当前位置:文档之家› 谷氨酸合成酶(Glutamate synthase,GOGAT)试剂盒使用说明

谷氨酸合成酶(Glutamate synthase,GOGAT)试剂盒使用说明

谷氨酸合成酶(Glutamate synthase,GOGAT)试剂盒使用说明
谷氨酸合成酶(Glutamate synthase,GOGAT)试剂盒使用说明

谷氨酸合成酶(Glutamate synthase,GOGAT)试剂盒使用说明

产品简介:

GOGAT和谷氨酰胺合成酶共同构成GS/GOGAT循环,参与氨同化的调控。GOGAT催化谷氨酰胺的氨基转移到α-酮戊二酸,形成两分子的谷氨酸;同时NADH氧化生成NAD+,340nm 吸光度的下降速率可以反映GOGAT活性大小。

试验中所需的仪器和试剂:

紫外分光光度计、台式离心机、水浴锅、可调式移液器、1mL石英比色皿、研钵、冰和蒸馏水。

产品内容:

提取液:液体60mL×1瓶,4℃保存;

试剂一:液体20mL×3瓶,4℃保存;

试剂二:粉剂×3支,4℃保存;

试剂三:粉剂×3支,4℃保存;

试剂四:粉剂×3支,-20℃保存。

工作液的配制:临用前取试剂一、试剂二、试剂三和试剂四各一支,将试剂二、三、四转移到1瓶试剂一中混合溶解。这样可以分三批配制工作液并且测定,防止工作液失效。

操作步骤:

一、粗酶液提取:

1、收集细菌或细胞到离心管内,离心后弃上清;按照每200万细菌或细胞加入400

μL提取液的比例充分匀浆以破碎并裂解细胞;8000g4℃离心10分钟,取上清,置冰上待测。

2、称取约0.1g组织,加入1mL提取液进行冰浴匀浆。8000g4℃离心10分钟,取上清,置冰上待测。

二、测定步骤:

取1mL工作液和0.1mL样本于1mL比色皿中,加样本的同时开始计时,在340nm波长下记录20秒时的初始吸光度A1,比色后迅速将比色皿连同反应液一起放入37℃或25℃水浴中(哺乳动物用37℃,非哺乳动物用25℃),准确反应5分钟;迅速取出比色皿并擦干,340nm下比色,记录5分20秒时的吸光度A2,计算ΔA=A1-A2。

注意事项:

1、用蒸馏水调零。

2、测定期间样本和工作液在冰上放置,以免变性和失活。

3、比色皿中反应液的温度必须保持37℃或25℃,取小烧杯一只装入一定量的37℃或25℃蒸馏水,将此烧杯放入37℃或25℃水浴锅中。在反应过程中把比色皿连同反应液放在此烧杯中。

4、最好两个人同时做此实验,一个人比色,一个人计时,以保证实验结果的准确性。

GOGAT活性计算:

1、组织中GOGAT活力的计算:

(1)按样本蛋白浓度计算:

单位的定义:每mg组织蛋白在反应体系中每分钟消耗1nmol/L的NADH定义为一个酶活力单位。

GOGAT(U/mg prot)=354×ΔA÷蛋白浓度(mg/mL)

(2)按样本鲜重计算:

单位的定义:每g组织在反应体系中每分钟消耗1nmol/L的NADH定义为一个酶活力单位。

GOGAT(U/g mass)=354×ΔA÷样本鲜重(g/mL)

2细菌或培养细胞中GOGAT活力的计算:

(1)按样本蛋白浓度计算:

单位的定义:每mg组织蛋白在反应体系中每分钟消耗1nmol/L的NADH定义为一个酶活力单位。

GOGAT(U/mg prot)=354×ΔA÷蛋白浓度(mg/mL)

(2)按细菌或细胞密度计算:

单位的定义:每1万个细菌或细胞在反应体系中每分钟消耗1nmol/L的NADH定义为一个酶活力单位。

GOGAT(U/104cell)=354×ΔA÷细菌或细胞密度(104/mL)

血清尿素氮BUN谷氨酸脱氢酶测定法作业指导书

血清尿素氮BUN谷氨酸脱氢酶测定法作业指导书 1.实验原理 脲酶-谷氨酸脱氢酶(Urease-GLDH)连续监测法。尿素被脲酶水解产氨。在NADH的存在下,氨和α-酮戊二酸反应生成谷氨酸,NADH同时被氧化成NAD+。NADH的减少和样品中尿素浓度成正比。本法是连续监测法。 脲酶 尿素+ 2H2O 2 NH4++ 2 HCO3- 谷氨酸脱氢酶 NH4++α-酮戊二酸+NADH L-谷氨酸+NAD++H2O 2 标本: 2.1 病人准备:血清无特殊要求。要留取24小时尿样。 2.2 类型:血清、血浆(不可使用肝素铵)、新鲜尿液。无溶血和凝块的血清,如果必须使用血浆,建议使用

无铵离子的抗凝血剂,如EDTA和肝素钠。用新鲜尿液作样品时,用蒸馏水作1:100稀释。 3. 标本存放:血清或血浆稳定性:4~25℃保存可稳定7天;-20℃保存可稳定1年。尿液稳定性:20~25℃保存可稳定2天;4~8℃保存可稳定7天;-20℃保存可稳定1个月。 4. 标本运输:常温条件下保存运输。 5. 标本拒收标准:细菌污染的标本。 6. 实验材料 6.1 试剂:申能尿素测定试剂盒(142 3107170 1 试剂1:6×64ml+试剂2:6×16ml) 6.1.1 试剂组成 试剂1: Tris缓冲液pH7.8 120mmol/L α-酮戊二酸7mmol/L ADP 0.6mmol/L 谷氨酸脱氢酶≥1000U/L

脲酶≥6000U/L 试剂2: NADH 0.25mmol/L 6.1.2 试剂准备:试剂为即用式。 6.1.3 试剂稳定性与贮存 试剂保存于2~25℃,若无污染,可稳定至失效期。试剂不可冰冻。 6.1.4 变质指示:当试剂有看得见的微生物生长,有浊度,或者未开盖的液体有沉淀时,表明试剂已变质,不能继续使用。 6.1.5 注意事项:此试剂为体外诊断用。不要入口,吞下有害。保护剂为叠氮钠,避免接触皮肤及粘膜,与下水管中的铅反应形成爆炸性化合物,即使只含有少量的叠氮钠,如果排向下水道请用大量的水冲洗。应采取必要的预防措施使用试剂。 6.2 校准品:使用DiaSys公司提供的TruCal U校准品对自动分析仪进行校准,具体参见生化检验校准品

