和旋转方向。 3.实验原理 1.8251控制字说明 在准备发送数据和接收数据之前必须由CPU把一组控制字装入8251。控制字分两种:方式指令和工作指令,先装入方式指令,后装入工作指令。 另外,在发送和接收数据时,要检查8251状态字,当状态字报告“发送准备好”/“接收准备好”时,才能进行数据的发送或接收。 2.8251方式指令(端口地址2B9H)

3.8251工作指令(端口地址2B9H) 4.8251状态字(端口地址2B9H) 5.8253控制字(283H) 6.8253计数初值(283H) 计数初值=时钟频率/(波特率×波特率因子)本实验:脉冲源=1MHz 波特率=1200 波特率因=16 计数初值= 1000000/1200*16=52

串行通信接口标准详解

几种串行通信接口标准详解 在数据通信、计算机网络以及分布式工业控制系统中,经常采用串行通信来交换数据和信息。1969年,美国电子工业协会(EIA)公布了RS-232C作为串行通信接口的电气标准,该标准定义了数据终端设备(DTE)和数据通信设备(DCE)间按位串行传输的接口信息,合理安排了接口的电气信号和机械要求,在世界范围内得到了广泛的应用。但它采用单端驱动非差分接收电路,因而存在着传输距离不太远(最大传输距离15m)和传送速率不太高(最大位速率为20Kb/s)的问题。远距离串行通信必须使用Modem,增加了成本。在分布式控制系统和工业局部网络中,传输距离常介于近距离(<20m=和远距离(>2km)之间的情况,这时RS-232C(25脚连接器)不能采用,用Modem又不经济,因而需要制定新的串行通信接口标准。 1977年EIA制定了RS-449。它除了保留与RS-232C兼容的特点外,还在提高传输速率,增加传输距离及改进电气特性等方面作了很大努力,并增加了10个控制信号。与RS-449同时推出的还有RS-422和RS-423,它们是RS-449的标准子集。另外,还有RS-485,它是RS-422的变形。RS-422、RS-423是全双工的,而RS-485是半双工的。 RS-422标准规定采用平衡驱动差分接收电路,提高了数据传输速率(最大位速率为10Mb/s),增加了传输距离(最大传输距离1200m)。 RS-423标准规定采用单端驱动差分接收电路,其电气性能与RS-232C几乎相同,并设计成可连接RS-232C和RS-422。它一端可与RS-422连接,另一端则可与RS-232C连接,提供了一种从旧技术到新技术过渡的手段。同时又提高位速率(最大为300Kb/s)和传输距离(最大为600m)。 因RS-485为半双工的,当用于多站互连时可节省信号线,便于高速、远距离传送。许多智能仪器设备均配有RS-485总线接口,将它们联网也十分方便。 串行通信由于接线少、成本低,在数据采集和控制系统中得到了广泛的应用,产品也多种多样 一.RS-232-C详解 串行通信接口标准经过使用和发展,目前已经有几种。但都是在RS-232标准的基础上经过改进而形成的。所以,以RS-232C为主来讨论。RS-323C标准是美国EIA(电子工业联合会)与BELL等公司一起开发的1969年公布的通信协议。它适合于数据传输速率在0~20000b/s范围内的通信。这个标准对串行通信接口的有关问题,如信号线功能、电器特性都作了明确规定。由于通行设备厂商都生产与RS-232C制式兼容的通信设备,因此,它作为一种标准,目前已在微机通信接口中广泛采用。 在讨论RS-232C接口标准的内容之前,先说明两点: 首先,RS-232-C标准最初是远程通信连接数据终端设备DTE(Data Terminal Equipment)与数据通信设备DCE(Data Communication Equipment)而制定的。因此这个标准的制定,并未考虑计算机系统的应用要求。但目前它又广泛地被借来用于计算机(更准确的说,是计算机接口)与终端或外设之间的近端连接标准。显然,这个标准的有些规定及和计算机系统是不一致的,甚至是相矛盾的。有了对这种背景的了解,我们对RS-232C 标准与计算机不兼容的地方就不难理解了。 其次,RS-232C标准中所提到的“发送”和“接收”,都是站在DTE立场上,而不是站在DCE的立场来定义的。由于在计算机系统中,往往是CPU和I/O设备之间传送信息,两者都

