当前位置:文档之家› 专题训练之平衡问题及整体与隔离法

专题训练之平衡问题及整体与隔离法

专题训练之平衡问题及整体与隔离法
专题训练之平衡问题及整体与隔离法

专题一:平衡问题及整体与隔离法

方法一:(矢量三角形法则)(其中三力使物体平衡,且三力中有两个力方向不发生改变)

1.如图,绳OA、OB等长,O点固定不动,在手持B点沿圆弧向C点运动的过程中,绳OB的张力将

()

A.由大变小 B.由小变大

C.先变小后变大 D.先变大后变小

2.如图,用轻线悬挂的球放在光滑的斜面上,将斜面缓慢向左水平推动一小段距离,在这一过程中,关于线对球的拉力及球对斜面的压力的变化情况,正确的是()

A.拉力变小,压力变大 B.拉力变大,压力变小

C.拉力和压力都变大 D.拉力和压力都变小

3.把一个均匀球放在光滑斜面和一个光滑挡板之间.斜面的倾斜角α一定,挡板与斜面的夹角是θ

(如图),设球对挡板的压力为N A,球对斜面的压力为N B。以下说法正确()

A.θ=α时,N B=0

B.θ=90°时,N A最小

C.N B有可能大于小球所受的重力

D.N A不可能大于小球所受的重力

4.如图所示,用与竖直方向成θ角(θ<45°)的倾斜轻绳a和水平轻绳b共同固定一个小球,这时绳b的拉力为T1。现保持小球在原位置不动,使绳b在原竖直平面内逆时转过θ角固定,绳b的拉力变为T2;再转过θ角固定,绳b的拉力为T3,则()

A.T1=T3>T2

B.T1<T2<T3

C.T1=T3<T2

D.绳a的拉力减小

5.一个半径为r,重为G的圆球,被长为L的细绳挂在竖直的,光滑的墙壁上,若加长细绳的长度,则细绳对球的张力T及墙对球的弹力N各将如何变化:如右图所示()

A.T一直减小,N先增大后减小

B.T一直减小,N先减小后增大

C.T和N都减小

D.T和N都增大。

6.(12陕西)如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中

A.N 1始终减小,N 2始终增大 始终减小,N 2始终减小 先增大后减小,N 2始终减小 先增大后减小,N 2先减小后增大

方法二:(相似三角形法)该方法适用于三力平衡时其中两个力的方向发生变化

例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )

A 、N 变大,T 变小

B 、N 变小,T 变大

C 、N 变小,T 先变小后变大

D 、N 不变,T 变小

解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:

R

N

R h mg L T =+= 可得:mg R

h L

T +=

运动过程中L 变小,T 变小。 mg R

h R

N +=

运动中各量均为定值,支持力N 不变。正确答案D 。 例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、

B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏

空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小

B 、T 变大

C 、T 不变

D 、T 无法确定

解析:有漏电现象,AB F 减小,则漏电瞬间质

点B 的静止状态被

打破,必定向下运动。对小球漏电前和漏电过程中进行受力分析有如图2-2所示,由于漏电过程缓慢进行,则任意时刻均可视为平衡状态。三力作用构成动态下的封闭三角形,而对应的实物质点A 、B 及绳墙和P 点构成动态封闭三角形,且有如图2-3不同位置时阴影三角形的相似情况,则有如下相似比例:

AB F

PB T PQ mg AB == 可得:mg PQ

PB

T ?= 变化过程PB 、PQ 、mg 均为定值,所以T 不变。正确答案C 。 练习题:

1. 如图1所示,支架ABC ,其中,在B 点挂一重物,

,求AB 、

BC 上的受力。

答案:

2. 两根等长的轻绳,下端结于一点挂一质量为m 的物体,上端固定在天花板上相距为S 的两点上,已知两绳能承受的最大拉力均为T ,则每根绳长度不得短于多少

答案:

3.如图所示,竖直绝缘墙壁上的Q 处有一固定的质点A ,在Q 的正上方的P 点用丝线悬另一质点B ,A 、B 两质点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的带电荷量逐渐减少,在电荷漏电完之前悬线对悬点P 的拉力大小( ) A. 变小 B. 变大

C. 不变

D. 无法确定

答案:C

4. 如图所示,两球A 、B 用劲度系数为k 1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点O 、A 之间的距离恰为L ,系统平衡时绳子所受的拉力为F 1.现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F 2,则F 1与F 2的大小之间的关系为( ) A .F 1>F 2 B .F 1=F 2 C .F 1

5.如图甲所示,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的重物,且B 端系有一根轻绳并绕过定滑轮A.现用力F 拉绳,开始时∠BCA >90°,使∠BCA 缓慢减小,直到杆BC 接近竖直杆AC.此过程中,杆BC 所受的力( ) A .大小不变 B .逐渐增大 C .逐渐减小 D .先增大后减小

答案:A

6、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D 用绳拴住通过滑轮固定于墙上的A 点。若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中( ) A.绳的拉力、滑轮对绳的作用力都增大 B.绳的拉力减小,滑轮对绳的作用力增大 C.绳的拉力不变,滑轮对绳的作用力增大 D.绳的拉力、滑轮对绳的作用力都不变

答案 C

7、如图所示,竖直杆CB 顶端有光滑轻质滑轮,轻质杆OA 自重不计,可绕O 点自由转动OA =OB .当绳缓慢放下,使∠AOB 由00

逐渐增大到1800

的过程中(不包括00

和180°

.下列说法正确的是( ) A .绳上的拉力先逐渐增大后逐渐减小 B .杆上的压力先逐渐减小后逐渐增大 C .绳上的拉力越来越大,但不超过2G D .杆上的压力大小始终等于G 答案:C D

方法三(正交分解法)

例2:(2010陕西新课标)如图所示,一物块置于水平地面上。当用与水平方向成0

60角的力1F 拉物块时,物块做匀速直线运动;当改用与水平方向成0

30角的力2F 推物块时,物块仍做匀速直线运动。若1F 和2F 的大小相等,则物块与地面之间的动摩擦因数为 ( )

A.31-

B.23-

C.

3122- 3

2

A C B

例2 如图所示,质量为m ,横截面为直角三角形的物块ABC ,AB 边靠在竖直墙面上,物块与墙面间的动摩擦因数为μ,F 是垂直于斜面BC 的推力,物块沿墙面匀速下滑,则物块所受到的摩擦力的大小为 ( )

A .αsin F mg +

B .αsin F mg -

C .mg μ

D .αμcos F

练习

1.如图,AB 两物体质量相等,B 用细绳拉着,绳与倾角θ的斜面平行。A 与B ,A 与斜面间的动摩擦因数相同,若A 沿斜面匀速下滑,求动摩擦因数值。

2.跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为θ的斜面上,如图。已知物体A 的质量为m ,物体A 与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A 静止在斜面上,求物体B 的质量取值范围。

方法四:正弦定理的应用

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。即

C

c B A sin sin b sin a ==

例1.(2008年四川延理综考卷)两个可视为质点的小球a 和b ,用质量可忽略的刚性细杆相连,放置在一个光滑的半球面内,如图1所示。己知小球a 和b 的质量之比为3,细杆长度是球面

半径的2倍。两球处于平衡状态时,细杆与水平面的夹角θ是

A .450

B .300

C .