谷氨酸脱氢酶测定试剂盒(α-酮戊二酸底物法)产品技术要求jiuqiang1

谷氨酸脱氢酶测定试剂盒(α-酮戊二酸底物法) 适用范围:用于体外定量测定人血清或血浆中谷氨酸脱氢酶的含量。 1.1 包装规格 包装规格见表1。 表1 包装规格

1.2 主要组成成分

主要组成成分见表2。 表2 主要组成成分 注:不同批号的校准品、质控品赋值有差异,具体赋值详见靶值单。 2. 性能指标

2.1 外观 试剂1为无色澄清液体,目测不得有任何沉淀及絮状悬浮物; 试剂2为无色或淡黄色澄清液体,目测不得有任何沉淀及絮状悬浮物; 校准品为黄色粉末状物质,复溶后为淡黄色或黄色液体,目测不得有任何沉淀及絮状悬浮物; 质控品为黄色粉末状物质,复溶后为淡黄色或黄色液体,目测不得有任何沉淀及絮状悬浮物; 试剂盒标签标识清晰,外包装完整无损。 2.2 净含量 试剂的净含量应不少于标称量。 2.3 试剂空白 2.3.1 试剂空白吸光度 A340nm下测定空白吸光度应≥ 0.8000。 2.3.2 试剂空白吸光度变化率 A340nm下测定的空白吸光度变化率(ΔA/min)应≤ 0.0200。 2.4 准确度 与已上市产品进行比对试验:在[1,120] U/L区间内,相关系数r≥0.975,在[1,20] U/L区间内测定的绝对偏差应不超过±2U/L,在(20,120] U/L区间内测定的相对偏差应不超过±10%。 2.5 分析灵敏度 样本浓度为30 U/L时,其吸光度变化率在0.0050~0.0300之间。 2.6 线性区间

在[1,120] U/L区间内,线性相关系数r≥0.990,在[1,20]U/L区间内绝对偏差应不超过±2 U/L,在(20,120] U/L区间内相对偏差应不超过±10%。 2.7 测量精密度 2.7.1 重复性 对高、低浓度的血清样本或质控品重复测定10次,其测定值的变异系数(CV%)应不大于10%。 2.7.2 批间差 随机抽取三批试剂盒的批间相对极差(R)应不大于10%。 2.8 瓶间精密度 校准品、质控品的瓶间精密度应≤10%。 2.9 稳定性 2.9.1 试剂稳定性 试剂盒在2℃~8℃密封避光保存,有效期为18个月。在试剂盒有效期满后一个月以内,应符合2.1、2.3、2.4、2.5、2.6、2.7.1的要求。 2.9.2 校准品复溶稳定性 复溶后校准品在2℃~8℃保存7天,在生化分析仪上同时测试保存期末的校准品和新鲜的校准品,测试结果间的相对偏差应≤10%。 2.9.3 质控品复溶稳定性 复溶后质控品在2℃~8℃保存7天,在生化分析仪上同时测试保存期末的质控品和新鲜的质控品,测试结果间的相对偏差应≤10%。 2.10校准品溯源性

血清尿素氮BUN谷氨酸脱氢酶测定法

血清尿素氮BUN谷氨酸脱氢酶测定法 1.实验原理 脲酶-谷氨酸脱氢酶(Urease-GLDH)连续监测法。 尿素被脲酶水解产氨。在NADH的存在下,氨和α-酮戊二酸反应生成谷氨酸,NADH同时被氧化成NAD+。NADH 的减少和样品中尿素浓度成正比。本法是连续监测法。 脲酶 尿素+ 2H2O 2 NH4++ 2 HCO3- 谷氨酸脱氢酶 NH4++α-酮戊二酸+NADH L-谷氨酸+NAD ++H 2O 2 标本: 2.1 病人准备:血清无特殊要求。要留取24小时尿样。 2.2 类型:血清、血浆(不可使用肝素铵)、新鲜尿液。无溶血和凝块的血清,如果必须使用血浆,建议使用无铵离子的抗凝血剂,如EDTA和肝素钠。用新鲜尿液作样品时,用蒸馏水作1:100稀释。

3. 标本存放:血清或血浆稳定性:4~25℃保存可稳定7天;-20℃保存可稳定1年。尿液稳定性:20~25℃保存可稳定2天;4~8℃保存可稳定7天;-20℃保存可稳定1个月。 4. 标本运输:常温条件下保存运输。 5. 标本拒收标准:细菌污染的标本。 6. 实验材料 6.1 试剂:奥林巴斯尿素测定试剂盒试剂1:+试剂2:6.1.1 试剂准备:试剂为即用式。 6.1.2 试剂稳定性与贮存 试剂保存于2~25℃,若无污染,可稳定至失效期。试剂不可冰冻。 6.1.3 变质指示:当试剂有看得见的微生物生长,有浊度,或者未开盖的液体有沉淀时,表明试剂已变质,不能继续使用。 6.1.4 注意事项:此试剂为体外诊断用。不要入口,吞下有害。保护剂为叠氮钠,避免接触皮肤及粘膜,与下水管中的铅反应形成爆炸性化合物,即使只含有少量的

谷氨酸脱氢酶的检测方法

GLDH检测方法 (Glutamate Dehydrogenase) SDZ500140 1. 目的 本程序是为了建立谷氨酸脱氢酶(Glutamate Dehydrogenase)的活性检测方法,适用于GLDH成品的活性检测。 2. 检测 2.1原理 α-Ketoglutarate + NH3 + NADH + H+L-Glutamate+ NAD+ +H2O NADH的消耗可以通过340nm的光吸收进行检测。 2.2试剂: A 0.1 M Tris-HCl 缓冲液, pH 8.3 B 1.5M NH4Cl溶液 C 0.225M α-酮戊二酸溶液(pH 7.0-9.0) D 7.5mM NADH溶液 E 酶稀释液: 0.1 M Tris-HCl 缓冲液, pH 8.3 试剂的配制方法详见各试剂配制记录,配制人员需完整填写配制记录。 3 操作规程: 3.1仪器参数设定 若仪器中无已保存参数,按以下参数设定。若已有相关参数,调取后确认。 检测方法:动力学扫描 测量波长:340nm 测量时间:180s 延迟时间:60s 积分时间:120s 系数/因子:6.776 测量温度:30±1℃ 3.2 样品准备 若待测样品为固体,可以按10mg 样品/1000ul 超纯水比例溶解。溶解后于2-8度放置30min。 3.3 检测方法 3.3.1 在石英比色皿中加入2.5ml 试剂A, 200ul试剂B,100ul 试剂C, 100ul D于30度孵育 2min。 3.3.2 加入50ul 样品后, 温和混匀后开始测定。 3.3.3 测定结束后,记录相应数值:起始读数、△A/min test、活性值(U/ml)。 3.3.4 活性值(U/ml)范围为0.1-0.3U/ml,若超出范围,待测样品需经试剂D稀释后再 次进行检测。 3.3.5测定样品前需检测空白反应值,即其他操作不变,用500ul E代替样品加入比色皿后 进行反应,测定△A/min blank。 3.3.6计算公式活性(U/ml) =(△A/min test-△A/min blank)×6.776×df (稀释倍数)