ARM实验三 ARM的串行口实验

实验三 ARM的串行口实验 一、实验目的 1.掌握ARM的串行口工作原理。 2.学习编程实现ARM的UART通讯。 3.掌握CPU利用串口通讯的方法。 二、实验内容 学习串行通讯原理,了解串行通讯控制器,阅读ARM芯片文档,掌握ARM的UART相关寄存器的功能,熟悉ARM系统硬件的UART相关接口。编程实现ARM和计算机实现串行通讯: ARM监视串行口,将接收到的字符再发送给串口(计算机与开发板是通过超级终端通讯的),即按PC键盘通过超级终端发送数据,开发板将接收到的数据再返送给PC,在超级终端上显示。 三、预备知识 1.用EWARM集成开发环境,编写和调试程序的基本过程。 2.ARM应用程序的框架结构。 3、了解串行总线。 四、实验设备及工具 硬件:ARM嵌入式开发平台、PC机Pentium100以上、用于ARM920T的JTAG 仿真器、串口线。 软件:PC机操作系统Win2000或WinXP、EWARM集成开发环境、仿真器驱动程序、超级终端通讯程序。 五、实验原理及说明 1.异步串行I/O 异步串行方式是将传输数据的每个字符一位接一位(例如先低位、后高位)地传送。数据的各不同位可以分时使用同一传输通道,因此串行I/O可以减少信号连线,最少用一对线即可进行。接收方对于同一根线上一连串的数字信号,首先要分割成位,再按位组成字符。为了恢复发送的信息,双方必须协调工作。在微型计算机中大量使用异步串行I/O方式,双方使用各自的时钟信号,而且允许时钟频率有一定误差,因此实现较容易。但是由于每个字符都要独立确定起始和结束(即每个字符都要重新同步),字符和字符间还可能有长度不定的空闲时间,因此效率较低。

实验五:串行接口输入输出实验

实验五串行接口输入/输出实验 一、实验目的 1、学习TEC-XP+教学计算机I/O接口扩展的方法; 2、学习串行通信的基本知识,掌握串行通信接口芯片的设置和使用方法。 二、实验说明 1、TEC-XP+教学计算机的I/O结构 TEC-XP+教学计算机配置有COM1和COM2两个串行接口,其中COM1是TEC-XP+默认的标准接口,与PC终端相连接,监控程序负责对COM1进行初始化和使用管理。COM2预留给用户扩展使用,监控程序不能识别COM2,也不对COM2进行任何操作,用户需要对COM2进行初始化和使用管理。COM1和COM2均由可编程串行通信接口芯片intel8251芯片构成。 2、Intel8251的组成及控制和使用方法 可编程串行通信接口芯片Intel8251支持同步和异步两种通信方式。在异步方式下,波特率为0~19.2Kbps,数据位可为5、6、7或8位,可设1个奇偶校验位,1个起始位,1个、1.5个或2个停止位。Intel8251内部有7个功能模块负责实现与CPU的数据交换以及与I/O设备的数据通信功能,内部有6个寄存器,其中与异步通信方式的有关的寄存器有5个,即模式寄存器、控制寄存器、状态寄存器、数据发送寄存器和数据接收寄存器。 模式寄存器的功能是设定intel8251的工作模式,控制寄存器的功能是控制intel8251的数据发送和接收等工作过程,状态寄存器的功能是反映intel8251数据发送和接收等工作的状态,各寄存器的格式如图5-1、图5-2和图5-3所示。当CPU把需发送的数据写入数据发送寄存器后,intel8251将自动把数据组成帧并逐位发送出去。Intel8251能自动完成数据接收操作,并把接收到的数据存放在数据接收寄存器中,CPU 从中读取即可。 图5-1模式寄存器格式图5-2 控制寄存器格式 图5-3 状态寄存器格式 CPU对模式寄存器、控制寄存器和数据发送寄存器只能写入,不能读出。对状态寄存器和数据接收寄存器只能读出,不能写入。Intel8251使用2个地址来访问内部的寄存器,其中用偶地址访问数据发送寄存