D .150

难点处理(“死节”和“活节” “死杆”和“活杆”问题)

1.如图所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体,平衡时,问:

①绳中的张力T 为多少 ②B 点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力如何变化

A

C

B

F α

图1

(T 1=T 2=10N B 点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力均保持不变。)

2.如图,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点,OB 与竖直方向夹角为θ,悬挂物质量为m 。 求: ①OA 、OB 、OC 三根绳子拉力的大小。

②A 点向上移动少许,重新平衡后绳中张力如何变化 ( T 1=T 2sin θ ,G =T 2cos θ但A 点向上移动少许,重新平衡后,绳OA 、OB 的张力均要发生变化)

3.如图所示,质量为m 的物体用细绳OC 悬挂在支架上的O 点,轻杆OB 可绕B 点转动,求细绳OA 中张力T 大小和轻杆OB 受力N 大小。

4.如图所示,水平横梁一端A 插在墙壁内,另一端装有小滑轮B ,一轻绳一端C 固定于墙壁上,另一端跨过滑轮后悬挂一质量为m =10kg 的重物,?=∠30CBA ,则滑轮受到绳子作用力为: A .50N B .N 350 C .100N D .N 3100

处理技巧(对称方法及应用)

1.(对称原理与隔离法)如图所示,重为G 的均匀链条。两端用等长的细线连接,挂在等高的地方,绳与水平方向成θ角。试求:⑴绳子的张力。⑵链条最低点的张力。

2.如图,在光滑的水平杆上,穿着两个重均为2N 的球A 、B ,在两球之间夹着一弹簧,弹簧的劲度系数为10N/m ,用两条等长的线将球C 与A ,B 相连,此时弹簧被压缩短10cm ,两条线的夹角为60°。求。⑴杆对A 球的支持力多大⑵ C 球的重力多大

3.如图所示的装置中,绳子与滑轮的质量不计,滑轮轴上的摩擦不计。A 、B 两物体的质量分别为m 1和m 2 ,处于静止状态,则以下说法不正确的是( ) A .m 2一定等于m 1 B .m 2一定大于m 1g/2 C .θ1角与θ2角一定相等

D .当B 的质量m 2稍许增加时,θ1+θ2一定增大,系统仍能达到平衡状态

4.质量为10kg 的均匀圆柱体放在倾角为60°的V 型槽上,圆柱体与槽间的动摩擦因数为.沿着圆柱体的轴向施加一个推力F ,使圆柱体沿槽做匀速直线运动。求F 的大小。

5.(2011年江苏)如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g ,若接触面间的摩擦力忽略不计,旵石块侧面所受弹力的大小为

A .

2sin mg α B . 2s mg

co α

C . 1tan 2mg α

D .1

t 2

mgco α

方法五:整体与隔离法

对于连结体问题,通常用隔离法,但有时也可采用整体法.

如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便; 不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法.

对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法.

例1、 如图1-1所示,物体A 、B 各重10N ,水平拉力F 1=5N,物体均处于静止状态,则,A 、B 间的静摩擦力大小为

N,B 与地面间的摩擦力大小为 N 。

拓展1、如图1-2所示,物体A 、B 各重10N ,水平拉力F 1=5N,F 2=3N,物体均处于静止状态,则,A 、B 间的静摩擦 力大小为 N,B 与地面间的摩擦力大小为 N 。

拓展2、如图1-3所示,物体A 、B 各重10N ,水平拉力F 1=5N,F 2=3N, 且F 1、F 2与水平方向的夹角均为370

,物体均

处于静止状态,则,A 、B 间的静摩擦力大小为 N,B 与地面间的摩擦力大小为 N 。

例2、如图所示,用细绳悬挂两小球a 、b ,若在两小球a 、b 上施加大小相等、方向相反的作用力F 和F 1,则最

后达到平衡状态的情况可能是图中的( )

例3、如图4所示,人重400N ,木板重600N ,人与木板、木板与地面间动摩擦因数均为,现在人用水平力拉绳,使他与木板一起向右匀速运动,则:( )

A 、人拉绳的力是200N

B 、人拉绳的力是100N

C 、人的脚给木板的摩擦力为零

D 、人的脚给木板的摩擦力向左

例4、如图5所示,人重600N ,平板重400N ,若整个系统处于平衡状态,则人对绳子的拉力为 N 。(滑轮和绳的质量及摩擦不计)

例5、有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间有一根质量可忽略,不可伸长的细绳相连,并在某一位置平衡,如图6所示,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比较,AO 杆对P环的支持力F N和细绳上的拉力F T的变化情况是()

A. F N不变,F T变大;

B. F N不变,F T变小;

C. F N变大,F T变大;

D. F N变大,F T变小。

例6、如图7所示,质量为m的滑块Q沿质量为M的斜面P匀速下滑,斜面P静止在水平地面上,则在滑块Q下滑的过程中,地面对斜面P的()

A、摩擦力方向向右,支持力大小为(m+M)g

B、摩擦力为零,支持力大小为(m+M)g

C、摩擦力方向向右,支持力小于(m+M)g

D、摩擦力为零,支持力小于(m+M)g

例8、如图8所示,在两块相同的竖直木板之间有质量均为m的四块完全相同的砖,用两个大小均为F的水平压力压木板,使砖保持静止不动,则,第二块砖对第三块砖的摩擦力的大小为()

A、0

B、mg

C、2mg

D、mg/2

例9、如图9所示,物体的质量为2Kg,两根轻细绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=530的拉力F,若要使细绳都能伸直,则拉力F大小的取值范围是。(g取10N/Kg)

牛顿第二定律——连接体问题(整体法与隔离法)

一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统

二、处理方法——整体法与隔离法

系统运动状态相同

整体法

问题不涉及物体间的内力

使用原则

系统各物体运动状态不同

隔离法

问题涉及物体间的内力

1、连接体整体运动状态相同:(这类问题可以采用整体法求解)

【例1】A 、B 两物体靠在一起,放在光滑水平面上,它们的质量分别为kg m A 3=,kg m B 6=,今用水平力N

F A 6=推A ,用水平力N F B 3=拉B ,A 、B 间的作用力有多大

【练1】如图所示,质量为M 的斜面A 置于粗糙水平地面上,动摩擦因数为μ,物体B 与斜面间无摩擦。在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。已知斜面的倾角为θ,物体B 的质量为m ,则它们的加速度a 及推力F 的大小为( )

A. )sin ()(,sin θμθ++==g m M F g a

B. θθcos )(,cos g m M F g a +==

C. )tan ()(,tan θμθ++==g m M F g a

D. g m M F g a )(,cot +==μθ

【练2】如图所示,质量为2m 的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为1m 的物体,与物体1相连接的绳与竖直方向成θ角,则( )

