当前位置:文档之家› 第一章 风能资源测量与评估

第一章 风能资源测量与评估

第一章 风能资源测量与评估
第一章 风能资源测量与评估

第一章风能资源概述

第一节风能基础知识

一、风的形成

风的形成是空气流动的结果,空气流动形成的动能称为风能。

空气的流动是由于不同区域空气的密度或者气压不同引起。大气压差是风产生的直接原因。

改变空气密度主要方法

(1)加热或冷却

(2)外力作用

二、影响地球表面空气流动的主要因素

1、太阳辐射

赤道和低纬度地区太阳高度角大,日照时间长,太阳辐射强度大,地面和大气接受热量多、温度高;高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量少,温度低。

高纬度和低纬度之间的温度差异,形成南北之间的气压梯度,使空气做水平运动,风沿垂直于等压线的方向从高压向低压吹。

2、地球自转

由于地球表面及空气间摩擦力的作用,地球自转过程中将带动地球表面的空气沿地球自转的方向流动。

地球自转使空气发生偏向的力称为地转偏向力-科里奥利力。科里奥利力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。

由于地转偏向力和高低纬度间压差所引起的压力的合力成为主导地球表层空气流动的作用力。

3、地球表面陆地和海洋等地形分布的影响

(1)山坳和海峡改变气流运动的方向,使风速增大

(2)丘陵、山地因表面摩擦大而使风速减小

(3)山脉的阻挡作用导致局部风速的增加

4、局部热效应的影响

三风的种类

1、大气环流(三圈环流)——全球性的风

大气环流是在全球范围内空气沿一封闭轨迹的运动,是决定全球风能分布最基础、最重要的因素。

了解当地的盛行风向对微观选址具有重要的意义,我们可以避开盛行风向上的障碍物,当然,当地的地形条件对风向的分布也具有决定作用。

2、季风环流

季风现象:在一个大范围地区内其盛行风向或气压系统有明显的季度变化。

主要是由于海陆分布的热力差异及行星风带的季节转换所形成的。

我国是一个典型的季风气候国家。无论风电场的选址或运行,季风特征必须认真考虑。

一般来讲在我国,季风的表现是:在冬季,风从陆地吹向海洋;在夏季,风从海洋吹向陆地

3、局地环流

1、海(湖)陆风

2、山谷风

3、峡谷(峡管)风

峡谷效应使风速增大,不论是高大的山脉或是中小尺度的山脉只要存在峡谷或缢口河谷都有峡管效应,因为在谷地中流场压缩,其风速将比两侧加强,即产生峡管效应。

4、地形加速(爬坡)风

当气流通过山地时,由于受到地形阻碍的影响,流场发生变化。在山的迎风面下部由于气流受阻,风速减弱,且有上升气流。在山的顶部和两侧,因为气流线密集,风速加强。

四、风的描述

风速:风移动的速度,即单位时间空气流动所经过的距离。

风速是不稳定的随机变量,目前国际上对风力状况进行分析并作为计算风能资源的基本依据是每小时的平均风速值。

每小时平均风速值测试方法:

1、将每小时内测量的瞬时风速取平均值;

2、将每小时最后10分钟内测量的风速取平均值作为每小时的平均风速值;

3、将每小时内几个瞬间测量的风速值取平均值

由每小时平均风速值为基础可计算出每日、每月、每年的平均风速值

风向:风吹来的方向。国际上通用的十六方位风向的表示方法。

风向玫瑰图:某地区某一期间各种风向出现的频率,通过放射状雷达图表示。

风向玫瑰图表示风向和风向频率。径向矢量的长度代表沿该方向的风吹过的时间的百分数,数字则表示该方向的平均风速值。

风的特性:特性:周期性、多样性、复杂性

第二节风能资源的描述

1、大气边界层

大气边界层:受到地球表面摩擦力影响的大气层

大气边界层中,空气运动是一种随即的湍流流动。

大气边界层主要特征表现:

由于地球表面的摩擦阻力的影响,风速随高度变化

由于大气温度随高度变化所产生的温差引起空气上下对流流动

由于地球自转引起的科氏力的作用,随高度的增加,风向随高度变化

由于湍流运动引起动量的垂直变化,大气湍流特性随高度变化

2、地面边界层

底层和下部摩擦层总称为地面边界层,其高度定义为大气边界层的固定百分比(10%)。

风速随高度的变化规律称为风切变或风速轮廓线。

风切变与地面粗糙度和地面形貌有关,另外还取决于温度切变。

温度切变层分三类:

第一类为不稳定层:地面空气温度高于上层空气温度;湍流强度大,风切变现象明显。

第二类为稳定层:地表温度要比上层空气温度低;湍流强度减弱,风切变现象减弱。

第三类为中性层:地面空气温度基本与上层空气温度相等。风切变只受地面摩擦力影响。

3. 风切变或风廓线

平均风速随高度的变化(风剪切数据模型)

4. 湍流的强度

定义:风的湍流是风速、风向和垂直分量的快速扰动和不规则变化。

大气湍流主要至因:剪切力和热对流。

高的湍流将引起风电机组输出功率降低以及部件严重超载。

5、风频分布

按风速相差1米/秒的间隔观测一定时期(一年、一月或一天)内不同风速出现的时数占此一定时期内吹风总时数的百分比称为风速的频率分布。风速的频率分布一般以图形表示。风频分布可威布尔(Weibull)分布、瑞利(Rayleigh)分布、对数正态分布三种数学模型表示。

6、风能计算

风能的利用就是将流动空气拥有的动能转化为其他形式的能量。

风能功率:风在单位时间垂直界面F所做的功

风能密度:风在单位时间垂直通过单位面积所做的功

7、有效可用风能

GB8974-88风力机名词术语的定义:

起动风速:风力机风轮由静止开始转动并能连续运转的最小风速;

切入风速:风力机对额定负载开始有功率输出时的最小风速;

切出风速(顺浆风速或停机风速):由于调节器的作用使风力机对额定负载停止功率输出的风速;

工作风速:风力机对额定负载有功率输出的风速范围,一般为 3~ 2 0 m/ s。

额定风速(设计风速),设计参考风速,与额定功率向对应。

因此风力机械就有一个工作风速范围,即从切入风速到切出速度,称为工作风速,即有效风速。切入风速到切出速度(V1-V2)之间的风能称为有效风能。

8 风场的选择原则

(1)在风能普查和详查的基础上,选择在风能丰富区。

(2)要求有尽量稳定的盛行风向(主导风向)。

(3)尽量避开灾害性天气频繁地带。

(4)由于蓄能装置替代风力机在静风期提供能量的能力有限,所以风场按月、年统计的静风期要短,这对单独工作而非并网的风力机显得更为重要。

(5)风力机叶轮直径所在的高度范围内风速的变化要小。

(6)在平坦地区安装风力机,选择地面粗糙度低的区域;四周3~5km范围内山丘高度不超过60m,风力机附件地面的坡度不超过1:30.