聚谷氨酸研究概论

微生物学通报 MAR 20, 2011, 38(3): 388?395 Microbiology China ? 2011 by Institute of Microbiology, CAS tongbao@https://www.doczj.com/doc/e14860551.html, 基金项目:国家自然科学基金项目(No. 31070039, 51073081); 天津市科技支撑重点项目(No. 09ZCKFSH00800) *通讯作者:Tel: 86-22-23503866; : songcj@https://www.doczj.com/doc/e14860551.html, 收稿日期:2010-07-14; 接受日期:2010-11-19 摘 要: γ-聚谷氨酸是一种具有极强水溶性、生物相容性、可完全降解性的环境友好型新材料。介绍γ-聚谷氨酸的基本性质、微生物合成及其影响因素, 综述其合成相关基因、合成酶复合体的研究进展及在水凝胶和药物载体方面的应用前景。 关键词: γ-聚谷氨酸, 生物合成, 合成酶基因, 应用前景 Biosynthesis of poly (γ-glutamic acid), its related genes and application prospects CAO Ming-Feng 1 JIN Ying-Hong 1,2 XIE Hui 1 WANG Shu-Fang 2 SONG Cun-Jiang 1,2* (1. Key Laboratory of Molecular Microbiology and Technology , Ministry of Education , Department of Microbiology , Nankai University , Tianjin 300071, China ) (2. Key Laboratory of Bioactive Materials , Ministry of Education , Nankai University , Tianjin 300071, China ) Abstract: Poly (γ-glutamic acid) is a promising environmental friendly material with outstanding water solubility, biocompatibility and degradability. This review introduces the basal properties of γ-PGA, microbial production of γ-PGA, and the key factors affecting the yield of γ-PGA. Furthermore, the γ-PGA biosynthesis genes, γ-PGA synthetase complex, as well as the application prospects of γ-PGA in hydrogel and drug delivery, are also discussed. Keywords: Poly (γ-glutamic acid), Biosynthesis, Synthetase genes, Application prospects γ-聚谷氨酸[Poly (γ-glutamic acid), γ-PGA]是由D-/L-谷氨酸通过γ-酰胺键聚合而成的一种高分子阴离子多肽型聚合物。结构式见图1。生物合成的γ-聚谷氨酸通常由500?5 000个谷氨酸单体组成, 分子量为10 kD ?10 000 kD, 立体构型分为γ-聚D-谷氨酸(γ-D-PGA)、γ-聚L-谷氨酸(γ-L-PGA)和γ-聚

血清谷氨酸脱氢酶的检测及对肝病诊断的临床应用

第26卷第1期2004年3月  大连医科大学学报 Journal of Dalian Medical University  Vol.26No.1 Mar.2004 血清谷氨酸脱氢酶的检测及对肝病诊断的临床应用 肖晓光1,孙国华1,王 华2 (1.大连医科大学第一临床学院检验科,辽宁大连 116011;2.大连医科大学检验医学院,辽宁大连 116027) 摘要:[目的]通过观察血清中谷氨酸脱氢酶(GLDH)在肝细胞损害性疾病中酶活性的变化情况,来指导临床治疗,并对预后进行判断。[方法]采用德国临床化学学会推荐的α-酮戊二酸法检测谷氨酸脱氢酶,同时检测AST、ALT、TBA及γ-GT等常规生化项目,并作相关性分析,统计有关指标。[结果]对于肝细胞损伤性疾病患者,血清中谷氨酸脱氢酶的活性明显高于健康者和其他疾病患者(P<0.05)。其中急性坏死性肝病患者GLDH阳性率可达100%,急性病毒性肝炎为75.2%,慢性活动性肝炎为59.4%,酒精性肝硬化为66.2%,肝硬化为66%,原发性肝癌为42.1%。[结论]谷氨酸脱氢酶作为肝细胞病变,特别是急性缺血性肝炎和酒精性肝炎的诊断指标 具有重要临床价值,并对指导临床治疗和预后判定具有重要意义。 关键词:谷氨酸脱氢酶;肝损伤;临床应用 中图分类号:R446.1 文献标识码:B 文章编号:1671-7295(2004)01-0048-03 谷氨酸脱氢酶(GLDH)为一种含锌线粒体酶,主要分布于肝脏、心肌和肾细胞线粒体的基质及内膜中,而以肝组织活性最高[1]。它催化谷氨酸脱氢、脱氨最终生成α-酮戊二酸之间的可逆反应[2]。此反应是体内大多数氨基酸经脱氢联脱氨基的关键步骤,也是体内非必需氨基酸由联合脱氨逆向反应生成的重要反应,还是连接氨基酸代谢,三羧酸循环的中心环节,故主要分布于肝细胞线粒体内的GLDH只有在肝细胞受损害时才明显升高[3]。本文利用生化自动分析仪测定了各种肝病患者,相关心、肾等疾病及健康体检者的G LDH活性,并与常规肝功能指标对比,以分析评价其临床应用意义。 1 材料和方法 1.1 材料 1.1.1 原理:α-酮戊二酸+NADH+NH4+GLDH 谷氨酸+NAD++H2O。在上述反应中,NADH被氧化生成NAD+的速率与GLDH的活性呈正比。在340nm波长下测定NADH的下降速率,即可计算出GLDH的活性。 1.1.2 研究对象:健康对照组为60例各项理化指标正常的体检者。疾病组218例,系大连医科大学第一临床学院各科确诊的住院病人。其中急性缺血性肝炎20例,急性病毒性肝炎25例,慢性活动性肝炎32例,酒精性肝炎12例,肝硬化48例,原发性肝癌24例,胆系疾病15例,脑出血10例,心肌梗塞20例,肾衰12例。 1.1.3 仪器:日立7170S型生化自动分析仪。 1.1.4 试剂:北京世诊中拓生物技术有限公司生产R1(三乙醇胺缓冲液、醋酸铵、EDTA);R1a (ADP、NADH、LD);R2(α-酮戊二酸)。以R1复溶后的R1a与R26:0.24混合作为工作试剂。 1.2 方法 1.2.1 德国临床化学学会推荐优化标准法:血清样品20μL,混合工作试剂250μL,温度37℃,波长340nm,反应时间4min;同时采用临床常规方法测定血清AST、ALT、TBA、γ-GT。 1.2.2 统计方法:单侧95%水平确定参考值范围,进行t检验及相关性分析。 作者简介:肖晓光(1971-),女,大连人,主管检验师。收稿日期:2002-11-21;修回日期:2002-12-10。

