当前位置:文档之家› MSDS1,2-乙二胺

MSDS1,2-乙二胺

MSDS1,2-乙二胺
MSDS1,2-乙二胺

1,2-乙二胺化学品安全技术说明书

第一部分:化学品名称

化学品中文名称:1,2-乙二胺

化学品英文名称:1,2-ethylenediamine

中文名称2:1,2-二氨基乙烷

英文名称2:1,2-diaminoethane

技术说明书编码:903

CAS No.:107-15-3

分子式:C2H8N2

分子量:60.1

第二部分:成分/组成信息

有害物成分含量CAS No.: 有害物成分含量CAS No.

1,2-乙二胺≥98.0%107-15-3

第三部分:危险性概述

健康危害:本品蒸气对粘膜和皮肤有强烈刺激性。接触本品蒸气引起结膜炎、支气管炎、肺炎或肺水肿,并可发生接触性皮炎。可有肝、肾损害。皮肤和眼直接接触其液体可致灼伤。本品可引起职业性哮喘。

环境危害:对环境有危害,对水体可造成污染。

燃爆危险:本品易燃,具强腐蚀性、强刺激性,可致人体灼伤。

第四部分:急救措施

皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:用水漱口,给饮牛奶或蛋清。就医。

第五部分:消防措施

危险特性:遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。与乙酸、乙酸酐、二硫化碳、

氯磺酸、盐酸、硝酸、硫酸、发烟硫酸、过氯酸等剧烈反应。能腐蚀铜及其合金。

有害燃烧产物:一氧化碳、二氧化碳、氧化氮。

灭火方法:用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。灭火剂:水、抗溶性泡沫、干粉、二氧化碳、砂土。

第六部分:泄漏应急处理

应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、干燥石灰或苏打灰混合。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。喷雾状水冷却和稀释蒸汽、保护现场人员、把泄漏物稀释成不燃物。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

第七部分:操作处置与储存

操作注意事项:密闭操作,注意通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(全面罩),穿防腐工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。

储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。包装要求密封,不可与空气接触。应与氧化剂、酸类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。

第八部分:接触控制/个体防护

中国MAC(mg/m3): 4

前苏联MAC(mg/m3): 2

TLVTN:OSHA 10ppm,25mg/m3; ACGIH 10ppm,25mg/m3

TLVWN:未制定标准

监测方法:溶剂解吸-气相色谱法

工程控制:密闭操作,注意通风。提供安全淋浴和洗眼设备。

呼吸系统防护:空气中浓度超标时,应该佩戴自吸过滤式防毒面具(全面罩)。

眼睛防护:呼吸系统防护中已作防护。

身体防护:穿防腐工作服。

手防护:戴橡胶耐油手套。

其他防护:工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。实行就业前和定期的体检。第九部分:理化特性

主要成分:含量: 一级≥98.0%; 二级≥70.0%。

外观与性状:无色或微黄色粘稠液体,有类似氨的气味。

熔点(℃):8.5

沸点(℃):117.2

相对密度(水=1): 0.9

相对蒸气密度(空气=1): 2.07

饱和蒸气压(kPa): 1.43(20℃))

燃烧热(kJ/mol):1891.9

临界温度(℃):无资料

临界压力(MPa):无资料

辛醇/水分配系数的对数值:-1.2

闪点(℃):43

引燃温度(℃):385

爆炸上限%(V/V):16.6

爆炸下限%(V/V): 2.7

溶解性:溶于水、醇,不溶于苯,微溶于乙醚。

主要用途:用于有机合成和农药、活性染料、医药、环氧树脂固化剂等的制取。

第十部分:稳定性和反应活性

禁配物:酸类、酰基氯、酸酐、强氧化剂。

避免接触的条件:空气。

第十一部分:毒理学资料

急性毒性:LD50:1298 mg/kg(大鼠经口);730 mg/kg(兔经皮)

LC50:300 mg/m3(小鼠吸入)

刺激性:家兔经眼:675μg ,重度刺激。家兔经皮开放性刺激试验:450mg,中度刺激。第十二部分:生态学资料

其它有害作用:该物质对环境有危害,应特别注意对水体的污染。

第十三部分:废弃处置

废弃物性质废弃处置方法:用控制焚烧法处置。焚烧炉排出的氮氧化物通过洗涤器除去。

第十四部分:运输信息

危险货物编号:82028

UN编号:1604

包装类别:O52

包装方法:小开口钢桶;安瓿瓶外普通木箱;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱;螺纹口玻璃瓶、塑料瓶或镀锡薄钢板桶(罐)外满底板花格箱、纤维板箱或胶合板箱。

运输注意事项:铁路运输时应严格按照铁道部《危险货物运输规则》中的危险货物配装表进行配装。起运时包装要完整,装载应稳妥。运输过程中要确保容器不泄漏、不倒塌、不坠落、不损坏。运输时所用的槽(罐)车应有接地链,槽内可设孔隔板以减少震荡产生静电。严禁与氧化剂、酸类、食用化学品等混装混运。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。

第十五部分:法规信息

法规信息:化学危险物品安全管理条例(1987年2月17日国务院发布),化学危险物品安全管理条例实施细则(化劳发[1992] 677号),工作场所安全使用化学品规定([1996]劳部发423号)等法规,针对化学危险品的安全使用、生产、储存、运输、装卸等方面均作了相应规定;常用危险化学品的分类及标志(GB 13690-92)将该物质划为第8.2 类碱性腐蚀品;车间空气中乙二胺卫生标准(GB 11517-89),规定了车间空气中该物质的最高容许浓度及检测方法。