(7)风力机安装地附近有建筑物时,应遵循以下要求:若建筑物位于盛行风向的上风位,在建筑物前安装的风力机,其安装地距建筑物应至少有2倍于建筑物高度的距离;在建筑物的下风向安装,风力机安装地距建筑物应至少有20倍于建筑物高的距离,且保证风力机叶片扫风最低点所处的高度应3倍于建筑物高度。

(8)在山区:山脊走向与盛行风向垂直、山尖不很平坦、上升坡度到山尖尽可能连续、坡度小于30°的山顶及其迎风面上半部是好的风场;在孤立山丘上,风速的增加小于风吹过山脊时的情形,在该处安装风力机的原则与山脊相同,然而如果盛行风向随季节变化很大,那么设在中等坡度孤立山丘上的风力机场地就会比同样风况山脊是哪个的场地更为优越。

第三节我国风能资源情况

根据第三次风能资源普查结果,中国技术可开发(风能功率密度在150W/m2及其以上)的陆地面积约为20万Km2。考虑风电场中风电机组的实际布置能力,按照低限3MW/Km2、高限5MW/Km2计算,陆上技术可开发量为6亿~10亿KW。

根据《全国海岸带和海涂资源综合调查报告》,中国大陆岸浅海0~20m等深线的海域面积为15.7万Km2 。2002年中国颁布了《全国海洋功能区划》,对港口航运、渔业开发、旅游以及工程用海区等作了详细规划。如果避开上述这些区域,考虑其总量10%~20%的海面可以利用,风电机组的实际布置按照5MW/ Km2计算,则近海风电装机容量为1亿~2亿KW。

综合来看,中国可开发的风能潜力巨大,陆上加海上的总量有7亿~12亿KW,风电具有成为未来能源结构中重要组成的资源基础。

一、我国风能资源的特点

1、风能资源季节分布与水能资源互补:

中国风能资源丰富但季节分布不均匀,一般春、秋和冬季丰富,夏季贫乏。水能资源丰富,雨季在南方大致是3月到6月,或4月到7月,在这期间的降水量占全年的50%~60%;在北方,不仅降水量小于南方,而且分布更不均匀,冬季是枯水季节,夏季为丰水季节。丰富的风能资源与水能资源季节分布刚好互补,大规模发展风力发电可以一定程度上弥补中国水电冬春两季枯水期发电电力和电量之不足。

2、风能资源地理分布与电力负荷不匹配:

沿海地区电力负荷大,但是其风能资源丰富的陆地面积小;北部地区风能资源很丰富,电力负荷却很小,给风电的开发带来经济性困难。由于大多数风能资源丰富区,远离电力负荷中心,电网建设薄弱,大规模开发需要电网延伸的支撑。

二、我国风能资源分区

(1)最大风能资源区

东南沿海及其岛屿:有效风能密度≥200W/m2的等值线平行于海岸线,沿海岛屿的风能密度>300以上,有效风力出现时间百分率达80~90%,≥3m/s的风速全年出现时间约为7000~8000h,≥6的风速也有4000h。

特点:向内陆地区迅速衰减,不到100Km的地带,风能密度降至50W/m2,成为全国风能最小区。

(2)次最大风能资源区

内蒙古和甘肃北部,该地区终年为西风带控制,而其又是冷空气入侵首当其中的地方,风能密度为200~300W/m2,有效风力出现时间百分率为70%,≥3的风速全年有5000h以上,≥6的风速有2000h以上。

特点:由北向南逐渐减少,但幅度小于东南沿海。该地区虽然风能密度较东南沿海为小,但其分布范围较广,是我国连成一片的最大风能资源区。

(3)大风能资源区

黑龙江和吉林东部以及辽东半岛沿海。风能密度在200W/m2以上,≥3和6的风速全年累积时数分别为7000和3000.

(4)较大风能资源区

青藏高原、三北地区的北部和沿海。这个地区(出去前述部分)风能密度在150~200W/m2之间,≥3的风速全年累积为4000~5000h,≥6的风速全年累积为3000以上。

其中青藏高原≥3的风速全年累积可达6500h,但由于青藏高原海拔高、空气密度

小,所以风能密度相对较小,在4000m的高度,空气密度为地面的67%,也就是所同样的8的风速,在平地为313.6W/m2,而在4000m的高度却只有209.3。因此如按3和6的风速出现的时数算,青藏高原属于最大区,但实际小于东南沿海。

幻灯片44

(5)最小风能资源区

云贵川,甘肃、陕西南部,河南、湖南西部,福建、广东、广西的山区以及塔里木盆地。有效风能密度在50以下,可利用的风力仅有20%左右,≥3的风速全年累积时数在2000h以下,≥6的风速在150h以下。

其中四川盆地和西双版纳地区风能最小,全年静风频率在60%以上,≥3的风速全年累积仅300h,≥6的风速仅20h。

幻灯片45

(6)可季节利用的风能资源区

(4)和(5)地区以外的广大地区,季节性较强。

幻灯片46

三、我国风能的三级区划指标体系

第一级区划指标:主要考虑有效风能密度的大小和全年有效累积小时数。

风能丰富区(“Ⅰ”区):将年平均有效风能密度大于200W/m2、3~20m八风速的年累积小时数大于5000h;

风能较丰富区(“Ⅱ”区):将150~200W/m2 、3~20m/s风速的年累积小时数在3000~5000h的划为;

风能可利用区(“Ⅲ”区):将50~150W/m2 、3~20m/s风速的年累积小时数在2000~3000h;

风能贫乏区(“Ⅳ”区):将50W/m2以下、3~20m/s风速的年累积小时数在2000h 以下。

幻灯片47

第二级区划指标:主要考虑一年四季中各季风能密度和有效风力出现小时数的分配情况,即风能的季节性变化。

第三级区划指标:风力机的最大工作风速

第四节风资源测量

一、风能资源评估步骤

对某一地区进行风能资源评估,是项目考察和项目建设前期所必须进行的重要工作。风能资源评估分如下几个阶段:

1.1资料收集、整理分析

主要内容主要包括:从地方各级气象台、站及有关部门收集有关气象、地理及地质数据资料、电网接入情况、土地利用现状、周围风电发展情况等等(尽量的收集周围已有测风塔数据资料),对当地风资源资料进行分析和归类,从中筛选出具代表性的完整的数据资料。能反映某地气候的多年(10年以上,最好30年以上)平均值和极值,如平均风速和极端风速,平均和极端(最低和最高)气温,平均气压,雷暴日数以及地形地貌等。

1.2 风能资源普查及风电场的宏观分区

对收集到的资料进行进一步分析,划分风能区域及其风功率密度等级,初步确定风能利用率较高的区域。根据风能资源调查与分区的结果,选择最有利的场址,以求增大风力发电机组的出力,提高供电的经济性、稳定性和可靠性;最大限度地减少各种因素对风能利用、风力发电机组使用寿命和安全的影响;结合项目考察所获得的当地电力需求及交通、电网、土地使用、环境等资料。根据风能资源查勘结果,初步确定几个风能可利用区,分别对其风能资源进行进一步分析、对地形地貌、地质、交通、电网及其他外部条件进行评价,并对各风能可利用区进行相关比较,从而选出并确定最合适的风电场场址。这一般通过利用收集到的该区气象台、站的测风数据和地理地质资料并对其分析、到现场询问当地居民、考察地形地貌特征如长期受风吹而变形的植物、风蚀地貌等手段来进行定性,从而确定风电场场址。

1.3 风电场风况观测

一般情况下,气象台、站提供的数据只是反映较大区域内的风气候,而且,由于仪器本身精度等问题,数据不能完全满足风电场精确选址及风力发电机组微观选址的要求。因此,为正确评价已确定风电场的风能资源情况,取得具有代表性的风速风向资料,了解不同高度处风速风向变化特点,以及地形地貌对风的影响,有必要对现场进行实地测风,为风电场的选址及风力发电机组微观选址提供最准确有效的数据。

现场测风可以在场区设立单个或多个测风塔来进行,时间至少1年以上,有效数据不得少于90%。内容包括风速、风向的统计值和温度、气压等。测风塔的数量依地形和项目的规模而定。

1.4 测风塔的安装

1.4.1 测风塔安装的目的

对测风塔安装位置的选择及其主要,主要通过对各种地形下的风速变化机理进行分析,再结合当地地质情况、海拔高度和主导风向等给出测风塔安装的最佳位置,获得最有代表性的风能资源。

测量仪器

风速的测量一般采用风杯式风速计,这种风速计一般由一个垂直方向的旋转轴和三个风杯组成,风杯式风速计的转速可以反映风速的大小。一般情况下,风速计与风向标配合使用,可以记录风速和风向数据,

机械式测风仪器的优点在于可靠性高,成本低。但同时也存在机械轴承磨损的情况,因此需要定期检测甚至更换。另外,在结冰地区,需要安装加热设备防止仪器结冰。

1.4.2 测风塔的选址

1.4.