串行和并行通信的区别

串行通信和并行通信图文解释: 并行通信传输中有多个数据位,同时在两个设备之间传输。发送设备将这些数据位通过 对应的数据线传送给接收设备,还可附加一位数据校验位。接收设备可同时接收到这些数据,不需要做任何变换就可直接使用。并行方式主要用于近距离通信。计算 机内的总线结构就是并行通信的例子。这种方法的优点是传输速度快,处理简单。 串行数据传输时,数据是一位一位地在通信线上传输的,先由具有几位总线的计算机内的发送设备,将几位并行数据经并--串转换硬件转换成串行方式,再逐位经 传输线到达接收站的设备中,并在接收端将数据从串行方式重新转换成并行方式,以供接收方使用。串行数据传输的速度要比并行传输慢得多,但对于覆盖面极其广 阔的公用电话系统来说具有更大的现实意义。 串行数据通信的方向性结构有三种,即单工、半双工和全双工。

串行传输和并行传输的区别: 从技术发展的情况来看,串行传输方式大有彻底取代并行传输方式的势头,USB 取代IEEE 1284,SATA取代PATA,PCI Express取代PCI……从原理来看,并行传输方式其实优于串行传输方式。通俗地讲,并行传输的通路犹如一条多车道的宽阔大道,而串行传输则是仅能允 许一辆汽车通过的乡间公路。以古老而又典型的标准并行口(Standard Parallel Port)和串行口(俗称COM口)为例,并行接口有8根数据线,数据传输率高;而串行接口只有1根数据线,数据传输速度低。在串行口传送1位的时间内, 并行口可以传送一个字节。当并行口完成单词“advanced”的传送任务时,串行口中仅传送了这个单词的首字母“a”。 根据组成字符的各个二进制位是否同时传输,字符编码在信源/信宿之间的传输分为并行传输和串行传输两种方式。 1、并行传输: 字符编码的各位(比特)同时传输。 特点: (1)传输速度快:一位(比特)时间内可传输一个字符; (2)通信成本高:每位传输要求一个单独的信道支持;因此如果一个字符包含8个二进制位,则并行传输要求8个独立的信道的支持; (3)不支持长距离传输:由于信道之间的电容感应,远距离传输时,可靠性较低。 2、串行传输: 将组成字符的各位串行地发往线路。 特点: (1)传输速度较低,一次一位; (2)通信成本也较低,只需一个信道。 (3)支持长距离传输,目前计算机网络中所用的传输方式均为串行传输。 方式: 串行传输有两种传输方式: 1、同步传输 2、异步传输 硬盘接口模式的区别,SATA的优点 PATA(IDE), SATA接口的区别以及SATA的优势

51单片机串口通信,232通信,485通信,程序

51单片机串口通信,232通信,485通信,程序代码1:232通信 #include #define uchar unsigned char #define uint unsigned int uchar flag,a,i; uchar code table[]="i get"; void init() { TMOD=0X20; TH1=0XFD; TH0=0XFD; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1; } void main() { init();

while(1) { if(flag==1) { ES=0; for(i=0;i<6;i++) { SBUF=table[i]; while(!TI); TI=0; } SBUF=a; while(!TI); TI=0; ES=1; flag=0; } } } void ser() interrupt 4 {

RI=0; a=SBUF; flag=1; } 代码2:485通信 #include #include"1602.h" #define uchar unsigned char #define uint unsigned int unsigned char flag,a,i; uchar code table[]="i get "; void init() { TMOD=0X20; TH1=0Xfd; TL1=0Xfd; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1;