A. 车厢的加速度为θsin g

B. 绳对物体1的拉力为θcos 1g

m

C. 底板对物体2的支持力为g m m )(12-

D. 物体2所受底板的摩擦力为θtan 2g m

2【例2】环的质量为m A. Mg + mg B. Mg —ma C. Mg + ma D. Mg + mg – ma

【练3】如图所示,一只质量为m 的小猴抓住用绳吊在天花板上的一根质量为M 的竖直杆。当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。则杆下降的加速度为( )

A. g

B. g M m

C. g M m M +

D. g

M m M -

【练4它自由滑下,那么测力计因4 N N

3 N

N

N

【练5】如图所示,A 、B 的质量分别为m A =,m B =,盘C 的质量m C =,现悬挂于天花板O 处,处于静止状态。当用火

柴烧断O 处的细线瞬间,木块A 的加速度a A 多大木块B 对盘C 的压力F BC 多大(g 取10m/s 2

A B

F A F B

B

θ

A

F

M

m

A B C

O

连接体作业

1、如图所示,小车质量均为M,光滑小球P的质量为m,绳的质量不计,水平地面光滑。要使小球P随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F各是多少(θ已知)

球刚好离开斜面球刚好离开槽底

F= F= F= F=

2、如图所示,A、B质量分别为m1,m2,它们在水平力F的作用下均一起加速运动,甲、乙中水平面光滑,两物

体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A、B间的摩擦力和弹力。

f= f= F AB= F AB=

3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a,使三个物体保持静止,一起作加

速运动,则各物体所受的合外力(

A.a最大 B.c最大 C.同样大 D.b最小

4、如图所示,小车的质量为M,正在向右加速运动,一个质量为m的木块紧靠在车的前端相对于车保持静止,则下列

说法正确的是( )

A.在竖直方向上,车壁对木块的摩擦力与物体的重力平衡

B.在水平方向上,

C.若车的加速度变小,

D.若车的加速度变大,

5、物体A、B叠放在斜面体C上,物体B

运动的过程中,物体A、B

2

f

F

),则()

A.

1

=

f

F

B. 2f

F

C. 1f

F

水平向左 D. 2f

F

6、如图3所示,质量为M

F

a

b

c

至速度为零后加速返回,而物体M

A. 地面对物体M 的摩擦力方向没有改变;

B. 地面对物体M 的摩擦力先向左后向右;

C. 物块m 上、下滑时的加速度大小相同;

D. 地面对物体M 的支持力总小于g m M )(+

7、如图所示,质量M =8kg 在小车的前端轻轻放上一大小不计、质量m =2kg 从放在小车上开始经t =通过的位移大小.(g 取10m/s 2

)

8、如图6所示,质量为A m 的物体A 沿直角斜面C

9、如图10所示,质量为M 的滑块C 与滑块间动摩擦因数为

μ

,细绳跨过滑轮后将B 推力F 作用于滑块,为使A 和B 与滑块保持相对静止,F

高中物理中V -t 图象的应用赏析

一.用t v -图象解匀变速问题

例1.A 、B 两车由静止开始运动,运动方向不变,运动总位移相同,A 行驶的前一半时间以1a 做匀加速运动,后一半时间以2a 做匀加速运动;而B 则是前一半时间以2a 1做匀加速运动,若

21a a >,则两车相比

A .A 车行驶时间长,末速度大

B .B 车行驶时间长,末速度大

C .A 车行驶时间长,末速度小

D .B 车行驶时间长,末速度小

解析:A 、B 两车分别以不同的加速度沿一直线做加速度运动,但具有相同的总位移。再跟据V-t 图象中可用“面

积”表示位移,作出A 、B 两车的V-t 图象(如图1所示),从图中很容易得出B 选项正确。

答案:B

例2.如图2所示,两个光滑的斜面高度相同,右边由两部分组成且AB +BC =AD ,两小球a 、b 分别在A 点从斜面

B t

v

A v

A t o 图1 A a

b

顶端由静止滑下,不计转折处的能量损失,哪一小球先滑到斜面底端.

解析:两小球从等高处沿光滑的斜面下滑(由静止),由于两边斜面倾角不同,下滑的加速度不同(a AB >a AD >a BC ),根据机械能守恒定律,两球达到底端的速度大小相等,因此画出其v-t 图象如图3所示,其中折线为沿ABC 斜面下滑的a 球的速度图象,直线为沿AD 斜面下滑的b 球的速度图象. 要满足a 、b 两图线下方的面积相等,必须使图中画有斜线部分的两块面积相等,那就一定有t a

答案:沿ABC 下滑的a 小球先到达底端.

练习:1.(2010年江苏)如图所示,平直木板AB 倾斜放置,板上的P 点距A 端较近,小物块与木板间的动摩擦因数由A 到B 逐渐减小,先让物块从A 由静止开始滑到B 。然后,将A 着地,抬高B ,使木板的倾角与前一过程相同,再让物块从B 由静止开始滑到A 。上述两过程相比较,下列说法中一定正确的有( ) (A )物块经过P 点的动能,前一过程较小

(B )物块从顶端滑到P 点的过程中因摩擦产生的热量,前一过程较少 (C )物块滑到底端的速度,前一过程较大

(D )物块从顶端滑到底端的时间,前一过程较长

2.(2011?山东)如图所示,将小球a 从地面以初速度v 0竖直上抛的同时,将另一相同质量的小球b 从距地面h 处由静止释放,两球恰在处相遇(不计空气阻力).则( )

A . 两球同时落地

B . 相遇时两球速度大小相等

C . 从开始运动到相遇,球a 动能的减少量等于球b 动能的增加量

D .

相遇后的任意时刻,重力对球a 做功功率和对球b 做功功率相等

例3.(10江苏)一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。桌布的一边与桌的AB 边重合如图4所示,已知盘与布间的动摩擦因数为1μ,盘与桌面间的动摩擦因数为2μ。现突然以恒定加速度a 将桌布抽离桌面,加速度的方向是水平的且垂直于AB 边。若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么(以g 表示重力加速度)

g a 11μ= (1) g a 22μ= (2)

2211t a t a v == (3) 作出小圆盘、桌布全过程的t v -图象(如图5所示)。 A B

a 图4

v

t

t 1 t 2 o

v

图5

图3

5v 2212121121L

t a at =- (4) )(2

1

21t t v s += (5)

欲使小圆盘不从桌面上掉下,则 2

L

s ≤ (6)

由以上6式可得 g a 12

2

12μμμμ+≥

答案:g a 12

2

12μμμμ+≥

二.用t v -图象解追击相遇问题

例4.甲乙两物体相距s

为0v ,加速度为1a 的匀加速运动。则 ( )

A .若21a a =,不可能相遇

B .若21a a <,可能相遇二次

C .若21a a >,可能相遇二次

D .若21a a <

,不可能相遇

解析:当21a a >或21a a =时,由于甲追上乙后,乙的速度比甲的速度小,乙不可能再追上甲,所以只能相遇一次;当21a a <时,作出t v -图象(如图6所示),若0t 时刻(即甲乙速度相等时)甲追上乙,之后甲的速度小于乙的速度,不可能再次相遇,即只能相遇一次;若1t 时刻相遇,此时甲的速度大于乙的速度,甲超上前,而当乙速度大于甲之后将反过来追赶甲,根据“面积”相等可知必定能在2t 时刻发生第二次相遇。故选项B 正确。