2.1 测风塔选址方法

对于前面工作中已确定的风电场区域,首先获取1:5 万的风电场区域地形图,根据风电场区域给定的各个拐点坐标,确定风电场在地形图上的具体位置,并扩展到外沿5km的半径范围,根据等高线的多少、疏密、和弯曲形状以及标注的高程等对风电场的地形地貌进行分析,确定风电场区域内的高差和坡度,找出影响风力变化的地形特征,如高山、丘陵以及其它障碍物。

1.4.

2.2 测风塔选址原则

1、主风向

主风向上没有障碍物;

2、地形及山脉走势

分清总体地形及山体走势,需要1:50000地形图;

3、代表性

能够代表周围地形;

4、参照性

测风塔之间相互参照,不单指要有相关性,更要能体现在不同的环境下风资源差距,以看出几个地方能够相差多少;

5、标定界限

明确风电场周围土地权属,在需要的时候标定界限;

6、中心位置

尽量考虑风电场中心位置;

7、风电场一期所在地

测风塔尽量安排在一期工程范围内;

8、粗选和细选

粗选确定测风塔所在的大致位置,细选在粗选的基础上分清局部环境确定最终坐标;

二、风能资源评估参数

2.1平均风速

平均风速是最能反映当地风能资源情况的重要参数。分月平均风速和年平均风速。

2.2 风功率密度

由风能公式可知,风功率密度只和空气密度和风速有关,对于特定地点,当空气密度视为常量时,风功率密度只由风速决定。

由于风速具有随机性,其每时每刻都在变化,故不能使用某个瞬时风速值来计算风功率密度,只有使用长期风速观测资料才能反映其规律。

风功率密度越高,则该地区风能资源越好,风能利用率也高。风功率密度的计算可依据该地区多年的气象站数据和当地测风设备的实际测量数据进行;也可利用W AsP软件对风速风向数据进行精确的分析处理后计算。

2.3 主要风向分布

风向及其变化范围决定风力发电机组在风电场中的确切的排列方式,风力发电机组的排列方式很大程度地决定各台风力发电机组的出力从而决定风电场的发电效率,因此,主要盛行风向及其变化范围要精确。同平均风速一样,风向的统计分析也要依据多年的气象站数据和当地测风设备的实际测量数据进行。利用W AsP软件可对风向及其变化范围进行精确的计算确定。

2.4 年风能可利用时间

年风能可利用时间是指一年中风力发电机组在有效风速范围(一般取3~25m/s)内的运行时间。

三、风能资源评估软件

3.1 WAsP软件简介

3.2 WindFarmer 软件简介3.3 WindSim 软件简介3.4 Meteody WT软件简介3.5 WindPRO软件简介

中国的风能资源

中国风能资源 我国幅员辽阔,海岸线长,风能资源比较丰富。据国家气象局估算,全 国风能密度为 100W/m2,风能资源总储量约 1.6X105MW, 特别是东南沿 海及附近岛屿、内蒙古和甘肃走廊、东北、西北、华北和青藏高原等 部分地区,每年风速在 3m/s 以上的时间近 4000h 左右,一些地区年平均 风速可达 6~7m/s 以上,具有很大的开发利用价值。有关专家根据 全国有效风能密度、有效风力出现时间百分率,以及大于等于3m/s 和 6m/s 风速的全年累积小时数,将我国风能资源划分为如下几个区域。 1、东南沿海及其岛屿,为我国最大风能资源区。这一地区,有效风能 密度大于、等于 200W/ m2 的等值线平行于海岸线,沿海岛屿的风能密 度在 300W/m2 以上,有效风力出现时间百分率达80~90%,大于、 等于 8 m/s 的风速全年出现时间约 7000~8000h,大于、等于 6 m/s的 风速也有 4000 h 左右。但从这一地区向内陆,则丘陵连绵,冬半年强 大冷空气南下,很难长驱直下,夏半年台风在离海岸50km 时风速便减 少到 68%。所以,东南沿海仅在由海岸向内陆几十公里的地方有较大的 风能,再向内陆则风能锐减。在不到 100km 的地带,风能密度降至 50W /m2 以下,反为全国风能最小区。但在福建的台山、平潭和浙江的南 麂、大陈、嵊泗等沿海岛屿上,风能却都很大。其中台山风能密度为 534.4W/m2,有效风力出现时间百分率为90%,大于、等于 3 m/s 的风速全年累积出现7905h。换言之,平均每天大于、等于 3 m/s 的风速有 21.3h,是我国平地上有记录的风能资源最大的地方之一。2、内 蒙古和甘肃北部,为我国次大风能资源区。这一地区,终年在西风带

风电场风能资源评估与选址

【摘要】风电场区域范围内的风能资源藴藏状况,是开发风力发电项目最基础的组成因素,能否客观的掌握其风能资源状况是项目成功和避免投资风险的关键所在。 【关键词】区域初步甄选风资源评估微观选址 1 概述 风能资源评估是整个风电场建设、运行的重要环节,是风电项目的根本,对风能资源的正确评估是风电场建设取得良好经济效益的关键,有的风电场建设因风能资源评价失误,建成的风电场达不到预期的发电量,造成很大的经济损失。风能资源评估包括三个阶段:区域的初步甄选、区域风能资源评估及微观选址。 2 区域的初步甄选 建设风电场最基本的条件是要有能量丰富,风向稳定的风能资源。区域的初步甄选是根据现有的风能资源分布图及气象站的风资源情况结合地形从一个相对较大的区域中筛选较好的风能资源区域,到现场进行踏勘,结合地形地貌和树木等标志物在万分之一地形图上确定风电场的开发范围。 风电场场址初步选定后,应根据有关标准在场址中立塔测风。测风塔位置的选择要选具有代表整个风电场的风资源状况,具体做法:根据现场地形情况结合地形图,在地形图上初步选定可安装风机的位置,测风塔要立于安装风机较多的地方,如地形较复杂要分片布置立测风塔,测风塔不能立于风速分离区和粗糙度的过渡线区域,即测风塔附近应无高大建筑物、地形较陡、树木等障碍物,与单个障碍物距离应大于障碍物高度的3倍,与成排障碍物距离应保持在障碍物最大高度的10倍以上;测风塔位置应选择在风场主风向的上风向位置。 测风塔数量依风场地形复杂程度而定:对于较为简单、平坦地形,可选一处安装测风设备;对于地形较为复杂的风场,要根据地形分片布置测风点。 测风高度最好与风机的轮毂高度一样,应不低于风机轮毂高度的2/3,一般分三层以上测风。 3 区域风资源评估 区域风资源评估内容包括: 对测风资料进行三性分析,包括代表性,一致性,完整性;测风时间应保证至少一周年,测风资料有效数据完整率应满足大于90%,资料缺失的时段应尽量小(小于一周)。

中国风资源分布

中国有效风力资源分布调查 2007-10-16 16:36 来源:新华网广东频道 中国风力资源十分丰富。根据国家气象局的资料,我国离地10 米高的风能资源总储量约32.26亿千瓦,其中可开发和利用的陆地上风能储量有2.53亿kW,50米高度的风能资源比10米高度多1倍,约为5亿多kW。近海可开发和利用的风能储量有7.5亿kW。 中国有效风能分布图 根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区: (1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上。这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关。 (2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上。 (3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区。