} void main() { init_1602(); init(); while(1) { if(flag==1) { display(0,a); } } } void ser() interrupt 4 { RI=0; a=SBUF; flag=1; }

串口通信实验报告全版.doc

实验三双机通信实验 一、实验目的 UART 串行通信接口技术应用 二、实验实现的功能 用两片核心板之间实现串行通信,将按键信息互发到对方数码管显示。 三、系统硬件设计 (1)单片机的最小系统部分 (2)电源部分 (3)人机界面部分

数码管部分按键部分 (4)串口通信部分 四、系统软件设计 #include #define uchar unsigned char #define uint unsigned int void send(); uchar code0[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//0-9的数码管显示 sbit H1=P3^6; sbit H2=P3^7;

sbit L1=P0^5; sbit L2=P0^6; sbit L3=P0^7; uint m=0,i=0,j; uchar temp,prt; /***y延时函数***/ void delay(uint k) { uint i,j; //定义局部变量ij for(i=0;i

{ m=1; //KEY1键按下 return(m); } if(H2==0) { m=4; //KEY4键按下 return(m); } } } if(L2==0) { delay(5); if (L2==0) { L2=0;H1=1;H2=1; if(H1==0) { m=2; //KEY2键按下 return(m); } if(H2==0) { m=5; //KEY5键按下 return(m); } } } if(L3==0) { delay(5); if (L3==0) { L3=0;H1=1;H2=1; if(H1==0) { m=3; //KEY3键按下

单片机串口通讯实验报告

实验十单片机串行口与PC机通讯实验报告 ㈠实验目的 1.掌握串行口工作方式的程序设计,掌握单片机通讯的编制; 2.了解实现串行通讯的硬环境,数据格式的协议,数据交换的协议; 3.了解PC机通讯的基本要求。 ㈡实验器材 1.G6W仿真器一台 2.MCS—51实验板一台 3.PC机一台 ㈢实验内容及要求 利用8051单片机串行口,实现与PC机通讯。 本实验实现以下功能,将从实验板键盘上键入的字符或数字显示到PC 机显示器上,再将PC机所接收的字符发送回单片机,并在实验板的LED上显示出来。 ㈣实验步骤 1.编写单片机发送和接收程序,并进行汇编调试。 2.运行PC机通讯软件“commtest.exe”,将单片机和PC机的波特率均设定 为1200。 3.运行单片机发送程序,按下不同按键(每个按键都定义成不同的字符), 检查PC机所接收的字符是否与发送的字符相同。 4.将PC机所接收的字符发送给单片机,与此同时运行单片机接受程序,检 查实验板LED数码管所显示的字符是否与PC机发送的字符相同。

㈤ 实验框图

源程序代码: ORG 0000H AJMP START ORG 0023H AJMP SERVE ORG 0050H START: MOV 41H,#0H ;对几个存放地址进行初始化 MOV 42H,#0H MOV 43H,#0H MOV 44H,#0H MOV SCON,#00H ;初始化串行口控制寄存器,设置其为方式0 LCALL DISPLAY ;初始化显示 MOV TMOD,#20H ;设置为定时器0,模式选用2 MOV TL1, #0E6H ;设置1200的波特率 MOV TH1, #0E6H SETB TR1 ;开定时器 MOV SCON,#50H ;选用方式1,允许接收控制 SETB ES SETB EA ;开中断 LOOP: ACALL SOUT ;键盘扫描并发送,等待中断 SJMP LOOP SERVE JNB RI,SEND ;判断是发送中断还是接收中断,若为发送中 断则调用 ACALL S IN ;发送子程序,否则调用接收子程序 RETI SEND: CLR TI ;发送子程序 RETI SIN: CLR RI ;接受子程序 MOV SCON, #00H MOV A, SBUF ;接收数据 LCALL XS ;调用显示子程序 RETI 子程序: SOUT: CLR TI ;清发送中断标志位 LCALL KEY ;调用判断按键是否按下子程序 MOV A,R0 ;将按键对应的数字存入A MOV SBUF,A ;输出按键数字给锁存 RET KEY: MOV P1,#0FFH ;将P1设置为输入口 MOV A, P1 CPL A ;将A内值取反