答案:B

例5.一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s 的速度匀速行使的货车严重超载时,决定前

去追击,经过后警车发动起来,并以s 2

以内。问:

(1)警车在追赶货车的过程中,两车间的最大距离

(2)警车发动后要追上货车的最短时间为多少

解析:作两物体运动的v -t 图象如图7有:

(1)速度相等时,两车间的距离最大,就是图中阴影部分的面积。

1

(5.59.5)10752

S m ?=+?=

(2)结合图象分析知,警车发动后要追上货车只能是先加速后匀速,两者位移相等,设警车运动的时间为t ,则警车加速时间为4s ,警车匀速时间为(t-10)s ,货车运动时间为s ,即两几何图形的面积要相等,有: 1

10( 5.5)[(10)]252

s t t t =?+=

-+? 解得:t=12s

例8.如图13所示,平板车的质量为2m ,长为L ,车右端有一块质量为m 的小金属块,开始都处于静止状态。金属块与车之间有摩擦,车与地面之间摩擦可忽略。现给车施加一个向右的水平恒力F ,使车向右运动,并且金属块在车上开始滑动。当金属块滑到车上某处时,金属块的速度为0v ,车的速度为02v ,这时撤去力F ,最后金属块恰好未从车上掉下,求撤去力F 的瞬间金属块在车上的位置。

v o 0 1 2

图6

1

2图7

解析:作v-t 图象(如图14所示)令经1t 时间撤去力F ,之后金属块又与车相对滑动了2t 时间。 根据2t 时间内系统动量守恒得

mv v m mv 32200=?+

所以: 03

5v v =

同时不难知道1t 、2t 时间内金属块的加速度相同,令加速度为a

001-=v at

0023

5

v v at -=

所以 2:3:21=t t

1t 、2t 时间内金属块与车相对滑动的位移在t v -图象中即为OAB S ?和ABC S ?,

又因为: L S S ABC OAB =+??

2:32

1

==??t t S S ABC OAB

故撤去力F 的瞬间金属块距离车的右端为

L 3

处。

“线”、“面”、“斜”、“截”的含义,尤其要注意图线的斜率、图线与时间轴所围的“面积”等的特殊物理意义。在解题的过程中,当我们山穷水尽之时若能用v-t 图象解题,往往是柳暗花明,而且还事半功倍。

高一物理必修一专题整体法和隔离法的应用

A 级 基础巩固题 1.如右图所示,长木板静止在光滑的水平地面上,一木块以速度v 滑上木板,已知木板质量是M ,木块质量是m ,二者之间的动摩擦因数为μ,那么,木块在木板上滑行时 ( ) A .木板的加速度大小为μmg /M B .木块的加速度大小为μg C .木板做匀加速直线运动 D .木块做匀减速直线运动 答案:ABCD 解析:木块所受的合力是摩擦力μmg ,所以木块的加速度为 μmg m =μg ,做匀减速直线运动;木板同样受到摩擦力作用,其加速度为μmg M ,做匀加速直线运动,故A 、B 、C 、D 均正确. 2.如下图所示,质量均为m 的A 、B 两球之间系着一条不计质量的轻弹簧放在光滑水平面上,A 球紧靠墙壁,今用力F 将B 球向左推压弹簧,平衡后,突然将力F 撤去的瞬间,则 ( ) A .A 球的加速度为F 2m B .A 球的加速度为零 C .B 球的加速度为F m D .B 球的加速度为零 答案:BC 解析:用力F 压B 球平衡后,说明在水平方向上,弹簧对B 球的弹力与力F 平衡,而A 球是弹簧对A 球的弹力与墙壁对A 球的弹力相平衡,当撤去了力F 的瞬间,由于弹簧的弹力是弹簧形变而产生的,这一瞬间,弹簧的形变没有消失,弹簧的弹力还来不及变化,故弹力大小仍为F ,所以B 球的加速度a B =F m ,而A 球受力不变,加速度为零,B 、C 两选项正确. 3.如下图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平地面上做匀减速运动,不计其它外力及空气阻力,则中间一质量为m 的土豆A 受到其他土豆对它的作用力大小应是 ( ) A .mg B .μmg C .mg 1+μ2 D .mg 1-μ2 答案:C 解析:对箱子及土豆整体分析知. μMg =Ma ,a =μg . 对A 土豆分析有 F =m 2(a 2+g 2)

整体法与隔离法应用练习题

整体法与隔离法应用练 习题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

整体 法与隔离法应用练习题 1、 如图所示,质量为2m 的物块A 与水平地面的摩擦可忽略不计,质量为m 的 物块B 与地面的摩擦系数为μ.在已知水平推力F 的作用下,A 、B 作加速运动.A 对B 的作用力为____. 答案:3 2mg F μ+ 2、如图所示,在光滑水平面上放着两个物体,质量m 2=2m 1,相互接触面是光滑的,与水平面的夹有为α。用水平力F 推m 1,使两物体一起做加速运动,则两物体间的相互作用力的大小是_____。 解:取A 、B 系统为研究对像F=(m 1+m 2)a=3m 1a ∴1 3m F a = 取m 2为研究对像N x =Nsin α=m 2a ∴αsin 2a m N = =113sin 2m F m α=α sin 32F 3、如右图所示,斜面倾角为θ,连接体A 和B 的质量分别为A m ,B m ,用沿斜面向上的力F 拉B 使它们一起沿斜面向上运动,设连接A ,B 的细绳上的张力为T ,则(1)若 它们匀速沿斜面向上运动,F :T=,(2)若它们匀加速沿斜面向上运动,F :T=。 答案:A B A m m m :)(+A B A m m m :)(+ 4、质量分别为m 和M 的物体叠放在光滑水平桌面上,A 受恒力F 1的作用,B 受恒力F 2的作用,二力都沿水平向,且F 1>F 2,运动过程中A 、B 二物体保持相对静止,物体B 受到的摩擦力大小为___________,方向为_________________。 答案: m M MF MF ++2 1;水平向左。 5、如图所示,两个木块1、2中间夹一根轻弹簧放在光滑水平 F 12 F