(4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦。 我国风力资源分布与电力需求存在不匹配的情况。东南沿海地区电力需求大,风电场接入方便,但沿海土地资源紧张,可用于建设风电场的面积有限。广大的三北地区风力资源丰富和可建设风电场的面积较大,但其电网建设相对薄弱,且电力需求相对较小,需要将电力输送到较远的电力负荷中心。海上风电资源丰富且距离电力负荷中心很近。随着海上风电场技术的发展成熟,经济上可行,发展前景势必良好。

第一章 风能资源测量与评估

第一章风能资源概述 第一节风能基础知识 一、风的形成 风的形成是空气流动的结果,空气流动形成的动能称为风能。 空气的流动是由于不同区域空气的密度或者气压不同引起。大气压差是风产生的直接原因。 改变空气密度主要方法 (1)加热或冷却 (2)外力作用 二、影响地球表面空气流动的主要因素 1、太阳辐射 赤道和低纬度地区太阳高度角大,日照时间长,太阳辐射强度大,地面和大气接受热量多、温度高;高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量少,温度低。 高纬度和低纬度之间的温度差异,形成南北之间的气压梯度,使空气做水平运动,风沿垂直于等压线的方向从高压向低压吹。 2、地球自转 由于地球表面及空气间摩擦力的作用,地球自转过程中将带动地球表面的空气沿地球自转的方向流动。 地球自转使空气发生偏向的力称为地转偏向力-科里奥利力。科里奥利力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。 由于地转偏向力和高低纬度间压差所引起的压力的合力成为主导地球表层空气流动的作用力。 3、地球表面陆地和海洋等地形分布的影响 (1)山坳和海峡改变气流运动的方向,使风速增大 (2)丘陵、山地因表面摩擦大而使风速减小 (3)山脉的阻挡作用导致局部风速的增加 4、局部热效应的影响 三风的种类 1、大气环流(三圈环流)——全球性的风 大气环流是在全球范围内空气沿一封闭轨迹的运动,是决定全球风能分布最基础、最重要的因素。 了解当地的盛行风向对微观选址具有重要的意义,我们可以避开盛行风向上的障碍物,当然,当地的地形条件对风向的分布也具有决定作用。 2、季风环流 季风现象:在一个大范围地区内其盛行风向或气压系统有明显的季度变化。 主要是由于海陆分布的热力差异及行星风带的季节转换所形成的。 我国是一个典型的季风气候国家。无论风电场的选址或运行,季风特征必须认真考虑。

山东省风能资源分析评估

中国期刊全文数据库共找到13 条 [1] 龚强,袁国恩,汪宏宇,蔺娜,于华深. 辽宁沿海地区风能资源状况及开发潜力初步分析[J]地理科学, 2006,(04) . [2] 刘其辉,贺益康,赵仁德. 变速恒频风力发电系统最大风能追踪控制[J]电力系统自动化, 2003,(20) . [3] 杨秀媛,梁贵书. 风力发电的发展及其市场前景[J]电网技术, 2003,(07) . [4] 林志远. 风能资源及测风数据整理技巧[J]广东电力, 2003,(05) . [5] 顾本文,王明,施晓晖. 云南省风能资源的评估研究[J]贵州气象, 1999,(S1) . [6] 陕华平,肖登明,薛爱东. 大型风电场的风资源评估[J]华东电力, 2006,(02) . [7] 谭恢曾. 风能与风力发电[J]湖南电力, 2002,(02) . [8] 徐卫民,曾辉,陆长清. 江西省风能资源分析[J]江西能源, 2002,(04) . [9] 曹明晓. 山东风能资源的开发利用[J]经济地理, 1993,(01) . [10] 杨振斌,薛桁,桑建国. 复杂地形风能资源评估研究初探[J]太阳能学报, 2004,(06) . [11] 包能胜,刘军峰,倪维斗,叶枝全. 新疆达坂城风电场风能资源特性分析[J]太阳能学报, 2006,(11) . [12] 郝毓灵,吴新敏. 风能资源开发利用的社会需要和发展前景[J]新疆环境保护, 2001,(01) . [13] 齐丽丽,袁国恩. 辽宁锦州藏东地区风能资源评价[J]资源开发与市场, 2003,(06) . 中国优秀硕士学位论文全文数据库共找到149 条 [1] 艾斯卡尔. 变速恒频交流励磁风力发电机系统及其控制原理研究[D]河海大学, 2004 . [2] 陈实. MW级风力发电系统单机电气控制技术研究——无功补偿和偏航控制系统[D]南

中国的风能资源及区划说明

中国的风能资源及区划说明 Ver 1.00 Date 2006.11.16 我国幅员辽阔,海岸线长,风能资源比较丰富。据国家气象局估算,全国风能密度为100W/㎡,风能资源总储量约1.6×105MW,特别是东南沿海及附近岛屿、内蒙古和甘肃走廊、东北、西北、华北和青藏高原等部分地区,每年风速在3m/s以上的时间近4,000h左右,一些地区年平均风速可达6~7m/s以上,具有很大的开发利用价值。中国气象学界根据全国有效风能密度、有效风力出现时间百分率,以及大于等于3m/s和6m/s 风速的全年累积小时数,将我国风能资源划分为如下几个区域。 1、东南沿海及其岛屿,为我国最大风能资源区 这一地区,有效风能密度大于、等于200W/㎡的等值线平行于海岸线,沿海岛屿的风能密度在300W/㎡以上,有效风力出现时间百分率达80~90%,大于等于8m/s的风速全年出现时间约7,000~8,000h,大于等于6m/s的风速也有4,000h左右。但从这一地区向内陆,则丘陵连绵,冬半年强大冷空气南下,很难长驱直下,夏半年台风在离海岸50km时风速便减少到68%。所以,东南沿海仅在由海岸向内陆几十公里的地方有较大的风能,再向内陆则风能锐减。在不到100km的地带,风能密度降至50W/㎡以下,反为全国风能最小区。但在福建的台山、平潭和浙江的南麂、大陈、嵊泗等沿海岛屿上,风能却都很大。其中台山风能密度为534.4W/㎡,有效风力出现时间百分率为90%,大于等于3m/s的风速全年累积出现7,905h。换言之,平均每天大于等于3m/s的风速有21.3h,是我国平地上有记录的风能资源最大的地方之一。 2、内蒙古和甘肃北部,为我国次大风能资源区 这一地区,终年在西风带控制之下,而且又是冷空气入侵首当其冲的地方,风能密度为200~300W/㎡,有效风力出现时间百分率为70%左右,大于等于3m/s的风速全年有5,000h以上,大于等于6m/s的风速在2,000h以上,从北向南逐渐减少,但不象东南沿海梯度那么大。风能资源最大的虎勒盖地区,大于等于3m/s和大于等于6m/s的风速的累积时数,分别可达7,659h和4,095h。这一地区的风能密度,虽较东南沿海为小,但其分布范围较广,是我国连成一片的最大风能资源区。 3、黑龙江和吉林东部以及辽东半岛沿海,风能也较大 风能密度在200W/㎡以上,大于等于3m/s和6m/s的风速全年累积时数分别为5,000~7,000h和3,000h。 4、青藏高原、三北地区的北部和沿海,为风能较大区 这个地区(除去上述范围),风能密度在150~200W/㎡之间,大于等于3m/s的风速全年累积为4,000~5,000h,大于等于6m/s风速全年累积为3,000h以上。青藏高原大于等于3m/s的风速全年累积可达6,500h,但由于青藏高原海拔高,空气密度较小,所