课后练习本_八隅体与路易斯结构

19 2-1 八隅体与路易斯结构 一 單選題 ( B ) 1. 八隅体规则的定义为原子形成化合物时,倾向于与何种物质具有相同的电子 排列方式,而趋于安定? (A)卤素 (B)钝气 (C)碱金属 (D)氧族 (E)过渡金属 ( D ) 2. 下列各元素中,何者具有最多的价电子数? (A) S (B) N (C) O (D) F (E) He ( E ) 3. 下列何者为KH (氢化钾)的路易斯结构? (A) K:H (B) [K]+[H]- (C) [K]-[H]+ (D) [K:]-[H]+ (E) [K]+[:H]- ( C ) 4. 原子序15的磷元素得到三个电子形成离子后,其路易斯结构为何? (A) (B) (C) (D) P 3+ (E) P 5+ ( C ) 5. 原子形成化合物时需符合八隅体规则,所谓的八隅体规则是指: (A)化合物形成时,各原子均使用8个电子来键结 (B)化合物形成时,其电子数的总和为钝气的电子数 (C)形成化合物时,各原子倾向具有与钝气相同的8个价电子数 (D)化合物形成时,价电子数总和为8的倍数 (E)两原子间价电子数总和为8者才能形成化合物 ( A ) 6. 下列分子中何者两原子间共享三对电子? (A) N 2 (B) O 2 (C) H 2 (D) F 2 (E) CO 2 ( C ) 7. 一个氯化氢分子中有几对孤电子对? (A) 1对 (B) 2对 (C) 3对 (D) 4对 (E) 5对 二 多選題 第2章 物质的构造与特性 2-1 八隅体与路易斯结构 (2. (A) 6个;(B) 5个;(C) 6个;(D) 7个;(E) 2个。) (6. (A) 3对;(B) 2对;(C) 1对;(D) 1对;(E) 2对。) (7. H Cl 有3对弧电子对。) (1. (A)皆为2个;(B) 5B :3个,16S :6个; (C)皆为5个;(D) 9F :7个,18Ar :8个; (E) 3Li :1个,13Al :3个。)

五甲基二亚丙基三胺

五甲基二亚丙基三胺 别名:N,N,N',N'',N''-五甲基二丙烯三胺,五甲基二亚丙基三胺、双(二甲氨基丙基)甲胺 英文名:2,6,10-Trimethyl-2,6,10-triazaundecane 分子式(Formula):C11H27N3 相对分子质量:201.4 CAS编号:3855-32-1 物化性质 五甲基二亚丙基三胺外观为无色到浅黄色低黏度液体,鱼腥味。溶于水,水溶液呈强碱性。 相对密度:083 蒸汽压(21℃):4.1×1.33Pa 闪点:98°C、92℃(PM-CC) 沸点:227℃ 产品应用 五甲基二亚丙基三胺是一种低气味发泡/凝胶平衡性催化剂,可用于聚醚型聚氨酯软泡、聚氨酯硬泡和涂料、胶粘剂等,特别适合用于冷模塑HR泡沫。泡沫的开孔性较好,在制造Maxfoam发泡工艺中使用,具有优异的性能。 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂: 二甲基环己胺(DMCHA):聚氨酯硬泡催化剂 N,N-二甲基苄胺(BDMA):在聚氨酯行业是聚酯型聚氨酯块状软泡、聚氨酯硬泡及胶黏剂涂料的催化剂,主要用于硬泡 三乙烯二胺:聚氨酯高效催化剂,用于软泡 双(二甲氨基乙基)醚:高催化活性的聚氨酯催化剂,多用于聚氨酯软泡 N,N-二甲基乙醇胺:聚氨酯反应型催化剂 五甲基二乙烯三胺(PMDETA):聚氨酯凝胶发泡催化剂,广泛用于聚氨酯硬泡2,4,6-三(二甲氨基甲基)苯酚(DMP-30):聚氨酯三聚催化剂,也可作环氧促进剂 双吗啉二乙基醚(DMDEE):聚氨酯强发泡催化剂

二甲氨基乙氧基乙醇(DMAEE):用于硬质包装泡沫的低气味反应性催化剂 二月桂酸二丁基锡(T-12):聚氨酯强凝胶性催化剂 三(二甲氨基丙基)六氢三嗪(PC-41):具有优异发泡能力的高活性三聚共催化剂 四甲基乙二胺(TEMED):中等活性发泡催化剂,发泡/凝胶平衡性催化剂 四甲基丙二胺(TMPDA):可用于泡沫塑料微孔弹性体的催化剂,也可作环氧促进剂 四甲基己二胺(TMHDA):特别用于聚氨酯硬泡,是发泡/凝胶平衡性催化剂 三甲基羟乙基丙二胺(Polycat 17):反应性低烟雾平衡性叔胺催化剂 三甲基羟乙基乙二胺(Dabco T):反应性发泡催化剂,具有低雾化性 新典化学

盐酸萘乙二胺分光光度法资料

盐酸萘乙二胺分光光 度法

精品文档 大气中氮氧化物的测定(盐酸萘乙二胺分光光度法) 原理: 大气中的氮氧化物主要是一氧化氮和二氧化氮。在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。 二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。 仪器: 1.多孔玻板吸收管。 2.双球玻璃管(内装三氧化铬-砂子)。 3.空气采样器:流量范围 0—1L/ min。 4.分光光度计。 试剂: 所有试剂均用不含亚硝酸根的重蒸馏水配制。其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005。 1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。保存时应密封瓶口,防止空气与吸收液接触。采样时,按4份吸收原液与1份水的比例混合配成采样用吸收液。 2.三氧化铬-砂子氧化管:筛取20—40目海砂(或河砂),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。采样时将氧化管与吸收管用一小段乳胶管相接。 3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。此溶液每毫升含100.0μgNO2-,贮于棕色瓶内,冰箱中保存,可稳定三个月。 4.亚硝酸钠标准溶液:吸取贮备液 5.00mL于100mL容量瓶中,用水稀释至标线。此溶液每毫升含5.0μgNO2-。 测定步骤: 1.标准曲线的绘制:取7支10ml具塞比色管,按下表所列数据配制标准色列。 收集于网络,如有侵权请联系管理员删除

双水杨醛缩乙二胺Schiff 碱

双水杨醛缩乙二胺Schiff 碱及其镍(Ⅱ)配合物的合成与表征 摘要:本实验以水杨醛、乙二胺、硝酸镍为原料,采用加热、回流等方法合成了席夫碱配体及其Ni(Ⅱ)配合物。并采用红外光谱、EDTA直接滴定法、测定熔点等途径对化合物进行表征。 关键词:水杨醛;乙二胺;席夫碱;镍;红外光谱 水杨醛及其衍生物是重要的有机合成中间体。由水杨醛及其衍生物与胺类化合物反应生成的席夫碱与其金属配位生成的金属配合物在医药、催化、分析化学、腐蚀和光致变色领域有着重要应用,因而受到人们的广泛关注。 本文对回流条件下双水杨醛缩乙二胺Schiff 碱 及其镍(Ⅱ)配合物的合成进行了研究,并对其进行表征。 一、实验部分 (一)主要仪器和药品 药品:水杨醛、乙二胺、95%乙醇、85%乙醇、无水乙醇、2mol/L HCl溶液、Ni(NO3)2·6H2O。 仪器:天平、红外光谱仪、熔点仪、毛细管圆底烧瓶、磁力搅拌器、球形冷凝管、布氏漏斗、温度计、酸式滴定管(50mL)、锥形瓶、烧杯。 材料:滤瓶、pH试纸 反应物参数:

(二)实验原理 1.双水杨醛缩乙二胺Schiff碱及其镍(Ⅱ)配合物的合成 Schiff碱的合成是涉及到加成、重排、消去等过程的一种缩合反应。反应物的立体结构及电子效应在合成中起着重要作用,其反应机理如下图: 本实验采用水杨醛和乙二胺在75℃的条件下用回流法制备相应的Schiff碱,反应方程式如下所示: 席夫碱基团通过碳氧双键(-C=N-)上的氮原子与相邻的具有孤对电子的氧(O)、硫(S)、磷(P)原子作为给体与金属原子配对,所以氮原子相邻位置存在这类原子的Schiff碱往往具有高配位能力。 2.金属配合物的表征 (1)金属配合物的稳定性受很多因素的影响,通常可以用加热或改变溶液的酸碱性来破坏。 (2)游离出来的Ni离子在pH=10条件下,以紫脲酸铵为指示剂用EDTA直接滴定,由此可计算出Ni的量。 (3)用熔点仪测定配体及其配合物的熔点。 (4)用红外光谱仪测定配体席夫碱及其配合物的红外光谱图。

五甲基二丙烯三胺

五甲基二丙烯三胺 别名:N,N,N',N'',N''-五甲基二丙烯三胺,五甲基二亚丙基三胺、双(二甲氨基丙基)甲胺 英文名:2,6,10-Trimethyl-2,6,10-triazaundecane 分子式(Formula):C11H27N3 相对分子质量:201.4 CAS编号:3855-32-1 物化性质 五甲基二丙烯三胺外观为无色到浅黄色低黏度液体,鱼腥味。溶于水,水溶液呈强碱性。 相对密度:083 蒸汽压(21℃):4.1×1.33Pa 闪点:98°C、92℃(PM-CC) 沸点:227℃ 产品应用 五甲基二丙烯三胺是一种低气味发泡/凝胶平衡性催化剂,可用于聚醚型聚氨酯软泡、聚氨酯硬泡和涂料、胶粘剂等,特别适合用于冷模塑HR泡沫。泡沫的开孔性较好,在制造Maxfoam发泡工艺中使用,具有优异的性能。 供应商

新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂: 二甲基环己胺(DMCHA):聚氨酯硬泡催化剂 N,N-二甲基苄胺(BDMA):在聚氨酯行业是聚酯型聚氨酯块状软泡、聚氨酯硬泡及胶黏剂涂料的催化剂,主要用于硬泡 三乙烯二胺:聚氨酯高效催化剂,用于软泡 双(二甲氨基乙基)醚:高催化活性的聚氨酯催化剂,多用于聚氨酯软泡 N,N-二甲基乙醇胺:聚氨酯反应型催化剂 五甲基二乙烯三胺(PMDETA):聚氨酯凝胶发泡催化剂,广泛用于聚氨酯硬泡2,4,6-三(二甲氨基甲基)苯酚(DMP-30):聚氨酯三聚催化剂,也可作环氧促进剂 双吗啉二乙基醚(DMDEE):聚氨酯强发泡催化剂 二甲氨基乙氧基乙醇(DMAEE):用于硬质包装泡沫的低气味反应性催化剂 二月桂酸二丁基锡(T-12):聚氨酯强凝胶性催化剂 三(二甲氨基丙基)六氢三嗪(PC-41):具有优异发泡能力的高活性三聚共催化剂 四甲基乙二胺(TEMED):中等活性发泡催化剂,发泡/凝胶平衡性催化剂 四甲基丙二胺(TMPDA):可用于泡沫塑料微孔弹性体的催化剂,也可作环氧促进剂

(KJ201704)食品中亚硝酸盐的快速检测盐酸萘乙二胺法

附件4 食品中亚硝酸盐的快速检测 盐酸萘乙二胺法(KJ201704) 1范围 本方法规定了食品中亚硝酸盐的快速检测方法。 本方法适用于肉及肉制品(餐饮食品)中亚硝酸盐的快速测定。 2原理 样品中的亚硝酸盐经提取后,在弱酸性条件下与对氨基苯磺酸重氮化后,再与盐酸萘乙二胺反应生成紫红色偶氮化合物,其颜色的深浅在一定范围内与亚硝酸盐含量成正相关,通过色阶卡进行目视比色,对样品中亚硝酸盐进行定性判定。 3试剂和材料 除另有规定外,本方法所用试剂均为分析纯,水为GB/T6682规定的二级水。 3.1试剂 3.1.1对氨基苯磺酸。 3.1.2盐酸萘乙二胺。 3.1.3盐酸。 3.1.4盐酸(20%):量取20mL盐酸,用水稀释至100mL。 3.1.5对氨基苯磺酸溶液(4g/L):称取0.4g对氨基苯磺酸,溶于100mL20%盐酸中,混匀,置棕色瓶中,临用新制。 3.1.6盐酸萘乙二胺溶液(2g/L):称取0.2g盐酸萘乙二胺,溶解于100mL水中,混匀,置棕色瓶中,临用新制。 3.2参考物质 亚硝酸钠参考物质中文名称、英文名称、CAS号、分子式、相对分子质量见表1,纯度≥99%。 表1亚硝酸钠中文名称、英文名称、CAS登记号、分子式、相对分子质量 3.3标准溶液配制 亚硝酸钠标准工作液(200μg/mL,以亚硝酸钠计):精密称取适量经110℃—120℃干燥恒重的亚硝酸钠参考物质(3.2),加水溶解,移入250mL容量瓶中,加水稀释至刻度,混匀。 3.4材料