物理人教版高中必修1整体法和隔离法解决连接体问题

word整理版 学习参考资料 牛顿运动定律应用(二) 专题复习:整体法和隔离法解决连接体问题 导学案 要点一整体法 1.光滑水平面上,放一倾角为θ的光滑斜木块,质量为m 的光滑物体放在斜面上,如图所示, 现对斜面施加力F. (1)若使M静止不动,F应为多大? (2)若使M与m保持相对静止,F应为多大? 答案:(1)21mgsin 2θ (2)(M+m)gtanθ 要点二隔离法 2.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时 小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,即a=g/2,则小 球在下滑的过程中,木箱对地面的压力为多少? 答案:

gmM22 题型1 隔离法的应用 【例1】如图所示,薄平板A长L=5 m,质量M=5 kg, 放在水平桌面上,板右端与桌边缘相齐.在 word整理版 学习参考资料 A上距其右端s=3 m处放一个质量m=2 kg的小物体B,已知A与B之间的动摩擦因数μ1=0.1, A、B两物体与桌面间的动摩擦因数μ2=0.2,最初系统静止.现在对板A向右施加一水平恒力F,将A从B下抽出(设B不会翻转),且恰使B停在桌面边缘,试求F的大小(取g=10 m/s2). 答案: 26 N 题型2 整体法与隔离法交替应用 【例2】如图所示,质量m=1 kg的物块放在倾斜角θ=37°的斜面上,斜面体的质量M=2 kg, 斜面与物体间的动摩擦因数μ=0.2,地面光滑.现对斜 面体施加一水平推力F,要使物体m 相对斜面静止,F应为多大?(设物体与斜面的最大静摩 擦力等于滑动摩擦力,g取10 m/s2) 答案: 14.34 N

最新精选整体法隔离法习题附答案

F N 三2mg ------------ ① 其中,F N 、F N /分别为环P 、Q 所受支持力。由①式可知, F N 大小不变。 然后,依“极限思维”分析,当环P 向左移至0点时,环Q 所受的拉力T 、支持力F N /逐渐减小为 mg 、0。由此可知, 左移时 环P 所受摩擦力将减小。 因此,正确的答案为:选 B 。 静力学中存在着大量的类似此例的“连接体”问题。解题思维方法,无非为“整体” 、“隔离”两种分析方法的交替 使用,至于是先“整体”、还是“隔离”,则因题而异,变通确定。 2.如图所示,叠放在一起的 A 、B 两绝缘小物块放在水平向右的匀强电场中,其中 B 带+Q 的电量,A 不带电;它们 一起沿绝缘水平面以某一速度匀速运动。现突然使 B 带电量消失,A 带上+Q 的电量,则A 、B 的运动状态可能为 A E — A. —起匀速 B .一起加速 C. 一起减速 D. A 加速,B 匀速 【答案】A 【解析】 试题分析:由题意知B 受到的向右的电场力与地面对 B 向左的摩擦力大小相等, 当B 带电量消失,A 带上+Q 的电量 时,要讨论AB 间的的摩擦力与地面对 B 的摩擦力之间的大小关系, 当AB 间的的摩擦力大于或等于地面对 B 的摩擦 力时,AB 还是一起运动,可把 AB 看成整体,整体受到的电场力与摩擦力平衡,所以仍然一起做匀速运动, A 对, BC 错;当AB 间的的摩擦力小于地面对 B 的摩擦力时,此时 A 做加速运动,B 做减速运动,D 错。 考点:本题考查受力分析,整体法 点评:本题学生要讨论 AB 间的的摩擦力与地面对 B 的摩擦力之间的大小关系, 从而去判断AB 是一起运动还是分开 运动。 3?两个质量相同的小球用不可伸长绝缘的细线连结,置于场强为 E 的匀强电场中,小球 1带正电,电量为2q,小 球2带负电,电量大小为 q 。将细线拉直并使之与电场方向平行,如图所示。若将两小球同时从静止状态释放,则 1.如图为一直角支架 AOB, AO 水平放置,表面粗糙, 0B 竖直向下,表面光滑。 AO 上套有小 环P ,0B 上套有小环 Q ,两环质量均为 m ,两环由一根质量可忽略、不可伸长的细绳相连,并 在图示位置平衡。现将 P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态 和原来的平衡状态比较, A0杆对P 环的支持力F N 和摩擦力f 的变化情况是( A . F N 不变,f 变大 B. F N 不变,f 变小 C. F N 变大,f 变大 D . F N 变大,f 变小 【答案】B 【解析】分析受力作出示意图。再把两环、细绳作为“整体”研究可知,小环 P 所受支持力等 A 于2mg 即 mg --------- ②

整体法和隔离法习题有答案)

一、选择题(本题共12小题,每题3分,共 1.以下对于惯性的认识中不正确的是:( A B .处于完全失重状态的物体惯性消失 C .相同力作用下加速度小的物体惯性大 D 2.如图1所示,重物B 放在光滑的平板车连结起来。当A 和B ( A ) A .重力、支持力;C .重力、支持力、弹簧拉力、摩擦力; 3A .用50N B .一个真实的力F 可以正交分解为F 1和 C D 4.放在光滑平面上的物体受水平向右的力F 1和水平向左的力F 2,原先F 1>F 2,物体向右运动。在F 1 逐渐减小到等于F 2的过程中,发生的物理情景是:( B ) 5 6(

7.如图4静止。突然发现物体A A .匀速上升; B .加速下降; C .加速上升; D .减速上升。 8.如图6(a ),滑块M 在质量为m 撤去,改用拉力F 拉细绳,如图(b 则:( B ) A .a 2=a 1; B .a 2>a 1; C .a 2

最新 高考物理整体法隔离法解决物理试题专题训练答案

最新高考物理整体法隔离法解决物理试题专题训练答案 一、整体法隔离法解决物理试题 1.a、b两物体的质量分别为m1、m2,由轻质弹簧相连。当用大小为F的恒力沿水平方向拉着 a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x1;当用恒力F竖直向上拉着 a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x2;当用恒力F倾斜向上向上拉着 a,使a、b一起沿粗糙斜面向上做匀加速直线运动时,弹簧伸长量为x3,如图所示。则() A.x1= x2= x3 B.x1 >x3= x2 C.若m1>m2,则 x1>x3= x2 D.若m1

高中物理整体法和隔离法在平衡问题中的应用

高中物理整体法和隔离法在平衡问题中的应用 在处理静力学问题时,首先就是研究对象的选取。选取研究对象的基本方法有两种: 一是整体法,即以两个或两个以上的物体组成的系统为研究对象进行分析。它适用于处理不需要或不涉及整体内各物体间的相互作用的情况。 二是隔离法,即把研究对象从整体中隔离出来进行分析。它适用于求解整体内物体间的相互作用的问题。 在有些较复杂的物理问题中整体法和隔离法往往要交替使用。 下面通过几个例子来介绍整体法和隔离法在解平衡问题中的应用。 例1、如图1所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角α =37°,始终保持静止,求地面对斜面体的摩擦力和支持力(取)。 图1 分析:整体法有它的优点,但并非所有情况都可以用整体法,当求解物体和斜面之间的相互作用力时,就应选用隔离法(隔离物体或者隔离斜面体),因为整体法不能求出物体之间的相互作用力。 解析:(1)隔离法:先对物体m受力分析,如图2所示。由平衡条件有 图2

垂直斜面方向:(1) 平行斜面方向:(2) 再对斜面体受力分析,如图3所示,由平衡条件有 图3 水平方向:(3) 竖直方向:(4) 结合牛顿第三定律知 (5) 联立以上各式,可得地面对斜面体的摩擦力 ,方向水平向左; 地面对斜面体的支持力,方向竖直向上。 (2)整体法:因本题没有要求求出物体和斜面体之间的相互作用力,而且两个物体均处于平衡状态(尽管一个匀速运动,一个静止),故可将物体和斜面体视为整体,作为一个研究对象来研究,其受力如图4所示,由平衡条件有