第一章 风能资源测量与评估复习课程

第一章风能资源测量 与评估

第一章风能资源概述 第一节风能基础知识 一、风的形成 风的形成是空气流动的结果,空气流动形成的动能称为风能。 空气的流动是由于不同区域空气的密度或者气压不同引起。大气压差是风产生的直接原因。 改变空气密度主要方法 (1)加热或冷却 (2)外力作用 二、影响地球表面空气流动的主要因素 1、太阳辐射 赤道和低纬度地区太阳高度角大,日照时间长,太阳辐射强度大,地面和大气接受热量多、温度高;高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量少,温度低。 高纬度和低纬度之间的温度差异,形成南北之间的气压梯度,使空气做水平运动,风沿垂直于等压线的方向从高压向低压吹。 2、地球自转 由于地球表面及空气间摩擦力的作用,地球自转过程中将带动地球表面的空气沿地球自转的方向流动。

地球自转使空气发生偏向的力称为地转偏向力-科里奥利力。科里奥利力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。 由于地转偏向力和高低纬度间压差所引起的压力的合力成为主导地球表层空气流动的作用力。 3、地球表面陆地和海洋等地形分布的影响 (1)山坳和海峡改变气流运动的方向,使风速增大 (2)丘陵、山地因表面摩擦大而使风速减小 (3)山脉的阻挡作用导致局部风速的增加 4、局部热效应的影响 三风的种类 1、大气环流(三圈环流)——全球性的风 大气环流是在全球范围内空气沿一封闭轨迹的运动,是决定全球风能分布最基础、最重要的因素。 了解当地的盛行风向对微观选址具有重要的意义,我们可以避开盛行风向上的障碍物,当然,当地的地形条件对风向的分布也具有决定作用。 2、季风环流 季风现象:在一个大范围地区内其盛行风向或气压系统有明显的季度变化。 主要是由于海陆分布的热力差异及行星风带的季节转换所形成的。

全国风能资源评价技术规定

全国风能资源评价技术规定 (国家发展改革委2004年4月14日发布发改能源[2004]865号) 第一章总则 第一条风能资源评价主要是以现有气象台站的测风数据为基础,通过整理、分析,对全国风能资源的大小和分布进行评价。 第二条为了统一全国风能资源评价的原则、内容、深度和技术要求,在总结风能资源研究成果的基础上,参考国内、外有关标准和规范,制定《风能资源评价技术规定》(以下简称本规定)。 第三条本规定用于指导开展风能资源评价工作。 第二章基础资料收集 第四条气象台站资料 一、收集国家基准气象站、国家基本气象站和一般气象站基本信息,包括气象台站所属省名、站名、区站号、经度、纬度、海拔高度、建站时间、台站周围环境变化情况(包括台站变迁情况)、观测仪器(包括仪器变更)情况。 二、收集各气象台站1971~2000年历年年最大风速、年极大风速、年极端最高温度、年极端最低温度、年沙尘暴日数、年雷暴日数。 三、收集各气象台站1971~2000年历年逐月平均风速、平均气温、平均气压、平均水汽压。 四、收集各气象台站1991~1995年逐日日平均风速、气温、气压、水汽压。 五、收集各气象台站“代表年”逐时风速、风向观测记录。 六、“代表年”确定方法:根据全国地面气象资料1971~2000年整编成果,选择年平均风速等于或接近30年年平均风速的年份,定义为平均风速年;选择年平均风速等于或接近30年年平均风速最大值的年份,定义为最大值年;选择年平均风速等于或接近30年年平均风速最小值的年份,定义为最小值年。若存在多个年平均风速等于或接近(或、)的年份,则选择最靠近2000年的年份,下同。上述三个年份统称为“代表年”,即年平均风速分别等于或接近、、 的3个年份,下同。 第五条其它观测资料 一、收集已建自动气象站资料,内容参照本规定第四条。 二、收集已建、待建风电场基本信息及前期工作中的测风资料。 三、收集海洋站、船舶、浮标等的测风资料。 四、收集相关科学(考察)试验的测风资料。

中国风能资源的详查和评估

风 能是清洁的可再生能源,大力开发利用风能资源是有效应对气候变化的重要举措之 一。中国政府十分重视风能资源的有序开发和合理利用,20世纪70年代至2006年期间,先后组织开展了3次全国风能资源普查,为我国的风能资源开发提供了基础依据;为更好地满足我国风能资源持续、有序、合理地规划和开发利用需要,国家发改委、财政部及国家相关部门决定在之前全国风 中国风能资源的详查和评估 ■文—中国气象局风能太阳能资源评估中心 能资源普查结果的基础上,实施“全国风能详查和评价”项目,该项目针对中国大陆风能资源丰富、适宜建设大型风电场、具备风能资源规模化开发利用条件的地区,通过现场观测、数值模拟、综合分析等技术手段,进一步摸清我国陆上风能资源特点及其分布,为促进我国风电又好又快发展做好前期工作。该项目于2008年正式启动,由中国气象局具体牵头组织实施。 一、中国风能资源详查和评估技术发展和项目主要成果 1. 初步建立全国陆上风能资源专业观测网 依托全国风能资源详查和评价工作,中国气象局针对风能资源规划和风电场选址需要,采用规范、统一的标准,在中国大陆风能资源可利用区域设立了400座70~120米高的测风塔,初步建成了全国陆上风能资源专 图1 全国风能资源专业观测网测风塔分布示意图

业观测网(图1),该专业观测网于2009年5月正式全网观测运行,已获取的实地观测数据为全国(陆上)风能详查和评价提供了可靠的依据,同时也为规范风能资源观测的专业化运行和管理积累了丰富的实际操作经验。该专业观测网的持续运行,可为开展风能预报业务和风电场后评估提供基础支持。 2. 研发了适用于中国的风能资源评估系统 中国气象局风能太阳能资源评估中心在引进和吸收加拿大、丹麦和美国等风能数值模拟评估的成功经验基础上,根据中国地理、气候特点进行改进和优化,采用先进的地理信息系统(GIS)分析技术,开发了适于中国气候和地理特点的风能资源评估系统(W E R A S/C M A),数值模拟的水平分辨率达到1千米以下,风能参数模拟精度能够满足各级风电规划和风电场选址需要。图2展示了W E R A S/ CMA的系统工作流程图。 3. 研发了规范、适用的风能资源 计算评估系统 依据IEC61400-1、IEC61400- 12-1、GB/T 18710-2002、QX/T74- 2007等国际国内风能资源计算评估技 术规范,在气象部门原有的“风能资 源计算评估系统” V1.0版软件基础上 进行研制和完善,使之适用于风能专 业观测网一体化观测系统特有的仪器 设置和数据采集方式,实现了多种观 测仪器原始数据格式的标准转换,原 始观测数据的质量检查、缺测数据的 自动插补订正、统一的数据库管理、 Word文档图表的全自动生成等功能, 满足了本项目计算评估大量的数据处 理、规范的参数计算、标准的图表制 作和便捷的报告编制等要求。 4. 建立了风能资源数据库共享系统 以地理信息系统和网络技术为支 撑,根据风能观测数据的采集和传输 特点,通过新一代气象通信系统,建 立了具备测风塔观测数据实时采集、 传输、质量控制、统计加工、分发存 储等全功能处理流程;建成的全国 风能资源数据库包括了风能观测塔数 据、风能评估参政气象站历史数据、 数值模拟计算结果和风能资源综合评 价的各类参数,通过分级管理形成了 全国风能资源数据共享系统,可为全 社会各个层面提供风能基础数据、评 估参数和图表成果等的公共服务。 5. 编制完善了一系列风能资源详 查和评价的规范性技术文件 针对项目执行中的各个技术环 节,参考国际、国内相关规范,考虑 我国气候特点、地理条件等因素,并 结合本项目工作大纲要求,研究编制 了《风能资源详查和评价工作测风塔 选址技术指南》、《测风塔塔体及其 防雷技术要求》、《测风塔风能观测 系统技术要求》和《风能资源综合评 价技术规定》、《风能资源短期数值 模拟技术规定》等规范性技术文件, 在规范和指导项目执行的同时,及时 进行总结、补充和修正,使各规范性 技术文件更加完善、合理,并具有普 适性和可操作性。 图2 WERAS/CMA的系统工作流程图