串口通信

串口通信 设 计 说 明 书

一、设计目的 串口通信是指外设和计算机间,通过数据信号线、地线、控制线等,按位进行传输数据的一种通讯方式。串口通讯如其名,是通过串行接口进行通讯。而串口则是电脑的一个接口,是一种可以将接受来自CPU的并行数据字符转换为连续的串行数据流发送出去,同时可将接受的串行数据流转换为并行的数据字符供给CPU的器件。在这个信息发展飞快的时代,网络通讯已经成为了主流通讯,但是时至今日网络安全问题仍然是比较难解决的问题,而串口通讯则不需要网络,只要把插上串口线即可,并且这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,所以就需要使用串口通讯软件进行通讯。 二、设计方法 本串口通信软件又叫串口调试助手,本串口调试助手是运用VC++进行编程的,其基本的程序框图如图1-1所示:、 图1-1 两个串口调试助手要成功的进行通讯就必须要有串口、接受编辑框、发送编辑框和发送按钮,除了这些控件和编辑框外,还有波特率的组合框、校验位组合框、数据位组合框、停止位组合框、清空按钮、停止按钮等等的控件。打开VC++6.0后,先建立一个MFC的基本对话框,然后就要添加各种控件,完成添加后如图1-2所示:

图1-2 在完成此部分以后就把SerialPort的头文件和Cpp文件复制到本文件的文件夹中,在点击菜单栏的工程,把复制的文件增加到工程中,然后再把图示的各个控件进行定义,每一个控件都是独立存在的,所以就应该赋予每一个控件独立的ID,接着就是为控件添加成员变量,但成员变量并不是每一个都需要的。通过点击菜单栏的查看→建立类向导→Member Variables→Add Variables,添加完成后如 图1-3所示: 图1-3

单片机实验报告串行口

单片机实验报告 实验名称:串行通信实验 姓名:魏冶 学号:090402105 班级:光电一班 实验时间:2011-11-29 南京理工大学紫金学院电光系

一、实验目的 1、理解单片机串行口的工作原理; 2、学习使用单片机的TXD、RXD口; 3、了解MAX232芯片的使用。 二、实验原理 MCS-51单片机内部集成有一个UART,用于全双工方式的串行通信,可以发送、接收数据。它有两个相互独立的接收、发送缓冲器,这两个缓冲器同名(SBUF),共用一个地址号(99H),发送缓冲器只能写入,不能读出,接收缓冲器只能读出,不能写入。 要发送的字节数据直接写入发送缓冲器,SBUF=a;当UART接收到数据后,CPU从接收缓冲器中读取数据,a=SBUF;串行接口内部有两个移位寄存器,一个用于串行发送,一个用于串行接收。定时器T1作为波特率发生器,波特率发生器的溢出信号做接收或发送移位寄存器的移位时钟。TI和RI分别发送完数据和接收完数据的中断标志,用来向CPU发中断请求。 三、实验内容 1、学会DPFlash软件的操作与使用,以及内部内嵌的一个串口调试软件的使用。 2、用串口连接PC机和DP-51PROC单片机综合仿真实验仪。 3、编写一个程序,利用单片机的串行口发送0x55,波特率为9600。 程序设计流程图

4、程序下载运行后,可在PC机上的串口调试软件上(内嵌在DPFlash软件的串口调 试器,设置通信口为COM1口,波特率为9600,数据位8,停止位1)看到接收到“UUUUUU……”,出现这样的结果就基本达到要求。 (1)代码: #include void main() { long int i; SCON=0x40; PCON=0; TMOD=0x20; TH1=0xfd; TL1=0xfd; TI=1; TR1=1; star:for(i=0;i<5000;i++); SBUF=0x55; goto star; } (2)电路图; 5、在单片机接收到0x55时返回一个0x41,在PC机一端,以接收到0x41完成,波特率2400。