微生物发酵产聚谷氨酸工艺研究

微生物发酵产聚谷氨酸工艺研究 摘要:谷氨酸在生物体内的蛋白质代谢过程中占有重要地位,参与动物、植物和微生物中的许多重要化学反应。以枯草芽孢杆菌纳豆亚种为出发菌株,考察不同碳氮源及NaCl 浓度、谷氨酸、种龄、接种量对微生物发酵产γ- 聚谷氨酸的影响,以提高γ- 聚谷氨酸的产量。方法:该菌菌种活化后,接入种子培养基,于37℃、200 r/min 震荡培养18 h,然后按2 %接种量接入不同发酵培养基进行发酵培养。γ- 聚谷氨酸分离纯化后,根据其产量筛选最适发酵培养基组成及发酵条件,并对产物进行分析测定。 关键词:γ- 聚谷氨酸;纳豆菌;发酵;优化培养 一、材料与方法 1.1 材料 1.1.1 菌种纳豆芽孢杆菌(Bacillus subtilis natto),系作者筛选,由本校微生物教研室罗兵教授鉴定确认,于实验室保存。 1.1.2 培养基斜面培养基:大豆蛋白胨10 g/L,牛肉膏5 g/L,NaCl 7.5 g/L,琼脂20 g/L。种子培养基:大豆蛋白胨20 g/L,葡萄糖30 g/L,谷氨酸钠25 g/L,NaCl 5 g/L。液体发酵培养基:大豆蛋白胨30 g/L,葡萄糖40 g/L,谷氨酸钠30 g/L,NaCl15 g/L,K2HPO4 2.0 g/L,KH2PO4 4.0 g/L,Mg-SO4 0.5 g/L,CaCl2 0.25 g/L 及少量生物素[1]。以上培养基pH 均为7.0-7.2,在121℃下高压灭菌20 min。 1.1.3 试剂γ-PGA 标准品为Sigma 公司产品;系列葡聚糖标准品(Shodex P-82 standard 标准品,分子量(Mr)分别为5900,11800,22800,47300,112000,212000,404000,788000)为SHOWA DENKO 公司产品;叠氮钠、硫酸钠、蛋白胨、葡萄糖、谷氨酸等均为国产分析纯。 1.2 方法 1.2.1 发酵方法菌种活化:取菌种一环,接于斜面培养基,37℃培养20 h。 种子培养:取一至两环活化菌种接入种子培养基中,37℃、200 r/min 震荡培养18 h。 发酵培养:将上述种子液按2%接种量接入发酵培养基(装液量为40/250 mL),37 ℃、250 r/min 震荡培养48 h,测γ-PGA 的产量。 1.2.2 提取方法发酵液于4 ℃、10000 r/min 离心15 min 去除菌体,取上清液用6 mol/L HCl 将pH 调至2.0-3.0,加入3 倍体积冰无水乙醇搅拌出现絮状沉淀,低温放置4 h 离心得沉淀(粗品)。然后溶于蒸馏水,用透析袋透析脱盐(除去无机小分子和离子),再经阴离子交换层析进一步提纯,即将透析过的