我国风能资源分布和影响分布的气象条件

我国风能资源分布和影响分布的气象条件 核心提示:风电场建在迎风坡或地势较高的地区,沙尘暴对土地的刮蚀,会对塔基的牢固程度造成影响,在背风坡或地势低洼的地区,其沙埋作用又可使塔架的高度发生变化,影响风能吸收和转换。 1.我国风能资源分布 我国属于地球北半球中纬度地区,在大气环流的影响下,分别受副极地低压带、副热带高压带和赤道低压带的控制,我国北方地区主要受中高纬度的西风带影响,南方地区主要受低纬度的东北信风带影响。 我国地域辽阔,陆地最南端纬度约为北纬18度,最北端纬度约为北纬53度,南北陆地跨35个纬度,东西跨60个经度以上。我国独特的宏观地理位置和微观地形地貌决定了我国风能资源分布的特点。我国在宏观地理位置上属于世界上最大的大陆板块――欧亚大陆的东部,东临世界上最大的海洋――太平洋,海陆之间热力差异非常大,北方地区和南方地区分别受大陆性和海洋性气候相互影响,季风现象明显。北方具体表现为温带季风气候,冬季受来自大陆的干冷气流的影响,寒冷干燥,夏季温暖湿润;南方表现为亚热带季风气候,夏季受来自海洋的暖湿气流的影响,降水较多。 按照陆地与海洋的距离划分,我国可分为南部沿海地区、东南部沿海地区、东部沿海地区、中部内陆地区、西部、北部和东北部内陆地区。 南部沿海地区在东北信风带和夏季热低气压的影响下,主风向为东风和东北风,由于夏季低气压的气压梯度较弱,因此风力不大,风能较小。 东南部沿海地区与台湾岛在台湾海峡地区形成独特的狭管效应,而该地区又正处于东北信风带,主风向与台湾海峡走向一致,因此风力在该地区明显加速,风力增大,风能资源丰富,具有较好的风能开发价值。 东部沿海地区基本上处于副热带高压控制,气压梯度小,同时,该地区又受海洋性气候的影响,大风持续时间短且不稳定,风能资源开发潜力一般。 中部内陆地区由于所处地理位置条件的限制,冬季来自北方的冷空气难以到达这里,夏季受海洋性气候的影响较小,同时由于该地区地势地形复杂和地面粗糙度变化较大,不利于气流的加速,因而风能资源比较贫乏。 西部、北部和东北内陆地区主要包括新疆、甘肃、宁夏、内蒙古、东北三省、山西北部、陕西北部和河北北部地区,这些地区纬度较高,处于西风带控制,同时冬季又受到北方高压冷气团影响,主风向为西风和西北风,风力强度大,持续时间长,同时这些地区海拔较高,风能衰减小,因此,具有较好的风能开发价值。 我国对风能资源的观测研究工作始于20世纪70年代,中国气象局先后于20世纪70年代末

风资源评估-工程应用-windfarmer操作步骤及注意事项(1)

Windfarmer软件操作步骤及注意事项 目录 一、目的: (1) 二、准备资料 (1) 三、计算步骤 (2) 1 wasp——导入文件: (2) 2 wasp-------输出文件: (2) 3 导入windfarmer: (2) 4 设置: (2) Windfarmer 应用步骤 (2) 001 前提:选型完成之后—— (2) 02 wasp部分 (3) 003 windfarmer部分 (5) 01 以现场测量数据为依据 (8) 004 RIX(陡峭度指标问题) (11) 006 损耗 (13) 007 不确定性 (13) 一、目的: windfarmer用于简单地形——基于wasp模型——同时也用于复核计算(湍流) 二、准备资料 1 原始风速数据——windgrogher——输出。Tab文件 2 边界坐标——txt-wob——或者自己在windfarmer里面地图上画 3 风机点位坐标——或者自己排布优化 4 功率曲线——.wtg 文件——wasp中建立一个风机后直接save为。Wtg格式文件 5 地图——.map+roughness 6

三、计算步骤 1 wasp——导入文件: windgrogher导出tab文件 wasp turbine editor导出风机功率曲线wtg文件 cad—globalmaper—wasp editor—导出contours+roughness的map文件 风机点位文件 计算resource grid文件前要设置边界(control+shift—画,control—移动) 若测风塔在风场边界之外则计算三个资源栅格(mast高度、mast轮毂高度、轮 毂高度) 2 wasp-------输出文件: Hub 高度的wrg文件 Mast 高度的wrg文件 3 导入windfarmer: Map+roughness地图文件 画边界点或者拖入wob文件 画出禁止区域等设置 导入风场和测风塔点位的wrg文件 布机或者导入风机点位坐标 风机属性设置——功率曲线设置——导入wtg文件 优化——迭代300-500次左右 4 设置: 控制面板设置 Windfarmer 应用步骤 001 前提:选型完成之后—— 01 windogragher部分风速数据处理整理成txt格式,包括风速风向标准偏差,

我国太阳能、风能资源分布

新能源行业形势及我国太阳能、风能资源分布情况 能源是国民经济重要的物质基础,也是人类赖以生存的基本条件。国民经济发展的速度和人民生活水平的提高都有赖于提供能源的多少。从历史上看,人类对能源利用的每一次重大突破都伴随着科技的进步,从而促进生产力大大发展,甚至引起社会生产方式的革命。如18世纪瓦特发明了蒸汽机,以蒸汽代替人力畜力,在一次能源的消费结构上转向以煤炭代替木柴的时代,开始了资本主义工业革命。从19世纪70年代开始,电力逐步代替蒸汽作为主要动力,从而实现了资本主义工业化。到了20世纪50年代,随着廉价石油、天然气大规模开发,世界能源的消费结构从以煤炭为主转向以石油为主,因而使西方经济在60年代进入了“ 黄金时代”。 据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年。探明可采石油储量共计1211亿吨,预计还可开采30~40年。探明可采天然气储量共计119万亿立方米,预计还可开采60年。当今世界对能源的消费数量急剧增加,人们感到常规能源的开发和供应已难以满足社会对能源的需求,能源危机的阴影笼罩着整个世界。显然,如今能源不足对一个国家的国民经济发展的影响是很大的。赖以生存的主要能源供应不上,经济发展就要减慢,甚至停滞,人民生活也会受到严重影响。所以,能源是保证社会稳定和发展国民经济的重要物质基础。不仅如此,能源问题还是当今世界影响政治形势的一个重要问题,1990年的海湾战争就是一个典型。可见,能源问题已成为当今人类社会的热门话题之一。 上个世纪90年代以来,中国经济的持续高速发展带来了能源消费量的急剧上升。自1993年起,中国由能源净出口国变成净进口国,能源总消费已大于总供给,能源需求的对外依存度迅速增大。煤炭、电力、石油和天然气等能源在中国都存在缺口,其中,石油需求量的大增以及由其引起的结构性矛盾日益成为中国能源安全所面临的最大难题。面对日益紧迫的能源形势,寻求能源的可持续发展已成为大势所趋,而开发新能源和可再生能源则是能源可持续发展最为直接和有效的形式。2008年3月18日,国家发改委出台《可再生能源发展“十一五”规划》,提出到2010年,可再生能源消费占比将达10%,并采取财税等措施鼓励发展再生能源发展。根据我国的发展规划测算,可再生能源产业未来15年将培育近2万亿元的新兴市场。面对潜在的广阔市场,新能源产业未来发展无疑一片坦途。 太阳能:环保优势明显 太阳能在解决能源供应和环境保护上有明显优势。中国2/3以上国土的年日照大于2200小时,年辐射总量平均大于5900MJ百万焦尔/平方米,资源非常丰富,有必要和可能大力发展。太阳能的利用有两大方面 太阳能光热利用用太阳能热水器等装置把太阳能转化为热能。中国是世界上最大的太阳能光热利用国家,2003年太阳能热水器产量1200万平方米,使用量5200万平方米,占全世界的40%。北京2008年奥运村90%的洗浴热水将来自太阳能。 太阳能光电转换基于半导体材料的光电效应,用太阳能光电器件把太阳能转化为电能。2003年底,全国已安装的光伏电池容量约50MW(百万瓦)。广东深圳最近建成亚洲最大的