com串口通信详解

串口通信详解 一、RS-232 RS-232在1962年发布,命名为EIA-232-E,作为工业标准,以保证不同厂家产品之间的兼容。RS-232-C是美国电子工业协会EIA(Electronic Industry Association)制定的一种串行物理接口标准。RS是英文“推荐标准”的缩写,232为标识号,C表示修改次数。RS-232-C总线标准设有25条信号线,包括一个主通道和一个辅助通道。在多数情况下主要使用主通道,对于一般双工通信,仅需几条信号线就可实现,如一条发送线、一条接收线及一条地线。RS-232-C标准规定的数据传输速率为每秒50、75、 100、150、300、600、1200、2400、4800、9600、19200波特。RS-232-C标准规定,驱动器允许有2500pF的电容负载,通信距离将受此电容限制,例如,采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。传输距离短的另一原因是RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。 目前RS-232是PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。RS-232采取不平衡传输方式,即所谓单端通讯。 收、发端的数据信号是相对于信号地,如从DTE设备发出的数据在使用DB25连接器时是2脚相对7脚(信号地)的电平,DB25各引脚定义参见图1。典型的RS-232信号在正负电平之间摆动,在发送数据时,发送端驱动器输出正电平在+5~+15V,负电平在-5~-15V 电平。当无数据传输时,线上为TTL,从开始传送数据到结束,线上电平从TTL电平到RS-232电平再返回TTL电平。接收器典型的工作电平在+3~+12V与-3~-12V。由于发送电平与接 收电平的差仅为2V至3V左右,所以其共模抑制能力差,再加上双绞线上的分布电容,其传

实验7串行接口输入输出实验

北京林业大学 11学年—12学年第 2 学期计算机组成原理实验任务书 专业名称:计算机科学与技术实验学时: 2 课程名称:计算机组成原理任课教师:张海燕 实验题目:实验七串行接口输入输出实验 实验环境:TEC-XP+教学实验系统、PC机 实验内容 1.串行接口输入输出; 2.串行接口扩展。 实验目的 学习串行口的正确设置与使用。 实验要求 1.实验之前认真预习,明确实验的目的和具体实验内容,做好实验之前的必要准备。 2.想好实验的操作步骤,明确通过实验到底可以学习哪些知识,想一想怎么样有意识地提高教学实验的真正效果; 3.在教学实验过程中,要爱护教学实验设备,记录实验步骤中的数据和运算结果,仔细分析遇到的现象与问题,找出解决问题的办法,有意识地提高自己创新思维能力。 4.实验之后认真写出实验报告,重点在于预习时准备的内容,实验数据,运算结果的分析讨论,实验过程、遇到的现象和解决问题的办法,自己的收获体会,对改进教学实验安排的建议等。善于总结和发现问题,写好实验报告是培养实际工作能力非常重要的一个环节,应给以足够的重视。 必要知识 串行接口是计算机主机和某些设备之间实现通信,硬件造价比较低廉、标准化程度比较高的一种输入输出接口线路,缺点是通信的速度比较低。从在程序中使用串行接口芯片的角度看,接口芯片内有用户可以访问的4个寄存器,分别是接收CPU送来数据的输出数据缓冲