高中物理整体法与隔离法

整体法与隔离法 1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。 运用整体法解题的基本步骤: ①明确研究的系统或运动的全过程. ②画出系统的受力图和运动全过程的示意图. ③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解 2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。 运用隔离法解题的基本步骤: ①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少. ②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来. ③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图. ④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解. 3.整体和局部是相对统一的,相辅相成的。 隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则 4.应用例析 【例4】如图所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力F N。

高考-高中物理-力学专题-整体法和隔离法

专题整体法和隔离法 、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法?解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质 量为ml和m2的两个木块b和c,如图所示,已知粗糙地面 对于三角形木块() A .有摩擦力作用,摩擦力的方向水平向右 B ?有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【例2】有一个直角支架AOB , AO水平放置,表面粗糙,0B竖直向下,表面光 滑,A0上套有小环P, 0B上套有小环Q,两环质量均为m , 两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,A0杆对P环 的支持力N和细绳上的拉力T的变化情况是() A. N不变,T变大 B. N不变,T变小 C . N变大,T变大 D . N变大,T变小 【例3】如图所示,设 A 重10N , B 重20N , A、B 间的动摩擦因数为0.1 , B与地面的摩擦因数为0.2 .问: (1 )至少对B向左施多大的力,才能使A、B发生相对 A -f F—-B-— 滑动?(2)若A、B间卩1=0.4 , B与地间"=0」,贝U F 多大才能产生相对滑动? 【例4】将长方形均匀木块锯成如图所示的三部分,其中B、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F作用时,木块恰能向右匀速运动, 且A与B、A与C均无相对滑动,图中的0角及F为已知,求A 与B之间的压力为多少? 【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F的水平力压木板,使砖静 止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为 A . 4mg、2mg B . 2mg、0 C . 2mg、mg 12 3 4 ml

专题一--整体法隔离法受力分析--解析版.

专题一整体法隔离法受力分析 整体法和隔离法的使用技巧 当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法;而在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法.整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法.口诀(外整内分) 例如图5所示,在恒力F作用下,a、b两物体一起沿粗糙竖直墙面匀速向上运动,则关于它们受力情况的说法正确的是() 图5 A.a一定受到4个力 B.b可能受到4个力 C.a与墙壁之间一定有弹力和摩擦力 D.a与b之间一定有摩擦力 答案AD 解析将a、b看成整体,其受力图如图甲所示,说明a与墙壁之间没有弹力和摩擦力作用;对物体b进行受力分析,如图乙所示,b受到3个力作用,所以a受到4个力作用. 【即学即练】如图6所示,质量为M的斜面体A置于粗糙水平面上,用轻绳拴住质量为m的小球B置于斜面上,整个系统处于静止状态.已知斜面倾角θ=30°,轻绳与斜面平行且另一端固定在竖直墙面上,不计小球与斜面间的摩擦,则( )

图6 A.斜面体对小球的作用力大小为mg B.轻绳对小球的作用力大小为错误!mg C.斜面体对水平面的压力大小为(M+m)g D.斜面体与水平面间的摩擦力大小为错误!mg 解析以小球为研究对象,对其受力分析如图.因小球保持静止,所以由共点力的平衡条件可得: mgsin θ-FT=0① F N-mg cosθ=0② 由①②两式可得 FT=mgsinθ=错误!mg FN=mgcosθ=错误!mg 即轻绳对小球的作用力(拉力)为\f(1,2)mg,斜面对小球的作用力(支持力)为错误!mg。A错,B对. 把小球和斜面体作为一个整体进行研究,其受重力(M+m)g,水平面的支持力 F N′、摩擦力F f以及轻绳的拉力FT.受力情况如图所示. 因研究对象处于静止状态,所以由平衡条件可得:

整体法与隔离法应用练习题

整体法与隔离法应用练习题 1、 如图所示,质量为2m 的物块A 与水平地面的摩擦可忽略不计,质量为m 的物 块B 与地面的摩擦系数为μ.在已知水平推力F 的作用下,A 、B 作加速运动.A 对B 的作用力为____. 答案:3 2mg F μ+ 2、如图所示,在光滑水平面上放着两个物体,质量m 2=2m 1,相互接触面是光滑的,与水平面的夹有为α。用水平力F 推m 1,使两物体一起做加速运动,则两物体间的相互作用力的大小是_____。 解:取A 、B 系统为研究对像F=(m 1+m 2)a=3m 1a ∴1 3m F a = 取m 2为研究对像N x =Nsin α=m 2a ∴αsin 2a m N = =113sin 2m F m α=α sin 32F 3、如右图所示,斜面倾角为θ,连接体A 和B 的质量分别为A m ,B m ,用沿斜面向上的力F 拉B 使它们一起沿斜面向上运动,设连接 A , B 的细绳上的张力为T ,则(1)若它们匀速沿斜面向上运动,F :T= ,(2)若它们匀加速沿斜面向上运动,F :T= 。 答案:A B A m m m :)(+ A B A m m m :)(+ 4、质量分别为m 和M 的物体叠放在光滑水平桌面上,A 受恒力F 1的作用,B 受恒力F 2的作用,二力都沿水平向,且F 1>F 2,运动过程中A 、B 二物体保持相对静止,物体B 受到的摩擦力大小为___________,方向为_________________。 答案: m M MF MF ++2 1;水平向左。 5、如图所示,两个木块1、2中间夹一根轻弹簧放在光滑水平面上静止。若用大小不变的水平推力F 先后分别向右推1木块和向左推2木块,发现两次弹簧的形变量之比为a ∶b ,则木块1、2的质量之比为________。 答案:b ∶a 6、质量不等的A 、B 两物体,用细线相连,跨过一个定滑轮,如下图所示,两物体与桌面的縻擦系数均为0.4。已知在图示情况下,A 、B 一起作匀速运动。试问如果A 、B 两物体的位置互换,它们的运动情况如何?若是加速运动,求它们的加速度是多大?(设细线质量、空气阻力和滑轮摩擦均不计,g=10米/秒2) 答案:解:A 在桌面上时恰好A 、B 一起做匀速运动,有: m B g=μm A g 得:m B = 5 2 m A (1) A 、B 换位后,设一起运动的加速度大小为a ,有m A g-μm B g=(m A +m B )a (2) F 1 2 F A B v

牛顿第二定律的应用整体法与隔离法

牛顿第二定律的应用(一)——整体法与隔离体法 专题 考点聚焦 1.知道什么是连接体与隔离体。 2.知道什么是内力和外力。 3.学会连接体问题的分析方法,并用来解决简单问题。 例题展示 例1如图所示,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。 解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。 比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。可得 F m m m F B A B N += 例2如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大? 解析:先确定临界值,即刚好使A 、B 发生相对滑动的F 值。当A 、B 间的静 摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N (1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2B A B A 3.3m/s =+= =m m F a a (2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程: B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 2 例3如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数 分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( .BC ) A.等于零 B.方向平行于斜面向上 C.大小为μ1mgcos θ D.大小为μ2mgcos θ 例4.如图,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于(D ) A .0 B .k x C .( M m )k x D .( m M m +)k x B A θ A B