风资源数据处理

风资源测量与评估实务 ——测风数据处理与验证

测风数据处理 测风数据处理包括对数据的验证、订正,并计算评估风资源所需要的参数。 一.数据验证 数据的验证是检查风场测风获得的原始数据,对其完整性和合理性进行判断。经过初步检验和审查,没有发现不合理的数据和缺测的数据。 二.数据检验 (1). 完整性检验 数据数量与时间顺序应与预期数据一致。 (2). 合理性检验 范围检验 主要参数 合理范围 平均风速 0 ≤小时平均值≤40m/s 风向 0≤小时平均值≤360 平均气压 94kpa<小时平均值<106kpa 相关性检验 50m/30m 高度小时平均风速差值 <2.0m/s 50m/10m 高度小时平均风速差值 <4.0m/s 50m/30m 高度风向差值 <22.5 趋势检验 1h 平均风速变化 <6m/m 3很平均气压变化 <1kpa 1h 平均温度变化 <5℃ 所有数据均在同一高度,故无需相关性检查。另外,要仔细判别并处理不合理数据。 有效数据完整率= %100--X 应测数目 无效数据数目 缺测数目应测数目 有效数据完整率要达到90%。 三. 数据订正 根据长期测站的观测数据,将测风数据订正为一套反映风场 长期平均水平 的代表性数据 ,即风场测风高度上代表年的逐小时风 速风向数据。 四.数据处理 将订正后的数据处理成 评估风场风能资源所需要的各种参数 ,包括不同时段的平均风速和风功率密度、风速频率分布、风向频率等。.(1)平均风速 月平均、年平均;个月同一钟点平均、全年同一钟点平均。

(2)风功率密度 ))((2131i n i WP v n D ρ=∑= D wp ---平均风功率密度,W/m 2 n-----在设定时段内的记录数 ρ----空气密度,kg/m 3 3i v -----第i 记录的风速(m/s )值的立方 平均风功率密度的计算应是设定时段内逐小时风功率密度的平均值,不可用 年(或月)平均风功率密度。 D wp 中的ρ必须是当地年平均计算值。它取决于温度和压力, 空气密度可按照如下公式进行计算:(一般取1.0253/m kg ) RT P = ρ ρ-----空气密度,kg/m 3 P------年平均大气压力,Pa R----气体常数(287J/kg ?K ) T----年平均空气开氏温标绝对温度 综合以上数据,再画出风速、风功率密度折线图然后算出风向频率画出风玫瑰图。

中国风能资源分布

中国风能资源分布 风能资源的分布与天气气候背景有着非常密切的关系,我国风能资源丰富和较丰富的地区主 要分布在两个大带里。 1.三北(东北、华北、西北)地区丰富带 风能功率密度在 200~300 瓦/米2 以上,有的可达500 瓦/米 2 以上,如阿拉山口、达坂城、 辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000 小时以上,有的可达 7000 小时以上。 这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关。 冬季 (12-2 月) 整个亚州大陆完全受蒙古高压控制, 其中心位置在蒙古人民共和国的西北部, 从高压中不断有小股冷空气南下,进入我国。同时还有移动性的高压(反气旋)不时的南下,这 类高压大致从四条路经侵入我国。一条是源于俄罗斯的新地岛,经西北利亚及蒙古人民共和国进 入我国,由于是西北向称为西北路径;第二条源自冰岛以南洋面,经俄罗斯、哈萨克斯坦,基本 上是自西向东进入我国新疆,称为西路经;第三条源自俄罗斯的太梅尔半岛,自北向南经西北利 亚、蒙古人民共和国进入我国,称为北路经;第四条源于俄罗斯贝加尔湖的东西伯利亚地区,进 入我国东北及华北一带,称为东北路经。这四条路经除东北路经外,一般都要经过蒙古人民共和 国,当经过时蒙古高压得到新的冷高压的补充和加强,这种高压往往可以迅速南下,进入我国。 由于欧亚大陆面积广大,北部地区气温又低,是北半球冷高压活动最频繁的地区,而我国地 处欧亚大陆东岸,正是冷高压南下必经之路。三北地区是冷空入侵我国的前沿,一般在冷高压前 锋称为冷锋,在冷锋过境时,在冷锋后面 200km 附近经常可出现大风就可造成一次 6~10 级 (10.8~24.4m/s)大风。对风能资源利用来说,就是一次可以有效利用的高质量大风。 从三北地区向南,由于冷空气从源地长途跋涉,到达我国黄河中下游再到长江中下游,地面气温 有所升高,使原来寒冷干燥气流性质,逐渐改变为较冷湿润的气流性质,(称为变性)也就是冷 空气逐渐的变暖,这时气压差也变小,所以,风速由北向南逐渐的减小。 我国东部处于蒙古高压的东侧和东南侧,所以盛行风向都是偏北风,只视其相对蒙古高压中 心的位置不同而实际偏北的角度有所区别。 三北地区多为西北风, 秦岭黄河下游以南的广大地区, 盛行风向偏于北和东北之间。 春季(3~5 月)是由冬季到夏季的过渡季节,由于地面温度不断升高,从 4 月开始,中、高 纬度地区的蒙古高压强度已明显的减弱,而这时印度低压(大陆低压)及其向东北伸展的低压槽, 已控制了我国的华南地区,与此同时,太平洋副热带高压也由菲律宾向北逐渐侵入我国华南沿海 一带,这几个高、低气压系统的强弱、消长却给我国风能资源有着重要的作用。 在春季这几种气流在我国频繁的交绥。春季是我国气旋活动最多的季节,特别是我国东北及 内蒙一带气旋活动频繁,造成内蒙和东北的大风和沙暴天气。同样地江南气旋活动也较多,但造 成的却是春雨和华南雨季。这也是三北地区风资源较南方丰富的一个主要的原因。全国风向已不 如冬季风那样稳定少变,但仍以偏北风占优势,但风的偏南分量显著的增加。 夏季(6~8 月)东亚地面气压分布开势与冬季完全相反。这时中、高纬度的蒙古高压向北退 缩的已不清楚,相反地印度低压继续发展控制了亚州大陆,为全年最盛的季节。大平洋副热带高 压等时也向北扩展和向大陆西伸。可以说东亚大陆夏季的天气气候变化基本上受这两个环流系统 的强弱和相互作用所制约。 随着太平洋副热带高压的西伸北跳,我国东部地区均可受到它的影响,在此高压的西部为东