寄存器,向CPU提供数据的输入数据缓冲寄存器,接收CPU发来的控制命令的控制寄存器,向CPU提供接口运行状态的状态寄存器,必须有办法区分这4个寄存器。接口芯片中还有执行数据串行和并行转换的电路,接口识别电路等。 串行接口用于执行数据的输入输出操作。一次输入或输出操作通常需要两个操作步骤完成,第一步是为接口芯片提供入出端口地址,即把指令寄存器低位字节的内容(8位的IO端口地址)经过内部总线和运算器部件写进地址寄存器AR,第二步是执行输入或输出操作,若执行输入指令IN,则应从接口芯片读出一个8位的数据并经过数据总线DB和内部总线IB写进寄存器堆中的R0寄存器,若执行OUT指令,则需要把R0寄存器的内容经过内部总线IB和数据总线DB写入接口芯片。接口芯片与输入输出设备之间的数据传送过程无需另外管理,会自动完成。 教学计算机使用8位的IO端口地址,安排在IN和OUT指令的低位字节,指令的高8位用作指令操作码,16为的指令编码全部占满,已经不能再指定要使用的通用寄存器,最终决定用对IN和OUT指令默认使用运算器中的R0完成输入输出操作。IO地址端口的高4为(最高一位的值一定为1)用于通过译码电路产生接口芯片的8个片选信号,低4位用于选择一个芯片内最多16个寄存器。教学计算机中,只为每个串行口芯片地址分配了两个地址,第一路串行接口的端口地址为80H/81H,第二路串行接口的端口地址可以由用户从90/91~F0/F1这8对中选择,把译码器的一个输出连接到接口芯片的片选信号引脚。两个端口地址如何能够按照选择接口芯片内的4个寄存器呢?请注意,4个寄存器中的两个只用于输入,仅对IN 指令有用,另外两个只用于输出,仅对OUT指令有用。2个端口地址和2条输入输出指令有如下4种组合,分别实现如下4项功能: IN 80:完成从接口芯片输入数据缓冲器读出8位数据并传送到R0寄存器低位字节; OUT 80:完成把R0寄存器低位字节的8位数据写入到接口芯片的输出数据缓冲器; IN 81:完成从接口芯片状态寄存器读出8位接口状态信息并传送到R0寄存器低位字节; OUT 81:完成把R0寄存器低位字节的8位命令信息写入到接口芯片的命令寄存器。 可以看到,偶数地址用于输入输出数据,奇数地址用于输入输出状态或命令信息。 实验说明 1.TEC-XP+配置了两个串行接口COM1 和COM2,其中COM1 口是系统默认的串行口,加电复位后,监控程序对其进行初始化,并通过该口与PC 机或终端相连;而COM2 口,留给用户扩展用。

ARM的串行口实验.

课程名称:嵌入式技术开课机房:11号机房 2012年4月1日星期二8:10~11:35 专业班级通信 09( 班 学号 Xb09680204 姓 名 江 立 坤 实验项目名称实验3—— ARM的串行 口实验 指导教师陈玮 一、实验任务与实验目的 实验目的1. 了解UART的基本知识 2. 掌握基于群星系列CM3程序库的UART配置、数据收发编程 3. 学会串口调试助手或超级终端的使用 实验任务任务一:使用Stellaris驱动库函数,编写可以接收及发送字符串的基于EASY ARM 8962开发板的UART驱动程序 任务二:在Microsoft Visual Studio开发环境下,使用C#编写一桌面程序,要求可以通过串口发送指令,使用其打开LED3~LED6。命令协议可以自己定义。 二、报告内容

任务一 #include"uartGetPut.h" #include"systemInit.h" #include #include #include #define PART_LM3S8962 #include // 定义接收缓冲区 #define MAX_SIZE 40 // 缓冲区最大限制长度 char RxBuf[1 + MAX_SIZE]; // 接收缓冲区 int BufP = 0; // 缓冲区位置变量 tBoolean RxEndFlag = false; // 接收结束标志 // UART2中断服务函数 void UART0_ISR(void { char c; unsigned long ulStatus; ulStatus = UARTIntStatus(UART0_BASE, true; // 读取当前中断状态 UARTIntClear(UART0_BASE, ulStatus; // 清除中断状态 if ((ulStatus & UART_INT_RX || (ulStatus & UART_INT_RT // 若是接收中断或者{ // 接收超时中断 for (;; { if (!UARTCharsAvail(UART0_BASE break; // 若接收FIFO里无字符则跳出 c = UARTCharGetNonBlocking(UART0_BASE; // 从接收FIFO里读取字符 if (c == '\r' { UARTCharPut(UART2_BASE, '\r'; // 回显回车换行

相关主题
文本预览
相关文档 最新文档