γ-聚谷氨酸的特性、生产及应用

γ-聚谷氨酸的特性、生产及应用 来源:中国化工信息网 2009年1月21日γ-聚谷氨酸[y-poly(g1utamic acid),γ-PGA],是由L-谷氨酸[L-Glu]、D-谷氨酸[D-Glu]通过γ-酰胺键结合形成的一种高分子氨基酸聚合物,其结构式如图1(略)。γ-聚谷氨酸的合成方法较多,有传统的肽合成法、二聚体缩合法、纳豆提取法和微生物发酵法等。由于化学合成法难度很大,没有工业应用价值,因此对于γ-聚谷氨酸合成方法的研究主要集中在微生物发酵领域。而对于微生物生产γ-聚谷氨酸的研究,日本一直走在各国的前列,最初是利用纳豆菌对谷氨酸进行聚合而成的。近年,我国、美国等国家也开展了微生物发酵法合成广聚谷氨酸的研究。能发酵生产γ-聚谷氨酸的菌种较多,有地衣杆菌、枯草芽孢杆菌等菌种,而以枯草芽孢杆菌发酵生产γ-PGA的研究居多。在我国,浙江大学、南京工业大学等高校已经开始对微生物发酵法生产广聚谷氨酸进行研究。γ-聚谷氨酸作为一种高分子聚合物,具有一些独特的物理、化学和生物学特性,如生物可降解性、良好生物相容性、强保水性、对人体无毒害等特性。这些特性决定了γ-聚谷氨酸在农业、食品、医药、环保、化妆品工业、烟草、皮革制造工业和植物种子保护等领域的广泛用途。1 γ-聚谷氨酸的性质 1.1吸水特性由于γ-PGA极易溶于水,因此其具有很好的吸水特性,王传海等对γ-PGA的吸水性能进行了研究,结果表明,γ-PGA的最大自然吸水倍数可达到1108.4倍,比目前市售的聚丙烯酸盐类吸水树脂高1倍以上,对土壤水分的吸收倍数为30-80倍。γ-PGA的水浸液在土壤中具有一定的保水力和较理想的释放效果,有明显的抗旱促苗效应。在0.206mol/L浓度的PEG(6000)模拟渗透胁迫条件下,γ-PGA仍有较强的吸水和保水能力,可明显提高小麦和黑麦草的发芽率,用其直接拌种也能显著提高种子的发芽率。γ-PGA的吸水性和保水性可使γ-PGA被广泛应用于干旱地区保水以及沙漠绿化。 1.2 生物可降解性生物可降解性是γ-PGA的特性之一。所有γ-PGA产生菌株都可以以γ-PGA作为营养源进行生长。在B.1ichenrmis9945a的培养液中存在一种与γ-PGA降解有关的解聚酶。其它自然菌株也具有降解γ-PGA的能力。以γ-PGA作为唯一碳源和氮源对可降解γ-PGA的菌株进行筛选,结果筛选出至少12株可降解γ-PGA的菌株。由此可知,发酵生产γ-PGA的培养时间对产量有较大的影响,时间过长会导致γ-PGA分子被酶解而损失。1.3 γ-PGA的水解特性γ-PGA的水溶液在10mL、浓度为6mol/L的HCl中,抽真空封口,105℃的烘箱的条件下可以水解为谷氨酸,吕莹等的研究表明,水解17h、25h、48h的结果一致。此特性可用于γ-PGA纯度的测定。2 微生物发酵法生产广PGA γ-PGA生物合成的研究主要集中在芽孢杆菌属的细菌B.anthracis和B.anthracisA T℃9945a、且lichen扣rmisAT℃9945(以前叫B.subtilisAT℃9945)等菌株上。根据细胞生长的营养要求是否需要L-谷氨酸,可以把γ-PGA产生菌分为两大类:一类是L-Glu依赖型,这类菌种主要有 B.anthracis、且subtilisMR-141、且lichen!formisAT℃9945、且lichenrmisAT℃9945a、且subtilis IF03335、且subtilisF-2-01和Madla 和Prasertsan等从温泉中筛选出的B.thrmotolerantWD90.KTl2.KF.41等;一类是非L-Glu依赖型,如B.subtilis5E、且subtilisvapolyglutamicum、且licheni-/OrmisA35、B.subtilTAM4等。 B.1ichenIiform/s9945a发酵生产产聚谷氨酸1942年发现且lichenIiform/s9945a能够生产γ-PGA,接着相关培养基设计和发酵条件优化的研究相继展开。研究表明,盐浓度、L-Glu、甘油和柠檬酸是生产γ-PGA的主要影响因素,Mn2+和Ca2+对γ-PGA的产生也有显著影响。最优培养基组成如下:柠檬酸12g/L,甘油80g/L,NH4Cl7g/L,MgSO40.5批,FeCl30.04ga.,K2HPO40.5gA,pH=7.4。2-3天培养后,γ-PGA的产量为15 g/L。B.1icheniformis9945a在此培养条件下,产量较低,可能是由于没有找到最适的碳氮源、生长因子等。在随后的研究中,产量高于15g/L。 2.2 B..subtilis[F03335发酵生产广聚谷氨酸B.subtilis IF03335是从一种传

谷氨酸脱氢酶(GLDH)测定试剂盒(α-酮戊二酸底物法)产品技术要求百奥泰康

谷氨酸脱氢酶(GLDH)测定试剂盒(α-酮戊二酸底物法) 适用范围:该产品用于体外定量测定人血清或血浆中谷氨酸脱氢酶的活性。 1.1 产品规格 试剂1:60mL×2,试剂2:20mL×2 ; 试剂1:60mL×1,试剂2:20mL×1; 试剂1:45mL×2,试剂2:15mL×2; 试剂1:45mL×1,试剂2:15mL×1; 试剂1:30mL×1,试剂2:10mL×3; 试剂1:30mL×2,试剂2:10mL×6; 试剂1:300mL×1,试剂2:100mL×1; 试剂1:15mL×1,试剂2:5mL×1; 试剂1:3000mL×1,试剂2:1000mL×1; 192人份(试剂1:51mL,试剂2:17mL); 1.2组成成分

2.1 外观 试剂R1为无色澄清液体; 试剂R2为无色或淡黄色澄清液体. 2.2 净含量 液体试剂的净含量应不少于标称量。 2.3 试剂空白 2.3.1试剂空白吸光度 空白吸光度应≥0.8000。 2.3.2 空白吸光度变化率 试剂空白吸光度变化率(ΔA/min)应≤0.02。 2.4 分析灵敏度 浓度为30 U/L时,其吸光度变化率应≥0.0050 2.5线性 在[1,120] U/L范围内,线性相关系数r≥0.990,在[1,40] U/L范围内绝对偏差应不超过4 U/L,在(40,120] U/L范围内相对偏差应不超过±10%。 2.6精密度 变异系数(CV%)应≤8%。 2.7 批间差 不同批号之间测定结果的相对极差应≤10%。 2.8准确度

回收试验:回收率90%-110%。 2.9稳定性 原包装试剂,在2℃~8℃下有效期为12个月,取失效期的试剂盒检测其试剂空白、分析灵敏度、线性、精密度、准确度应分别符合2.3、2.4、2.5、2.6、2.8的要求。

谷氨酸脱氢酶测定试剂盒(α-酮戊二酸底物法)产品技术要求baiding

谷氨酸脱氢酶测定试剂盒(α-酮戊二酸底物法)适用范围:用于体外定量测定人血清中谷氨酸脱氢酶的含量。1.1 规格 1.2 组成:

2.1 外观 2.1.1试剂1:无色液体,无浑浊,无不溶物。 2.1.2试剂2:无色至淡黄色液体。 2.1.3包装外观应整洁,标签字迹清晰,不易脱落。 2.2 净含量 液体试剂的净含量不低于标示体积。 2.3 试剂空白 2.3.1试剂空白吸光度 试剂空白吸光度≥0.8。 2.3.2试剂空白吸光度变化率 试剂空白吸光度变化率(ΔA/分)≤0.02。 2.4 分析灵敏度 样本浓度为30U/L时,吸光度变化率(ΔA/分)≥0.0030。

2.5 线性 在[4,120] U/L的范围内,线性相关系数r≥0.990。测试浓度在[4,40] U/L时,绝对偏差应不超过±4 U/L;测试浓度在(40,120] U/L时,相对偏差应不超过±10%。 2.6 精密度 2.6.1重复性 用高、低2个浓度的样本测试试剂盒,各重复测试10次,其变异系数(CV)应不大于10%。 2.6.2批间差 用样本分别测试3个不同批次的试剂盒,每个批次测试3次,其相对极差(R)应不大于10%。 2.7 准确度 与已上市产品进行对比试验,在[4,120] U/L的范围内,线性相关系数r≥0.975。测试浓度在[4,40] U/L时,绝对偏差应不超过±4 U/L;测试浓度在(40,120] U/L时,相对偏差应不超过±10%。 2.8 效期稳定性 原包装试剂盒在2℃~8℃密封避光保存条件下有效期为12个月。有效期满后3个月内测试,应满足2.3、2.4、2.5、2.6.1、2.7的要求。

聚谷氨酸的生物合成及应用

聚谷氨酸的生物合成及应用

————————————————————————————————作者:————————————————————————————————日期: ?