风电场风能资源评估

发电设备(2009No.5) 风电场风能资源评估 收稿日期:2009-05-10 作者简介:魏子杰(1973),男,工程师,主要从事电站动力设备的开发技术工作。 新能源 风电场风能资源评估 魏子杰, 段宇平 (中能电力科技开发有限公司,北京100034) 摘 要:结合甘肃省玉门市低窝铺二期风电场工程对测风资料进行了分析,得出1年中各月份的平均风速,10m 高及70m 高处各等级风速的百分比,风向分布等,可得出主风向、年风功率密度及年风能可利用小时数,从而实现对风能资源的精确评估。 关键词:风电场;风能资源;有效风速;年可利用小时 中图分类号:T M 614 文献标识码:A 文章编号:1671-086X(2009)05-0376-03 Wind Energy Resource Assessment for Wind Farm WEI Z-i jie, D UA N Yu -ping (Z hong N eng Power -Tech D evelopment Co.,Ltd.,Beijing 100034,China) Abstract:By a na ly zing the w ind me asur eme nt data o f G ansu Y umen D iw opu se cond -phase w ind f ar m pr o ject,the mo nthly ave ra ge w ind speed in a ye ar ,the perce nt age o f w ind spe ed a t v ar io us scales at heig ht 10m and 70m as w ell as specific air dir ection distribution ar e o btained,thus the main wind dir ection,annual wind pow er density and applica ble ho ur s o f annual w ind ener gy can be estimate d.T his m akes it po ssible to per fo rm accur ate a ssessment fo r the wind e ne rg y r eso ur ce. Keywords:w ind f arm ;w ind energ y r eso ur ce;e ff ectiv e w ind speed;annual a pplicable hour 风电是绿色可再生能源,发展风电是实施能源可持续发展战略的重要措施。我国目前正在大力加快风电建设。甘肃省玉门市有着较为丰富的风力资源,具备规模开发、商业化运营条件。风能资源的评估是风电场建设成败的关键。本文在玉门气象站测风数据的基础上对低窝铺的风能资源进行了评估[110]。 1 风电场概况 玉门市位于昌马河冲积扇地带,扇腰以上为戈壁,以下为绿洲。该地区属典型的温带大陆性气候,昼夜温差大,降水量小,蒸发量大;地势自东南向西北倾斜,形成两山夹一谷的地形,成为 东西风的通道。由于大气环流和特殊地形等原因,该地区风能资源丰富,全市风能资源理论储 量约3.0@107kW 。低窝铺风电场二期位于甘肃省酒泉地区玉门市玉门镇西南约15km,分布在低窝铺风电场一期的东西两侧。地势平坦,场地开阔,地势总体为西南高、东北低,海拔1556~1620m,地形起伏不大。 2 测风数据来源 玉门气象站位于风电场的东北方向约12km ,是距风电场最近的气象站,属于国家基本气象站。目前,采用经国家鉴定的上海气象仪器厂生产的EL 型电接风向风速仪,安装高度为10.6m 。该站具有30年以上各气象要素的长期观测资料可作比对。业主单位甘肃洁源风电公司提供了3座测风塔的数据,由于2号、3号测风塔现场采集的测量数据完整率低于98%,不符合5风 # 376#

风电场风能资源评估及微观选址方法.

风电场风能资源评估及微观选址方法2017-07-21 科技论坛 风电场风能资源评估及微观选址方法 高兴建 (黑龙江华富风力发电穆棱有限责任公司,黑龙江穆棱157500) 摘要:风能资源评估是整个风电场建设、运行的重要环节,是风电项目的根本,对风能资源的正确评估是风电场建设取得良好经济效益的关键, 有的风电场建设因风能资源评价失误,建成的风电场达不到预期的发电量,造成很大的经济损失。本文主要针对风能资源评估及微观选址进行了分析 关键词:风电场;风能资源评估;微观选址方法1风能资源评估 风能资源评估包括三个阶段:区域的初步区域风能资源评估及微观选址。甄选、 1.1区域的初步甄选 建设风电场最基本的条件是要有能量丰 区域的初步甄选是根富,风向稳定的风能资源。 据现有的风能资源分布图及气象站的风资源情况结合地形从一个相对较大的区域中筛选较好的风能资源区域,到现场进行勘探,结合地形地貌和树木等标志物在万分之一地形图上确定风 应电场的开发范围。风电场场址初步选定后, 根据有关标准在场址中立塔测风。测风塔位置的选择要选具有代表整个风电场的风资源状况,具体做法:根据现场地形情况结合地形图,在地形图上初步选定可安装风机的位置,测风塔要立于安装风机较多的地方,如地形较复杂要分片布置立测风塔,测风塔不能立于风速分离区和粗糙度的过渡线区域,即测风塔附近应 地形较陡、树木等障碍物,与单无高大建筑物、 个障碍物距离应大于障碍物高度的3倍,与成排障碍物距离应保持在障碍物最大高度的10倍以上;测风塔位置应选择在风场主风向的上风向位置。测风塔数

量依风场地形复杂程度而定:对于较为简单、平坦地形,可选一处安装测风设备;对于地形较为复杂的风场,要根据地形分片布置测风点。测风高度要最好风机的轮毂高度一样,应不低于风机轮毂高度的2/3,一般分三层以上测风。 1.2区域风资源评估 区域风资源评估内容包括: 对测风资料进行三性分析,包括代表性,一致性,完整性;测风时间应保证至少一周年, 资测风资料有效数据完整率应满足大于90%, 料缺失的时段应尽量小(小于一周)。根据风场测风数据处理形成的资料和长期站(气象站、海 《风电场风资洋站)的测风资料,按照国家标准 源评估方法》(GB/T18710-2002)计算风电机组轮毂高度处代表年平均风速,平均风功率密度,风电场测站全年风速和风功率日变化曲线图,风电场测站全年风速和风功率年变化曲线图,风电场测站全年风向、风能玫瑰图,风电场 风能玫瑰图,风电场测站的风切测站各月风向、 变系数、湍流强度、粗糙度;通过与长期站的相关计算整理一套反映风电场长期平均水平的代 地表粗糙度、障表数据。综合考虑风电场地形、 碍物等,并合理利用风电场各测站订正后的测风资料,利用专业风资源评估软件(WASP、WindFarmer等),绘制风电场预装风电机组轮毂高度风能资源分布图,结合风电机组功率曲 按照国家标准《风力发线计算各风机的发电量。 电机组安全要求》(GB1845.1-2001)计算风电场预装风电机组轮毂高度处湍流强度和50 年一遇10min平均最大风速,提出风电场场址风况对风电机组安全等级的要求。根据以上形成的各种参数,对风电场风能资源进行评估,以判断风电场是否具有开发价值。 1.3微观选址目前,国内微观选址通常采用国际上较为流行的风电场设计软件WASP及WindFarmer进行风况建模,建模过程如下:

中国有效风力资源分布

中国有效风力资源分布调查 中国风力资源十分丰富。根据国家气象局的资料,我国离地10米高的风能资源总储量约32.26亿千瓦,其中可开发和利用的陆地上风能储量有2.53亿kW,50米高度的风能资源比10米高度多1倍,约为5亿多kW。近海可开发和利用的风能储量有7.5亿kW。 中国有效风能分布图 根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区: (1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上。这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关。 (2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10公里宽的地带,年风功率密度在200W/m2米以上。

(3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区。 (4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦。 我国风力资源分布与电力需求存在不匹配的情况。东南沿海地区电力需求大,风电场接入方便,但沿海土地资源紧张,可用于建设风电场的面积有限。广大的三北地区风力资源丰富和可建设风电场的面积较大,但其电网建设相对薄弱,且电力需求相对较小,需要将电力输送到较远的电力负荷中心。海上风电资源丰富且距离电力负荷中心很近。随着海上风电场技术的发展成熟,经济上可行,发展前景势必良好。

相关主题
文本预览
相关文档 最新文档