亚硝酸盐快速检测试剂盒:适用基质为肉及肉制品,需在阴凉、干燥、避光条件下保存。 4仪器和设备 4.1移液器:200μL,1mL。 4.2涡旋混合器或超声仪。 4.3电子天平或手持式天平:感量为0.01g和0.0001g。 4.4离心机。 4.5微孔滤膜:0.45μm(水系)。 5分析步骤 5.1试样制备 取适量有代表性样品的可食部分,充分粉碎混匀。 5.2试样的提取 准确称取试样1g(精确至0.01g),置于离心管中,准确加水10mL,超声或涡旋振荡提取5min,静置10min。准确吸取1mL上清液(如样品浑浊,≥3000r/min离心5min取上清液,或经微孔滤膜过滤后取续滤液)于检测管中,向检测管中滴加对氨基苯磺酸溶液200μL,混匀静置1min,再加入盐酸萘乙二胺溶液100μL,混匀静置5min,即得待测液。 5.3测定步骤 将待测液与标准色阶卡目视比色,10min内判读结果。进行平行试验,两次测定结果应一致,即显色结果无肉眼可辨识差异。 5.4质控试验 每批样品应同时进行空白试验和质控样品试验(或加标质控试验)。用色阶卡和质控试验同时对检测结果进行控制。 5.4.1空白试验 称取空白样品,按照5.2和5.3步骤与样品同法操作。 5.4.2质控样品试验(或加标质控试验) 亚硝酸盐质控样品:采用典型样品基质或相似样品基质按照实际生产工艺生产的,含有一定量亚硝酸盐,并可稳定保存的样品。经参比方法确认的质控样品中亚硝酸盐含量(以亚硝酸钠计)应包括但不限于10mg/kg。 加标质控样品:准确称取空白试样1g(精确至0.01g),置于离心管中,加入适量亚硝酸钠标准工作液(200μg/mL)(3.3)使样品中亚硝酸钠含量为10mg/kg。 质控样品(或加标质控样品)按5.2和5.3步骤与样品同法操作。 6结果判定要求 观察检测管中样液颜色,与标准色阶卡比较判读样品中亚硝酸盐(以亚硝酸钠计)的含量。颜色浅于检出限(1mg/kg)则为阴性样品;颜色深于10mg/kg则为阳性样品。色阶卡见图1。 注:1.颜色接近或深于1mg/kg,但浅于或接近10mg/kg时,则考虑本底污染或带入所

路易斯结构式

路易斯结构式 在弗兰克兰结构式基础上,Lewis 提出了“共用电子对理论” “—”表示共用一对电子。H—H “=”表示共用两对电子。H—O—H O=O “≡”表示共用三对电子。N≡N 弗兰克兰的“化合价”=Lewis 的电子共用电子对数目。 ① 柯赛尔的“八隅律” 认为稀有气体的8e 外层是一种稳定构型。 其它原子倾向于共用电子而使其外层达到8e 外层。 如:H—O—H H—C≡N ② 成键电子与孤对电子的表示 成键电子=键合电子——指形成共价键的电子。孤 对电子——指没有参与化合键形成的电子。 ③ 结构式的表示: 键合电子——用线连 孤对电子——用小黑点 如:H—N—H N≡N ④ Lewis 电子结构式的局限性 按柯赛尔的“八隅律”规则,许多分子的中心原子周围超出8e 但仍然稳定。 如:PCl5 BCl3 B 周围5 个e 这些需要用现代价键理论来解释。 杂化轨道 杂化轨道理论(hybrid orbital theory)杂化轨道理论(hybrid orbital theory)是1931 年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。 要点 1.在成键的过程中,由于原子间的相互影响,同一原子中几个能量相近的不同类型的原子轨道(即波函数),可以进行线性组合,重新分配能量和确定空间方向,组成数目相等的新原子轨道,这种轨道重新组合的方式称为杂化(hybridization),杂化后形成的新轨道称为杂化轨道(hybrid orbital)。 2.杂化轨道的角度函数在某个方向的值比杂化前的大得多,更有利于原子轨道间最大程度地重叠,因而杂化轨道比原来轨道的成键能力强(轨道是在杂化之后再成键)。

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物(精)

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物 一﹑实验目的 1.学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2.掌握大气中氮氧化物的比色测定方法。 二﹑实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等,在测定氮氧化物浓度时,先用三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得NO 2--→NO 2 - 的转换系数为0.76,因此在计算结果中要除以换算系数0.76。 在大气中二氧化硫浓度为氮氧化物浓度的10倍时,对氮氧化物的测定无干扰;30倍时,使颜色有少许减退,但在城市环境大气中,较少遇到这种情况。臭氧浓度为氮氧化物的5倍时,对氮氧化物的测定略有干扰,在采样后3小时,使试液呈现微红色,影响较大。过氧乙酰硝酸酯(PAN)使试液显色而干扰,在一般环境大气中PAN浓度甚低,不会导致显著的误差。本法检出限为0.05微克 /5毫升(按吸光度0.01相应的NO 2-含量计),当采样体积为6升时,NO 2 最低检出 浓度为0.01毫克/立方米。 三﹑实验仪器 1.多孔玻板吸收管 2.大气采样器,流量范围0—1L/min。 3.双球玻璃管 4.分光光度计 四﹑试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过0.005。 1.吸收原液:称取5g对氨基苯磺酸于200mL烧杯中,将50mL冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入1000mL容量瓶中,避光,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺(又名N-甲奈基盐酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存于冰箱,可保存一个月。

水杨醛缩乙二胺席夫碱及金属铜(Ⅱ)配合物的合成

水杨醛缩乙二胺希夫碱及金属铜(Ⅱ)配合物的合成 一实验目的 1 掌握水杨醛缩乙二胺Schiff 碱合成的基本原理和方法 2 复习回流、重结晶、热过滤、洗涤等基本操作方法 3 掌握磁力搅拌器的使用方法 二实验原理 水杨醛及其衍生物是重要的有机合成中间体。由水杨醛及其衍生物与胺类化合物反应生成的希夫碱与其金属配位生成的金属配合物在医药、催化、分析化学、腐蚀和光致变色领域有着重要应用,因而受到人们的广泛关注。本文对回流条件下双水杨醛缩乙二胺Schiff 碱及金属铜(Ⅱ)配合物的合成进行了研究。 Schiff碱的合成是涉及到加成、重排、消去等过程的一种缩合反应。反应物的立体结构及电子效应在合成中起着重要作用,其反应机理如下图: 本实验采用水杨醛和乙二胺在50℃的条件下用回流法制备相应的Schiff碱配体L,反应方程式如下所示: 希夫碱基团通过碳氧双键(-C=N-)上的氮原子与相邻的具有孤对电子的氧(O)、硫(S)、磷(P)原子作为给体与金属原子配对,所以氮原子相邻位置存在这类原子的Schiff碱往往具有高配位能力。