题目聚谷氨酸的生物合成及应用姓名学号曹明乐3120104732 专业年级化工1201

聚谷氨酸的生物合成及应用 摘要:本文主要介绍了绿色高分子材料γ-聚谷氨酸的在工业上的生物合成及其在生活与工农业方面的应用。 关键词:γ-聚谷氨酸;微生物合成;应用 引言 随着材料科学和聚合物化学等相关高分子材料的快速发展,在其重要性日益凸现的同时,人们发现了它的不足之处,即大部分人工合成的高分子材料在自然界难以降解,也就是人们愈发关注的“白色污染”。为了解决这个问题,人们开展了各种研究工作,制成了各种可降解材料,聚合氨基酸系列产品的开发也由此崭露头角。 近年来日本从一种常用食品----纳豆的黏液中提取出的γ-聚谷氨酸,开始引起人们的重视。其最早发现于1913年,是一些芽孢杆菌的荚膜结构的主要成分,是一种生物自然合成的聚酰胺原料。由于γ-聚谷氨酸具有增稠、成膜、保湿、黏合、无毒、水溶及生物可降解等性能,适用于食品、化妆品、生物医学和环境保护等领域,特别是近年来随着对γ-聚谷氨酸的深入研究,γ-聚谷氨酸作为一种高分子生物制品,愈来愈显现出广阔的研究及应用前景。 1γ-聚谷氨酸的生物合成 1.1分子结构 1.2制备方法 γ-聚谷氨酸的制备方法主要有三种,即化学合成法、提取法和微生物发酵法。较之前两种,微生物发酵法简单方便,容易控制和操作,并且γ-聚谷氨酸的产率高,适于工业大规模生

产。因此本文主要介绍微生物发酵法。 1.2.1γ-聚谷氨酸的制备 微生物发酵法在近几年得到了快速的发展和广泛的应用,主要体现在菌种的多样化、发酵方式与底物的多样化和添加剂的多样化。 目前应用于γ-聚谷氨酸生产的菌种主要是枯草芽孢杆菌、地衣芽孢杆菌和纳豆芽孢杆菌。随着分子生物学及基因工程的发展,菌种筛选不仅停留在从自然界中获得高产菌,基因工程和诱变育种也得到了广泛的使用。比如采用紫外、亚硝基胍以及γ射线对其进行复合诱变获得一株γ-聚谷氨酸高产突变株,在基础培养基中产量约是出发菌株的3.11 倍。 常规的微生物发酵方法有液体发酵法和固体发酵法,在生产γ-聚谷氨酸时常用的是液体发酵培养。目前γ-聚谷氨酸常用的发酵生产培养基是E-培养基,国内很多研究单位对培养基的优化进行了研究,比如利用纳豆芽孢杆菌接种到处理过的大豆中,然后保湿 1~2昼夜后用生理盐水提取纳豆芽孢杆菌分泌在大豆表面的γ-聚谷氨酸,依次经过超滤、乙醇沉淀得到产品,同时也可以得到纳豆激酶和维生素 K2副产品。为了降低生产成本,也可以以大豆加工的副产物豆粕为主要培养基,并加入 4 倍水及2%葡萄糖。 在利用枯草芽孢杆菌 NX-2 发酵生产γ-聚谷氨酸时,向培养基中添加甘油、吐温-80和二甲亚砜,不仅能提高产量,同时还能降低γ-聚谷氨酸的相对分子质量。其既可以降低发酵液的粘度也能改变细胞膜的通透性促进菌体吸收营养成分,从而不但促进了菌体的生长还能刺激的γ-聚谷氨酸的合成。在工业化生产中,宜用柠檬酸作碳源,可降低生产成本。其中Mn2+和Mg2+对于提高γ-聚谷氨酸的产率也有很大的影响。 1.2.2γ-聚谷氨酸的分离提取 通过微生物发酵得到高黏度的发酵液,可用有机溶剂沉淀法、化学沉淀法和膜分离沉淀法获得γ-聚谷氨酸。 有机溶剂沉淀法是在生物制品的制备中应用最为广泛的一种沉淀方法,通常是向含有目标产物的水溶液中加入一定量亲水性的有机溶剂,能显著降低蛋白质等生物大分子的溶解度,使其沉淀析出。提取γ-聚谷氨酸常用的有机溶剂有甲醇、乙醇和丙酮。实验室操作的一般流程为:发酵液通过离心弃去菌体沉淀,包含γ-聚谷氨酸的上清液加入一定体积预冷的有机溶剂,放置一段时间后,沉淀物通过离心收集,通过冻干得到粗产品。粗产品溶解在蒸馏水中,用蒸馏水反复透析数小时,透析液经过冷冻干燥得到纯品。 化学沉淀法利用的是盐析原理,向待提取液中加入一定量的无机盐或无机盐溶液使目标产物沉淀下来。下图为化学沉淀法流程。

聚谷氨酸的生物合成及应用展望

聚谷氨酸的生物合成及应用 引言 γ—聚谷氨酸(γ-PGA)是一种由D-谷氨酸和γ—聚谷氨酸通过γ—聚谷氨酰键结合而成的一种特殊的阴离子聚合物。不同于α多肽,它可以耐受普通蛋白质酶的降解。γ—聚谷氨酸通常由5000个左右的谷氨酸单体组成。相对分子量一般在10万~200万之间,不同分子量大小的γ—聚谷氨酸可以应用于不同的领域[1]。对于微生物合成的γ—聚谷氨酸,可以通过调控发酵条件,使合成反应向着预期的方向进行。最早于1937年lvanovic等发现炭疽芽孢杆菌的荚膜物质的主要成分是D-谷氨酸的聚合物。而1942年Bovafllick等首次发现枯草芽孢杆菌能够产生L-聚谷氨酸,以后进一步发现短小芽孢杆菌及地衣芽孢杆菌等也能产生γ-PGA。由于微生物合成的γ—聚谷氨酸是一种水溶性的、生物可降解的、对人体和环境无害的生物高分子,因此具有广阔的应用前景:可作为增稠剂、保湿剂、苦味掩盖剂、防冻剂、缓释剂、生物粘合剂、药物载体、高分子纤维、高吸水树脂、生物絮凝剂和重金属吸附剂而应用于食品、化妆品、医药、农业及工业等众多领域[2]。 1.γ—聚谷氨酸的微生物合成 γ—聚谷氨酸生产主要有化学合成法、提取法和微生物发酵法3种[3]。化学合成法的合成路线长、副产物多、收率低、难度大,尤其是含20个氨基酸以上的纯多肽合成。因此无工业应用价值。提取法是用用乙醇将纳豆中的PGA分离提取出来。日本生产γ—PGA多采取提取法,但是由于纳豆中所含的γ—聚谷氨酸浓度甚微,且有波动,因此提取工艺十分复杂,生产成本甚高.同样难以大规模生产。相比于以上两种方法微生物合成法具有成本低,工艺相对简单,产量高等的优点,对于实现γ—聚谷氨酸的工业化生产具有难以比拟的优势。但是目前由于至今γ—聚谷氨酸的合成的分子机制研究的尚不清楚以及并未筛选出适于工 业化发酵生产的高产菌株,因此γ—聚谷氨酸的生物合成还面临许多问题。