整体法与隔离法(绝对经典)

Attitude determines altitude 专题:整体法与隔离法 【要点】 1、系统(连接体):几个相互联系的、在外力作用下一起运动的物体系。相互 作用 的物体称为系统或连接体,由两个或两个以上的物体组成。 2、内力与外力:系统内物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力。 3、方法选取原则: 研究系统内力,用隔离法;当研究系统外力时优先考虑整体法;对于复杂的动力学问题,采用二者相结合。 【经典题型训练】__ 例1、向右的水平力F作用在物体B上, AB匀速运动,* 则地面对B的摩擦力为多少?若F作用在A上,结果B 如何? 【变式】滑块和斜面均处于静止状态,斜面倾斜角为 I, 滑块的质量为m,斜面的质量为M求地面对斜面的支持力和 摩擦力的大小。 例2、如图:在两块相同的竖直木板间,有质量均为m 的两 块相同的砖,用两个大小相同均为F的水平力压木板,使 砖静止不动,则第一块砖对第二块砖的摩擦力为多少? 【变式】两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,(1)木板对第1块砖和第4块砖的摩擦力(2)第2块与第3块间的摩擦力(3)第3块与第4块间的摩擦力 a球施加一个左偏下300的恒力,对b球施加再 次静止时乙图中哪张正确? 甲乙 例3.甲图所示的两小球静止,对 一个右偏上30。的同样大的恒力,

Attitude determines altitude 【变式】两个质量相等的小球用轻杆连接后斜靠在竖直墙上处于静 止状态,已知墙面光滑,水平面粗糙。现将A球向上移动一段距 离,两球再次达到平衡,将两次比较,地面对B球的支 持力Fn和轻杆受到的压力F的变化情况是() A: Fn变小,F不变 B : Fn不变,F变大 C: Fn变大,F变大 D : Fn不变,F变小 例4.人的质量为60Kg,木板A的质量为30Kg,滑轮及绳的质量不 计,一切摩擦不计,若人通过绳子拉住木板不动,则人的拉力的大 小及人对木板的压力为多少? 【变式】人的质量是m,木板的质量为M木板与地面间的动摩 擦因数为卩,在人的拉力作用下,人与木板一起向右匀速运 动,求木板对人的摩擦力多大? 【变式】质量为M的木板悬挂在滑轮组下,上端由一根绳C固定 在横梁下,质量为m的人手拉住绳端,使整个装置保持在空间处于 静止的状态(滑轮质量不计)。求(1)绳对人的拉力多大?(2) 人对木板的压力多大? 例5:质量为m顶角为口的直角劈和质量为M的正方体放在两竖直墙 和水平面之间,处于静止状态。M与M接触不计一切摩擦,求(1) 水平面对正方体的弹力大小;(2)墙面对正方体的弹力大小 m

高考重点高中物理力学专题整体法和隔离法

精心整理 专题整体法和隔离法 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的 变化情况是() A .N 不变,T 变大 B .N 不变,T 变小 C .N 变大,T 变大 D .N 变大,T 变小 【例3】如图所示,设A 重10N ,B 重20N ,A 、B 间的动摩擦因数为0.1,B 与地面的摩擦因数为0.2.问:(1)至少对B 向左施多大的力,才能使A 、B 发生相对滑动?(2)若A 、B 间 μ1=0.4,B 与地间μ2=0.l ,则F 多大才能产生相对滑动? 【例4】将长方形均匀木块锯成如图所示的三部分,其中B 、C 两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F 作用时,木块恰能向右匀速运动,且A 与B 、A 与C 均无相对滑动,图中的θ角及F 为已知,求A 与B 之间的压力为多少? 【例5】如图所示,在两块相同的竖直木板间,有质量均为m 的四块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦 力分别为 A .4mg 、2mg B .2mg 、0 C .2mg 、mg D .4mg 、mg 【例6】如图所示,两个完全相同的重为G 的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。问当F 至少多 大时,两球将发生滑动? 【例8】如图所示,光滑的金属球B 放在纵截面为等边三角形的物体A 与坚直墙之间,恰好匀速下滑,已知物体A 的重力是B 重力的6倍,不 b c a m 1 m 2 A O B P Q F A B C θ A B F

整体法与隔离法经典习题

整体法与隔离法经典习题 1.粗糙水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可 伸长的轻绳相连,木块间的动摩擦因数均为卩,木块与水平面间的动摩擦因数相同,可认为最大静摩擦力等于滑动摩擦力?现用水平拉力F拉其中一个质量为2m的木块,使四个木块一起匀速前进。则需要满足的条件是() A.木块与水平面间的动摩擦因数最大为「 B.木块与水平面间的动摩擦因数最大为 - C.水平拉力F最大为2卩mg D. 水平拉力F最大为6卩mg 2.如下图所示,重为G的匀质链条挂在等高的两钩上,并与水平方向成日角,试求: (1)链条两端受到的力。??? (2)链条最低处的张力 3.吊篮重300N人重500N绳子质量及其与滑轮摩擦不计,要使吊篮离地上升,则人的拉 力至少多大 4.有一直角支架AOBAC水平放置,0B竖直向下,表面光滑, 有小环P, OB上套有小环Q。两环质量均为m两环间由一根忽略不可伸长的细绳相连,并在某一位置平衡,如图所示。环向左移一小段距离,两环再次达到平衡,那么将移动后的态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是() A.N不变,T变大 B.N不变,T变小 AO上套 质量可 现将P 平衡状A

的支持力为F 3,地面对A 的摩擦力为F 4,若F 缓慢增大而且整个装置仍保持静止,在此过 程中( ) A. F i 保持不变,F 3缓慢增大 B . F 2、F 4缓慢增大 C. F i 、F 4缓慢增大 D . F 2缓慢增大,F 3保持不变 8. 如图所示,质量为m 的物体在与斜面平行向上的拉力 F 作用下,沿着水平地面上质量为 C.N 变大,T 变大 C.N 变大,T 变小 5?将长方形均匀木块锯成如图所示的三部分,其中 对称,现将三部分拼在一起放在粗糙水平面上,当用与木 直的水平向右力F 作用时,木块恰能向右匀速运动,且 A 与B 、A 与C 均无相对滑动,图中 的9角及F 为已知,求A 与B 之间的压力为多少 6.如图所示,光滑的金属球B 放在纵截面为等边三角形的物体 A 与坚直墙之间,恰好匀速 下滑,已知物体A 的重力是B 重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体 A 与 水平面之间的动摩擦因数 卩是多少 7.如图所示,质量为M 的直角三棱柱A 放在水平地面上, 三棱柱的斜面是光滑的,且斜面倾角为9.质量为m 的光滑 球B 放在三棱柱和光滑竖直墙之间.A 、B 处于静止状态,现对B 加一竖直 向下的力F ,F 的作用线过球心?设墙对 B 的作用力为只,B 对A 的作用力为F 2,地面对A 部分完全 块左侧垂 B