C OH H N CH 2 2HC N C HO H 2+ C O H CH 2 2HC N C M O H M 2+为金属离子(M 2+分别为Cu 2+、Zn 2+、Ni 2+等离子) 二 仪器和药品 1 仪器 100ml 三口烧瓶 恒压滴液漏斗 磁力搅拌器 玻璃塞 抽滤瓶 烧杯 2 药品 水杨醛(相对分子质量122.12 ,密度1.17g/cm30) 乙二胺(相对分子质量 60.10,密度 (0.90g/cm30) 无水乙醇 硫酸铜 三 实验步骤 1 希夫碱配体(L )的合成步骤 移取10.4ml (0.1mol )的水杨醛与25 ml 的无水乙醇溶于三口瓶中,再量取3.6ml (0.05mol )的乙二胺与15ml 的无水乙醇于烧杯中搅拌溶解。将三口瓶固定在搅拌器上,开启仪器,将乙二胺的无水乙醇溶液逐滴滴加到三口瓶中,恒温55℃反应1小时。反应结束。抽滤得黄色的固体,干燥称重并计算产率。反应装置图如下:

富缺电子化合物路易斯结构式的书写

富缺電子化合物路易斯結構式の書寫 ①缺電子結構——價電子,包括形成共價鍵の共用電子對之內,少於8電子の,稱為缺電子結構。例如,第3主族の硼和鋁,中性原子只有3個價電子,若一個硼原子和其它原予形成3個共用電子對,也只有6個電子,這就是缺電子結構。典型の例子有BCl 3、AlCl 3(這些化學式是分子式,即代表一個分子の結構)。缺電子結構の分子有接受其它原子の孤對電予形成配價鍵の能力。例如:BCl 3+:NH 3=Cl 3B ←NH 3 能夠接受電子對の分子稱為“路易斯酸”,能夠給出電子對の分子稱為“路易斯堿”。路易斯酸和路易斯堿以配價鍵相互結合形成の化合物叫做“路易斯酸堿對”。 ②多電子結構例如,PCl 5裏の磷呈5價,氯呈1價。中性磷原予の價電子數為5。在PCl 5磷原子の周圍の電子數為10,超過8。這種例外只有第3周期或更高周期の元素の原子才有可能出現。 Lewis 結構式 1.書寫方法 2.共振 有時,一個分子在不改變其中の原子の排列の情況下,可以寫出一個以上合理の路易斯結構式,為解決這一問題,鮑林提出所謂の“共振”の概念,認為該分予の結構是所有該些正確の路易斯結構式の總和,真實の分子結構是這些結構式の“共振混合體”。 (1).Lewis 結構式穩定性の判據 ?? 形式電荷Q F 如何判斷路易斯結構式の穩定性:形式電荷 形式電荷Q F =價電子數-鍵數-孤電子數 ( 形式電荷=價電子數-成鍵電子數/2-反鍵電子數 ) Q F の絕對值盡可能小; Q F =0の結構式是最穩定の路易斯結構式;要避免相鄰兩原子間の形式電荷為同號; 如果一個共價分子有幾種可能のLewis 結構式,那麼通過Q F の判斷,應保留最穩定 和次穩定の幾種Lewis 結構式,它們互稱為共振結構。例如: H -N =N =N H -N -N ≡N, 互稱為HN 3の共振結構式。 (1) Q F の由來: 以CO 為例 n o = 2 ? 8 = 16 n v = 4 + 6 =10 n s / 2 = (16 - 10) / 2 = 3 n l / 2 = (10 - 6) / 2 = 2 為了形成三對平等の共價鍵,可以看作O 原子上の一個價電子轉移給C 原子, 即: ,所以氧原子のQ F 為+1,碳原子のQ F 為-1。 從這個實例中可以看出:形式電荷與元素性質沒有任何直接聯系,它是共價鍵形成の平等與否の標志。 (2) Q F の計算: Q F = 原子の價電子數 - 鍵數 - 孤電子數 在CO 中, Q F(C) = 4 - 3 - 2 = -1 Q F(O) = 6 - 3 - 2 = +1 C O x x x x e

13盐酸萘乙二胺比色法测定大气中NOx

实验目的 1. 学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2. 掌握大气中氮氧化物的比色测定方法。 二、实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等, 在测定氮氧化物浓度时, 先用 三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸 萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得 NO- T NO 的转换系数为 0.76,因此在计算结果中要除以换算系数 0.76。 三、实验仪器 .多孔玻板吸收管 .大气采样器 , 流量范围 0—1L/min 。 .双球玻璃管 .分光光度计 四、试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过 0.005 。 1 .吸收原液:称取5g 对氨基苯磺酸于200mL 烧杯中,将50mL 冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入 1000mL 容量瓶中,避 光,待对氨基苯磺酸完全溶解后,加入 0.050g 盐酸萘乙二胺(又名N-甲奈基盐 酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存 于冰箱,可保存一个月。 2 .采样用吸收液:按四份吸收原液与一份水的比例混合。 3 .三氧化铬 - 石英砂氧化管:筛取 20—40 目部分石英砂,用( 1+2)盐酸溶 液浸泡 一夜,用水洗至中性,烘干,把三氧化铬及石英砂按重量比 1: 20混合, 加少量水调匀,放在红外灯或烘箱里于 105C 烘干,烘干过程中搅拌几次,做好 的三氧化铬 - 石英砂应是松散的,若是粘在一起,说明三氧化铬比重太大,可适 量增加一些石英砂重新制备。 将三氧化铬 -石英砂装入双球玻璃管,两端用少量脱脂棉塞好,用塑料管制 实验 盐酸萘乙二胺比色法测定大气中氮氧化物 1 2 3 4

氮氧化物的分析监测方法——盐酸萘乙二胺分光光度法

空气和废气 氮氧化物作业指导书

1.目的和适用范围 1.1目的 制定该作业指导书的目的是规范空气和废气中氮氧化物的检测方法,为公司环境监测工作提供准确数据。 1.2适用范围 适用于公司内部对空气和废气的监测工作。 2.职责 公司监测人员应该按照国家相关标准,规范检测分析测定方法。 3.管理要求 监测分析人员必须经过相应化学监测分析方面的培训,掌握样品采集、分析、仪器的校准、使用、分析用化学品的配制和管理等有关基础知识。 4样品的采集 4.1废气样的采集 见作业指导书XXXX 5 氮氧化物的分析监测方法——盐酸萘乙二胺分光光度法 5.1目的及原理 空气中的二氧化氮,与串联的第一支吸收瓶中的吸收液反应生成粉红色偶氮染料。空气中的一氧化氮不与吸收液反应,通过酸性高锰酸钾溶液氧化管被氧化为二氧化氮后,与串联的第二支吸收瓶中的吸收液反应生成粉红色偶氮染料。于波长540nm 处分别测定第一支和第二支吸收瓶中样品的吸光度。 5.2方法的适用范围 方法检出限为0.12μg/10ml。当吸收液体积为10ml,采样体积为24L时,氮氧化物(以二氧化氮计)的最低检出浓度为0.005mg/m3。 5.3分析仪器 ①采样导管 硼硅玻璃、不锈钢、聚四氟乙烯或硅橡胶管,内径约为6mm,尽可能短一些,任何情况下不得长于2m,配有向下的空气入口。 ②吸收瓶 内装10ml、25ml 或50ml 吸收液的多孔玻板吸收瓶,液柱不低于80mm。图3-1-2示出了较为适用的两种多孔玻板吸收瓶。 ③氧化瓶 内装5~10ml 或50ml 酸性高锰酸钾溶液的洗气瓶,液柱不得高于80mm。使用后,用盐酸羟胺溶液浸泡洗涤。图3-1-2示出了较为适用的两种氧化瓶。