聚谷氨酸的生物合成及应用

题目聚谷氨酸的生物合成及应用姓名学号曹明乐 3120104732 专业年级化工1201

聚谷氨酸的生物合成及应用 摘要:本文主要介绍了绿色高分子材料γ-聚谷氨酸的在工业上的生物合成及其在生活与工农业方面的应用。关键词:γ-聚谷氨酸;微生物合成;应用 引言 随着材料科学和聚合物化学等相关高分子材料的快速发展,在其重要性日益凸现的同时,人们发现了它的不足之处,即大部分人工合成的高分子材料在自然界难以降解,也就是人们愈发关注的“白色污染”。为了解决这个问题,人们开展了各种研究工作,制成了各种可降解材料,聚合氨基酸系列产品的开发也由此崭露头角。 近年来日本从一种常用食品----纳豆的黏液中提取出的γ-聚谷氨酸,开始引起人们的重视。其最早发现于1913年,是一些芽孢杆菌的荚膜结构的主要成分,是一种生物自然合成的聚酰胺原料。由于γ-聚谷氨酸具有增稠、成膜、保湿、黏合、无毒、水溶及生物可降解等性能,适用于食品、化妆品、生物医学和环境保护等领域,特别是近年来随着对γ-聚谷氨酸的深入研究,γ-聚谷氨酸作为一种高分子生物制品,愈来愈显现出广阔的研究及应用前景。 1γ-聚谷氨酸的生物合成 1.1分子结构 1.2制备方法 γ-聚谷氨酸的制备方法主要有三种,即化学合成法、提取法和微生物发酵法。较之前两种,微生物发酵法简单方便,容易控制和操作,并且γ-聚谷氨酸的产率高,适于工业大规模生产。因此本文主要介绍微生物发酵法。

1.2.1γ-聚谷氨酸的制备 微生物发酵法在近几年得到了快速的发展和广泛的应用,主要体现在菌种的多样化、发酵方式与底物的多样化和添加剂的多样化。 目前应用于γ-聚谷氨酸生产的菌种主要是枯草芽孢杆菌、地衣芽孢杆菌和纳豆芽孢杆菌。随着分子生物学及基因工程的发展,菌种筛选不仅停留在从自然界中获得高产菌,基因工程和诱变育种也得到了广泛的使用。比如采用紫外、亚硝基胍以及γ射线对其进行复合诱变获得一株γ-聚谷氨酸高产突变株,在基础培养基中产量约是出发菌株的 3.11 倍。 常规的微生物发酵方法有液体发酵法和固体发酵法,在生产γ-聚谷氨酸时常用的是液体发酵培养。目前γ-聚谷氨酸常用的发酵生产培养基是E-培养基,国内很多研究单位对培养基的优化进行了研究,比如利用纳豆芽孢杆菌接种到处理过的大豆中,然后保湿 1~2 昼夜后用生理盐水提取纳豆芽孢杆菌分泌在大豆表面的γ-聚谷氨酸,依次经过超滤、乙醇沉淀得到产品,同时也可以得到纳豆激酶和维生素 K2副产品。为了降低生产成本,也可以以大豆加工的副产物豆粕为主要培养基,并加入 4 倍水及2%葡萄糖。 在利用枯草芽孢杆菌 NX-2 发酵生产γ-聚谷氨酸时,向培养基中添加甘油、吐温-80和二甲亚砜,不仅能提高产量,同时还能降低γ-聚谷氨酸的相对分子质量。其既可以降低发酵液的粘度也能改变细胞膜的通透性促进菌体吸收营养成分,从而不但促进了菌体的生长还能刺激的γ-聚谷氨酸的合成。在工业化生产中,宜用柠檬酸作碳源,可降低生产成本。其中Mn2+和Mg2+对于提高γ-聚谷氨酸的产率也有很大的影响。 1.2.2γ-聚谷氨酸的分离提取 通过微生物发酵得到高黏度的发酵液,可用有机溶剂沉淀法、化学沉淀法和膜分离沉淀法获得γ-聚谷氨酸。 有机溶剂沉淀法是在生物制品的制备中应用最为广泛的一种沉淀方法,通常是向含有目标产物的水溶液中加入一定量亲水性的有机溶剂,能显著降低蛋白质等生物大分子的溶解度,使其沉淀析出。提取γ-聚谷氨酸常用的有机溶剂有甲醇、乙醇和丙酮。实验室操作的一般流程为:发酵液通过离心弃去菌体沉淀,包含γ-聚谷氨酸的上清液加入一定体积预冷的有机溶剂,放置一段时间后,沉淀物通过离心收集,通过冻干得到粗产品。粗产品溶解在蒸馏水中,用蒸馏水反复透析数小时,透析液经过冷冻干燥得到纯品。 化学沉淀法利用的是盐析原理,向待提取液中加入一定量的无机盐或无机盐溶液使目标产物沉淀下来。下图为化学沉淀法流程。