整体法和隔离法受力分析

专题三 整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

(完整版)整体法和隔离法专题训练-学生

第三章 第三课时 整体法隔离法专题训练 一、选择题(共10小题,每小题6分,共60分,在每小题给出的四个选项中至少有一项符合题意,全部选对的得6分,漏选的得3分,错选的得0分) 1.如图所示,一足够长的木板静止在光滑水平面上,一物块静皮肤止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为 ( ) A .物块先向左运动,再向右运动 B .物块向右运动,速度逐渐增大,直到做匀速运动 C .木板向右运动,速度逐渐变小,直到做匀速运动 D .木板和物块的速度都逐渐变小,直到为零 2.如图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块A 、B ,质量均为m ,开始时两物块均处于静止状态.现下压A 再静止释放使A 开始运动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为 ( ) A .0 B .2g sin θ,方向沿斜面向下 C .2g sin θ,方向沿斜面向上 D .g sin θ,方向沿斜面向下 3.如图所示是一种升降电梯的示意图,A 为载人箱,B 为平衡重物,它们的质量均为M ,上下均由跨过滑轮的钢索系住,在电动机的牵引下使电梯上下运动.如果电梯中人的总质量为m ,匀速上升的速度为v ,电梯即将到顶层前关闭电动机,依靠惯性上升h 高度后停止,在不计空气和摩擦阻力的情况下,h 为( ) A.v 22g B.(M +m )v 2 2mg C.(M +m )v 2mg D.(2M +m )v 2 2mg 4.如图所示,小物块A 质量为M =10kg ,B 质量为m =2.5kg.A 、B 用一轻绳连接跨过无阻力的定滑轮且处于静止状态.A 与平台间动摩擦因数μ=0.25(与最大静摩擦因数相等).现用竖直向上的力F 拉A ,且F 由零线性增大至100N 的过程中,B 的下降高度恰为h =2m ,(A 未 与滑轮相碰)则上述过程中的最大速度为(g =10m/s 2). ( ) A .1m/s B .2m/s C .3m/s D .0 5.如图所示,某斜面体由两种材料拼接而成,BC 界面平行于底面DE ,两侧面与水平面夹角分别为30°和60°.已知一物体从A 点静止下滑,加速至B 点,匀速至D 点.若该物块静止从A 点沿另一侧面下滑,则有 ( ) A .一直加速运动到E ,但AC 段的加速度比CE 段小 B .AB 段的运动时间大于A C 段的运动时间 C .将加速至C 点,匀速至E 点 D .通过C 点的速率等于通过B 点的速率

高中物理专题汇编物理整体法隔离法解决物理试题(一)

高中物理专题汇编物理整体法隔离法解决物理试题(一) 一、整体法隔离法解决物理试题 1.a、b两物体的质量分别为m1、m2,由轻质弹簧相连。当用大小为F的恒力沿水平方向拉着 a,使a、b一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x1;当用恒力F竖直向上拉着 a,使a、b一起向上做匀加速直线运动时,弹簧伸长量为x2;当用恒力F倾斜向上向上拉着 a,使a、b一起沿粗糙斜面向上做匀加速直线运动时,弹簧伸长量为x3,如图所示。则() A.x1= x2= x3 B.x1 >x3= x2 C.若m1>m2,则 x1>x3= x2 D.若m1

专题一整体法隔离法受力分析解析版

专题一整体法隔离法受力分析整 体法和隔离法的使用技巧 当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统 的作用时,宜用整体法;而在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法?整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法. 口诀(外整内分) [例如图5所示,在恒力F作用下,a b两物体一起沿粗糙竖直墙面匀速向上运动,则关于它们受力情况的说法正确的是 () 图5 A. a 一定受到4个力 B. b可能受到4个力 C. a与墙壁之间一定有弹力和摩擦力 D. a与b之间一定有摩擦力 答案AD 解析将a、b看成整体,其受力图如图甲所示,说明a与墙壁之间没有弹力和摩擦力作用;对物体b进行受力分析,如图乙所示,b受到3个力作用, 所以a 受到4个力作用. 【即学即练】如图6所示,质量为M的斜面体A置于粗糙水平面上,用轻绳拴住质量为m的小球B置于斜面上,整个系统处于静止状态.已知斜面倾角9 =30°轻绳与斜面平行且另一端固定在竖直墙面上,不计小球与斜面间的

摩擦,则()

A .斜面体对小球的作用力大小为 mg 1 B .轻绳对小球的作用力大小为2mg C .斜面体对水平面的压力大小为(M + m )g D .斜面体与水平面间的摩擦力大小为q 3mg mgsin 0— F T = 0 F N — mgcos A 0 由①②两式可得 解析 以小球为研究对象,对其受力分析如图.因小球保持静止,所以由共 点力的平衡条件可得: 1 F T = mgsin 0= qmg F N = mgcos "^mg i x[3 (拉力)为2mg ,斜面对小球的作用力(支持力)为 ~2 即轻绳对小球的作用力 mg.A 错,B 对. 把小球和斜面体作为一个整体进行研究,其受重力 (M + m )g ,水平面的支持 力F N ,、摩擦力F f 以及轻绳的拉力F T .受力情况如图所示.

整体法与隔离法的综合应用

整体法与隔离法的综合应用 在研究静力学问题或力和运动的关系问题时,常会涉及相互关联的物体间的相互作用问题,即“连接体问题”。连接体问题一般是指由两个或两个以上物体所构成的有某种关联的系统。研究此系统的受力或运动时,求解问题的关键是研究对象的选取和转换。一般若讨论的问题不涉及系统内部的作用力时,可以以整个系统为研究对象列方程求解–––“整体法”;若涉及系统中各物体间的相互作用,则应以系统某一部分为研究对象列方程求解–––“隔离法”。这样,便将物体间的内力转化为外力,从而体现其作用效果,使问题得以求解,在求解连接问题时,隔离法与整体法相互依存,交替使用,形成一个完整的统一体,分别列方程求解。 一. 在静力学中的应用 在用“共点力的平衡条件”求解问题时,大多数同学感到困难的就是研究对象的选取。整体法与隔离法是最常用的方法,灵活、交替的使用这两种方法,就可化难为易,化繁为简,迅速准确地解决此类问题。 例1. 在粗糙的水平面上有一个三角形木块,在它的两个粗糙的斜面上分别放置两个质 ,如图1所示,已知三角形木块和两个物体都是静止的,则量为m1和m2的木块,m m 12 粗糙水平面对三角形木块() A. 在摩擦力作用,方向水平向右; B. 有摩擦力作用,方向水平向左; C. 有摩擦力作用,但方向不确定; D. 以上结论都不对。 图1 解析:这个问题的一种求解方法是:分别隔离m1、m2和三角形木块进行受力分析,利用牛顿第三定律及平衡条件讨论确定三角形木块与粗糙水平面间的摩擦力。 采用整体法求解更为简捷:由于m1、m2和三角形木块相对静止,故可以看成一个不规则的整体,以这一整体为研究对象,显然在竖直平面上只受重力和支持力作用,很快选出答案为D。

相关主题
文本预览
相关文档 最新文档