二氧化氮的分析监测方法——盐酸萘乙二胺分光光度法

空气和废气 二氧化氮作业指导书 1.目的和适用范围 1.1目的 制定该作业指导书的目的是规范空气和废气中二氧化氮的检测方法,为公司环境监测工作提供准确数据。 1.2适用范围 适用于公司内部对空气和废气的监测工作。 2.职责 公司监测人员应该按照国家相关标准,规范检测分析测定方法。 3.管理要求 监测分析人员必须经过相应化学监测分析方面的培训,掌握样品采集、分析、仪器的校准、使用、分析用化学品的配制和管理等有关基础知识。 4样品的采集 4.1废气样的采集 见作业指导书XXXX 5 二氧化氮的分析监测方法——盐酸萘乙二胺分光光度法 5.1目的及原理 空气中的二氧化氮与吸收液中的对氨基苯磺酸进行重氮化反应,再与N- ( 1-萘基)乙二胺盐酸盐作用,生成粉红色的偶氮染料,在波长540nm处,测定吸光度。 空气中臭氧浓度超过0.25mg/m3时,可使二氧化氮的吸收液略显红色,对二氧化氮的测定产生负干扰,采样时在吸收瓶入口处串接一段15~20cm长的硅橡胶管,即可将臭氧浓度降低到不干扰二氧化氮测定的水平。 5.2方法的适用范围 方法检出限为0.12μg/ml。当吸收液体积为l0ml,采样体积为24L时,空气中二氧化氮的最低检出浓度为0.005mg/m3。 5.3分析仪器 ①采样导管 硼硅玻璃、不锈钢、聚四氟乙烯或硅橡胶管,内径约为6mm,尽可能短一些,任何情况下不得长于2m,配有向下的空气入口。 ②吸收瓶 内装10ml、25ml 或50ml 吸收液的多孔玻板吸收瓶,液柱不低于80mm。图3-1-2示出了较为适用的两种多孔玻板吸收瓶。 ③氧化瓶 内装5~10ml 或50ml 酸性高锰酸钾溶液的洗气瓶,液柱不得高于80mm。使用后,用盐酸羟胺溶液浸泡洗涤。图3-1-2示出了较为适用的两种氧化瓶。

盐酸萘乙二胺分光光度法

大气中氮氧化物的测定(盐酸萘乙二胺分光光度法) 原理: 大气中的氮氧化物主要是一氧化氮和二氧化氮。在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。 二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。 仪器: 1.多孔玻板吸收管。 2.双球玻璃管(内装三氧化铬-砂子)。 3.空气采样器:流量范围 0—1L/ min。 4.分光光度计。 试剂: 所有试剂均用不含亚硝酸根的重蒸馏水配制。其检验方法是:所配制的吸收液对540nm光的吸光度不超过0.005。 1.吸收液:称取5.0g对氨基苯磺酸,置于1000mL容量瓶中,加入50mL冰乙酸和900mL水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。保存时应密封瓶口,防止空气与吸收液接触。采样时,按4份吸收原液与1份水的比例混合配成采样用吸收液。 2.三氧化铬-砂子氧化管:筛取20—40目海砂(或河砂),用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。制备好的三氧化铬-砂子应是松散的,若粘在一起,说明三氧化铬比例太大,可适当增加一些砂子,重新制备。称取约8g三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。采样时将氧化管与吸收管用一小段乳胶管相接。 3.亚硝酸钠标准贮备液:称取0.1500g粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h以上),溶解于水,移入1000mL容量瓶中,用水稀释至标线。此溶液每毫升含100.0μgNO2-,贮于棕色瓶内,冰箱中保存,可稳定三个月。 4.亚硝酸钠标准溶液:吸取贮备液 5.00mL于100mL容量瓶中,用水稀释至标线。此溶液每毫升含5.0μgNO2-。 测定步骤: 1.标准曲线的绘制:取7支10ml具塞比色管,按下表所列数据配制标准色列。 亚硝酸钠标准色列

13 盐酸萘乙二胺比色法测定大气中 NOx

实验十三盐酸萘乙二胺比色法测定大气中氮氧化物 一﹑实验目的 1.学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2.掌握大气中氮氧化物的比色测定方法。 二﹑实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等,在测定氮氧化物浓度时,先用三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得NO 2--→NO 2 - 的转换系数为0.76,因此在计算结果中要除以换算系数0.76。 三﹑实验仪器 1.多孔玻板吸收管 2.大气采样器,流量范围0—1L/min。 3.双球玻璃管 4.分光光度计 四﹑试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过0.005。 1.吸收原液:称取5g对氨基苯磺酸于200mL烧杯中,将50mL冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入1000mL容量瓶中,避光,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺(又名N-甲奈基盐酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存于冰箱,可保存一个月。 2.采样用吸收液:按四份吸收原液与一份水的比例混合。 3.三氧化铬-石英砂氧化管:筛取20—40目部分石英砂,用(1+2)盐酸溶液浸泡一夜,用水洗至中性,烘干,把三氧化铬及石英砂按重量比1:20混合,加少量水调匀,放在红外灯或烘箱里于105℃烘干,烘干过程中搅拌几次,做好的三氧化铬-石英砂应是松散的,若是粘在一起,说明三氧化铬比重太大,可适量增加一些石英砂重新制备。 将三氧化铬-石英砂装入双球玻璃管,两端用少量脱脂棉塞好,用塑料管制

盐酸萘乙二胺法测定大气中氮氧化物影响因素分析_徐伟.