谷氨酸脱氢酶(Glutamate dehydrogenase ,GDH )试剂盒使用说明

谷氨酸脱氢酶(Glutamate dehydrogenase,GDH)试剂盒使用说明 产品简介: GDH和谷氨酸合成酶(GOGAT)共同参与谷氨酸的合成,在氨同化和转化成有机氮化合物的代谢中起重要作用。GDH催化NH4+、α-酮戊二酸和NADH,生成谷氨酸和NAD+,引起340nm吸光度下降。通过测定340nm吸光度的下降速率,计算GDH活性。 试验中所需的仪器和试剂: 紫外分光光度计、台式离心机、水浴锅、可调式移液器、1mL石英比色皿、研钵、冰和蒸馏水。 产品内容: 提取液:液体60mL×1瓶,4℃保存; 试剂一:液体20mL×3瓶,4℃保存; 试剂二:粉剂×3支,4℃保存; 试剂三:粉剂×3支,4℃保存; 试剂四:粉剂×3支,-20℃保存。 工作液的配制:临用前取试剂一、试剂二、试剂三和试剂四各一支,将试剂二、三、四转移到试剂一中混合溶解。分三批配制工作液并且进行测定,以防止工作液失效。 操作步骤: 一、粗酶液提取: 1、收集细菌或细胞到离心管内,离心后弃上清;按照每200万细菌或细胞加入400

μL提取液,超声波破碎细菌或细胞(功率20%,超声3秒,间隔10秒,重复30次);8000g4℃离心10分钟,取上清,置冰上待测。 2、称取约0.1g组织,加入1mL提取液进行冰浴匀浆。8000g4℃离心10分钟,取上清,置冰上待测。 二、测定步骤: 预先用蒸馏水调零,工作液置于37℃(哺乳动物)或25℃(其它物种)水浴中保温。依次在比色皿中加入0.05mL粗酶液和 1.0mL工作液,迅速混匀,在340nm波长下记录吸光度A1;然后迅速将比色皿转移到37℃或25℃水浴中,准确反应5分钟;迅速取出比色皿并擦干,在340nm下比色,记录吸光度A2,计算ΔA=A1-A2。 注意事项: 1、用蒸馏水调零。 2、测定期间粗酶液在冰上放置,以免变性失活。 3、比色皿中反应液的温度必须保持37℃(哺乳动物)或25℃(其它物种),取小烧杯一只装入一定量的37℃或25℃蒸馏水,将此烧杯放入37℃或25℃水浴锅中。在反应过程中把比色皿连同反应液放在此烧杯中。 4、最好两个人同时做此实验,一个人比色,一个人计时,以保证实验结果的准确性。 GDH活性计算: 1、组织中GDH活力的计算: (1)按样本蛋白浓度计算: 单位的定义:每mg组织蛋白在反应体系中每分钟消耗1nmol/L的NADH定义为一个酶活力单位。

_聚谷氨酸的微生物合成与应用

新品介绍 γ2聚谷氨酸的微生物合成与应用 施庆珊Ξ (广东省微生物研究所,广东广州510070) 摘 要:γ2聚谷氨酸为一种水溶性的、可生物分解和可食用且对人和环境无毒的生物高分子产品,这些特性使得γ2聚谷氨酸及其衍生物在过去几十年来在食品、化妆品、医药和水处理等领域有广阔的应用前景。国外在γ2聚谷氨酸的研发及生产方面已经非常领先,已有产品规模生产,相比之下,我国在这方面还处于起步阶段,研究仅限于实验室阶段,离产业化还有很长一段距离。本文介绍了微生物合成γ2聚谷氨酸的方法,γ2聚谷氨酸的理化特性及用途。 关键词:γ2聚谷氨酸;微生物合成;氨基酸 Biosynthesis and Application of γ2Polyglutamic Acid S HI Qi ng 2shan (Guangdong Institute of Microbiology ,Guangzhou 510070,China ) Abstract :γ2Polyglutamic acid (γ2PG A )is a biopolymeric product exhibiting water solubility ,biodegradation ,edibil 2ity and non 2toxicity to human and environment ,making its wide application in many fields as food ,cosmetics ,medicine and water treatment in the past https://www.doczj.com/doc/e14860551.html,pared with advanced level in research and commercial production of γ2PG A abroad ,China has a long way to go as its situation of researching is still in laboratory.This article focuses on the biological synthetic method for γ2polyglutamic acid ,its physical and chemical performances and usages of γ2PG A. K ey w ords :γ2polyglutamic acid ;biosynthesis ;amino acid 氨基酸聚合物可分为两类:一类是氨基酸的天 然聚合物———蛋白质、多肽激素、酶及活性肽;一类是人工或生物方法合成的聚合物,它包括天然活性肽及其类似物,如催产素、加压素、释放素L HG 类似物、聚谷氨酸(以下简称γ2P G A )、聚赖氨酸和聚精氨酸等。获得氨基酸聚合物的方法有两种:一是通过生物方法大量积累产物后提取或从天然物质中提取;二是人工合成。人工合成有单一氨基酸组成的均聚氨基酸主要有3种:一是利用碳酰氯的NCA 法,二是氨基酸羟基转化为活性酯和氨基缩合的活性酯法,三是酶法合成。通过生物方法有廉价生产的可能性,对工业部门来说是很有用的。 1937年Ivanovics 等人首先发现炭疽芽孢杆菌的夹膜含有γ2聚谷氨酸(γ2P G A );1942年Bovar 2nick 等人发现有些芽孢杆菌属细菌能通过发酵培养 积累γ2P G A ;1973年Troy 发现γ2聚谷氨酸是 B acill us anthracis 细胞夹膜的一种化学组分,它是一种水溶性的酰胺化合物,可以通过芽孢杆菌的变 种来生产〔1,2〕 。γ2P G A 是从左旋2谷氨酸(有的菌种 可不必加L 2谷氨酸)经发酵而制成,为一种全天然、多功能性、生物降解的生物高分子产品,它由氨基酸单体通过均聚或共聚而成。由于主链上存在大量肽键,在体内极易受酶的作用,降解生成无毒的寡肽或谷氨酸,具有优良的生物相容性和生物降解性。聚谷氨酸分子链上具有大量活性较高的侧链羧酸(—COOH ),易于和一些药物结合生成稳定的复合物,可作为药物载体,也可借改性使之具有不同的性质,如高亲水性等(如适度交联形成三维空间的网络结构,即可制成高吸水性树脂),满足实际应用的不同 需求。γ2P G A 分子量范围从1万~200万,可以制 ? 02?Ξ 收稿日期:2004203201  基金项目:广东省科学院自然科学基金项目(2002202205) 作者简介:施庆珊(19662),男,副研究员,从事工业微生物菌种选育及发酵工艺的研究和开发工作。  Vol.12,No.11精细与专用化学品第12卷第11期Fine and Specialty Chemicals 2004年6月6日

相关主题
文本预览
相关文档 最新文档