第27卷第5期2009年5月 河南科学 HENAN SCIENCE Vol.27No.5May 2009 收稿日期:2009-01-06作者简介:徐 伟(1968-,男,河南新乡人,工程师,主要从事环境保护与环境监测工作. 文章编号:1004-3918(200905-0543-03 盐酸萘乙二胺法测定大气中氮氧化物影响因素分析 徐 伟 (舞钢市环境监测站,河南舞钢462500 摘 要:环境空气中氮氧化物的高低是评价环境空气质量好坏的一项重要指标.通过对比实验, 探讨盐酸萘乙二胺分光光度法测定大气中氮氧化物的影响因素.关键词:盐酸萘乙二胺;氮氧化物;影响因素中图分类号:O 657.3;X 831 文献标识码:A 大气中的氮氮化物主要是一氧化氮和二氧化氮的混合物.盐酸萘乙二胺分光光度法监测大气中的氮 氧化物,是利用大气中的氮氧化物,经三氧化铬氧化管氧化成NO 2后,

被溶液吸收生成亚硝酸和硝酸[1].其中的亚硝酸又与吸收液中的对氨基苯磺酸起重氮化反应,再与吸收液中的盐酸萘乙二胺偶合,生成玫瑰红色 产物.然后根据颜色深浅, 比色定量的原理,分析大气中氮氧化物浓度.因此,可由亚硝酸钠标准试剂配出标准系列,在一定温度下得出对应的浓度———吸光度系列值,由最小二乘法算出回归方程,将同一温度下样品的吸光度值带入,算出对应的NO 2-浓度值,再由采样状况和流量算出采样体积从而得出大气中氮氧化物浓度值,此方法由于采样、显色同时进行,操作简便,方法灵敏,因此为国内外普遍采用[3]. 1 影响因素分析 1.1 采样部分 在盐酸萘乙二胺分光光度法监测大气中氮氧化物的采样环节,影响因素主要有3个:①避光采样问题. 由于吸收液在空气中长时间曝露,易吸收空气中的氮氧化物,日光照射能使吸收液显色,因此在采样、运送及存放过程中,都应采取避光措施.②大气中二氧化硫浓度、过氧乙酰硝酸酯(PAN 浓度及臭氧浓度的干扰.大气中二氧化硫浓度为氮氧化物浓度的10倍时,对氮氧化物测定无干扰,30倍时,使颜色有少许减褪,但在城市环境大气中较少遇到这种情况;过氧乙酰酸酯(PAN 浓度过高会使试剂显色而干扰,但在一般环境空气中PAN 浓度很低,不会导致显著的误差;大气中臭氧质量浓度超过 0.250mg /m 3时,对氮氧化物的测定产生负干扰,在采样后3h ,使试液呈现微红色,影响较大.所以采样时,可以在吸收瓶入口端串接一段15~20cm 长的硅橡胶管,排除干扰.③氧化管的氧化效率问题,氧化管适于在相对湿度为30%~70%时使用,当空气相对湿度大于70%时,应增加更换氧化管的频次;小于30%时,则在使用前,用经过水面

亚硝酸盐氮的测定 N 萘基 乙二胺分光光度法

亚硝酸盐氮的测定(N-(1-萘基)-乙二胺分光光度法): 亚硝酸盐是氮循环的中间产物,不稳定,根据水环境条件,可被氧化成硝酸盐,也可被还原成氨。亚硝酸盐可使人体正常的血红蛋白(地铁血红蛋白)氧化成为高铁血红蛋白,发生高铁血红蛋白症,失去血红蛋白在体内输送氧的能力,出现组织缺氧的症状。亚硝酸盐可与仲胺类反应生成具致癌性的亚硝胺类物质,在PH值较低的酸性条件下,有利于亚硝胺类的形成。 水中亚硝酸盐的测定方法通常采用重氮-偶联反应,使生成红紫色染料。方法灵敏、选择性强。所用重氮和偶联试剂种类较多,最常用,前者为对氨基苯磺酰胺和对氨基苯磺酸,后者为N-(1-萘基)-乙二胺和a-萘胺。此外,还有目前国内外普遍使用的离子色谱法和新开发的气相分子吸收法。这两种方法虽然须使用专用仪器,但方法简便、快速,干扰较少。 亚硝酸盐在水中可受微生物等作用而很不稳定,在采集后应尽快进行分析,必要时冷藏以抑制微生物的影响。 1、实验原理 在磷酸介质中,±时,亚硝酸盐与对-氨基苯磺酰胺反应,生成重氮盐,再与N-(1-萘基)-乙二胺偶联生成红色染料。在540nm波长处有最大吸收。 2.干扰及消除 氯胺、氯、硫代硫酸盐、聚磷酸钠和高铁离子有明显干扰。水样呈碱性(PH>11)时,可加酚酞溶液为指示剂,滴加磷酸溶液至红色消失。水样有颜色或悬浮物,可加氢氧化铝悬浮液并过滤。 3.方法的适用范围 本方法适用于饮用水、地表水、地下水、生活污水、和工业废水中亚硝酸盐的测定。最低检出浓度为L;测定上限为L亚硝酸盐氮. 4.仪器 分光光度计 5.试剂 实验用水均为不含亚硝酸盐的水 1)无亚硝酸盐的水:于蒸馏水中加入少许高锰酸钾晶体,使呈红色,再加氢氧化钡(或氢氧化钙)使呈碱性。置于全玻璃蒸馏器中蒸馏,弃去50ml初馏液,收集中间约70%不含锰的馏出液。亦可于每升蒸馏水中加1ml浓硫酸和硫酸锰溶液(每100ml水中含),JIARU 1~%高锰酸钾溶液至呈红色,重蒸馏。 2)磷酸密度=1.70g/ml。

基础无机:Lewis共价键理论和共振结构式

基础无机:Lewis共价键理论和共振结构式 作者:虹Rreflect_F 本文受众:高中以上 Lewis共价键理论是经典的共价键理论。当然,在MO,VB等面前可能不值一提。但是原始与简单也有它的好处,如果我们可以用一些更为简单的方法去解释一些分子结构给出的信息,何乐而不为呢?就如同在适合的时候没必要使用洛仑兹变换而使用伽利略变换一样。这个也是它在基础有机化学中应用十分广泛的原因。故在这里提及一些关于Lewis结构式的内容。 *注:在Lewis结构式里我们讨论的是分子或者是以共价键组成的离子,而且主要针对主族元素。副族元素的化合物置于配位化合物部分进行讨论。 一.Lewis结构式的书写 1.八隅律 中心原子通过电子共用达到周围8价电子的稳定结构(H为2电子)。 2. 几种Lewis结构的书写方法: 一种(左图)是高中所熟知的电子式,标准式(中间)是把电子式中共用电子对用短线代替,只需要标出孤对电子。还有一种(右图)是在孤对电子较多时可以弃去孤对电子来表示分子的结构。 3. 键数的计算: 有了八隅律作为规则就可以轻易的算出化合物中的键数n。 我们设分子中有a个重原子(除了氢原子以外的其他原子,在等电子体部分中有提及)b个氢原子,那么我们所拥有的价电子数可以通过计算得出设为c。那么我们达到理想结构每个原子都达到8电子的稳定结构,所总共的电子为8a+2b,很显然我们多算了电子,而这个多算的电子数目是8a+2b-c。 这些多的电子通过共用电子对来实现互补,2个电子一根键所以总键数就是4a+b-c/2。 以HCN为例n=4*2+1-(1+4+5)/2=4,所以共4根键。 4. 形式电荷 有时我们画出来的分子周围多了电子或者少了电子,这样就可以看作多了电子的原子丢掉一个(或

食品中亚硝酸盐测定盐酸萘乙二胺法实验

实验4 食品中亚硝酸盐测定(盐酸萘乙二胺法) 一、实验原理 制品中加入的亚硝酸盐产生的亚硝基与肌红蛋白反应,生产色泽鲜红的亚硝基肌红蛋白,使肉制品有美观的颜色。同时亚硝酸盐也是一种防腐剂,可抑制微生物的增殖。由于蛋白质代谢产物中仲胺基与亚硝酸反应能够生成具有很强毒性和致癌性的亚硝胺,因此,亚硝酸盐的使用量及在制品中的残留量均应按标准执行。亚硝酸盐的测定方法主要是重氮偶合比色法,此外可与荧光胺偶合,测定其荧光吸收强度,或衍生后用气相色谱法测定。 自样品中抽提分离出亚硝酸盐,亚硝酸盐在酸性条件下,与对氨基苯磺酸发生重氮化反应生成重氮盐,此重氮盐再与盐酸2—萘乙二胺试剂发生偶合反应,生成紫红色偶氮化合物。其颜色的深度与样品种亚硝酸含量成正比,故可比色测定。 二、试剂和器材 ①饱和硼砂溶液:5g硼酸钠溶于100mL热的重蒸水中,冷却备用。 ②亚铁氰化钾溶液:称取106g亚铁氰化钾溶于水,并稀释至1000mL。 ③乙酸锌溶液:称取220g乙酸锌,加30mL冰醋酸溶于水,并稀释至1000mL。 ④果蔬抽提液:溶解50g氯化汞和50g氯化钡于1000mL重蒸水中,用浓盐酸调整到pH值为1。 ⑤氢氧化铝乳液:溶解125g硫酸铝于1000mL重蒸水中,滴加氨水使氢氧化铝全部沉淀。用蒸 馏水反复洗涤,真空抽滤,直至洗液分别用氯化钡溶液检验不发生浑浊。取下沉淀物,加适量重蒸水使之呈薄糨糊状,捣拌均匀备用。 ⑥0.4%对氨基苯磺酸溶液:称取0.4g对氨基苯磺酸,溶于100mL20%的盐酸溶液中,闭关保存。 ⑦0.2%盐酸萘乙二胺溶液:称取0.2g盐酸萘乙二胺,溶于100mL重蒸水中。 ⑧亚硝酸钠标准溶液(5微克每毫升):精确称取0.1000g亚硝酸铵,以重蒸水定容到500mL。 再吸取此溶液25mL,以重蒸水定容到1000mL,此工作液每毫升含亚硝酸钠5微克。

路易斯结构理论与路易斯结构式

路易斯结构理论与路易斯结构式 由于对简单的非过渡元素分子或离子,通过观察即可写出其路易斯结构式,所以路易斯结构理论实际上是中学化学中最重要的结构理论。虽然人们因其不能解释PCl5等类物质的结构,而常对其加以质疑,但仍无法撼动其在化学中的地位。以至于现在有相当一部分大学化学教材和教学参考书,还是用路易斯结构来讨论分子中的成键情况和性质。 一、路易斯理论介绍 (一)路易斯理论 路易斯结构理论是一个关于共价键的理论。它认为分子中的原子都有形成稀有气体电子构型的趋势,以求得到自身的稳定。所以又称为八隅体理论。 分子达到稳定结构要通过原子共用电子对来实现。每种原子提供的价电子数,是按元素周期表的族数给出的。 它解释了大部分非过渡元素以共价键构成的化学物质的成键情况。并给出分子的路易斯结构式、进而给出有关分子结构的某些较详细的情况。 路易斯结构的表示方法为,在两原子间用一对“电子点”或短线,表示由共价键相联结。 (二)路易斯结构的推断 在中学化学教学的围,那些简单的分子或离子通常通过观察即可确定出路易斯结构式。所谓的“观察”,就是在确定出哪个原子是中心原子的基础上(当分子中无环时),再一个、个的从配原子的角度讨论是否达到了稳定结构。 对H2O分子,有6个价电子的O原子为中心原子。当它与一个配原子H结合时,与H要各提供1个电子用于成对。O原子与另一配原子H也是这样结合的。这样O原子享有的电子数为8,其中有2个孤电子对,有两个电子对分别与2个H原子共用、成σ键。两个H原子各用1个电子与O原子组成电子对。每个H原子享有的电子数为2。原子都达到了稀有气体的结构。如下左图。 如S O3分子中,电负性小的S为中心原子。S与第一个考虑的O原子间必须共用2对电子(其中1个是σ键、1个是π键),这时S原子的电子数达到了8个,且该O原子的电子数也得到了满足。这样,S原子只能单方面提供电子对与另外2个O原子以σ配键的形式结合。如下右图。 或、或 对于复杂的分子或离子,则必须通过计算。先知道分子中的键数和孤电子对数目。然后再按程序进行电子排布。较为完整、细致的程序为: 对复杂的分子或离子,必须首先计算其中σ键、π键、孤电子对的数目。 设n v为价电子对数(分子或离子中所有原子的价电子数、与离子的电荷数的总和被2除,单数也算一对)nσ,nπ、n l、分别表示σ、π、孤电子对数,q表示分子式中重原子数目,h表示轻原子(氢原子)数目,按八隅体规则有如下关系:n v = nσ+ nπ+ n l。 重原子成链时,应有nσ= q+ h- 1,及nπ= 3q–n v + 1。 重原子成环时,应有nσ= q+ h,及nπ= 3q+ n v。

相关主题
文本预览
相关文档 最新文档