当前位置:文档之家› 2021年填埋气体的收集系统

2021年填埋气体的收集系统

2021年填埋气体的收集系统
2021年填埋气体的收集系统

目录

欧阳光明(2021.03.07)

1概述3

1.1生活垃圾的定义 (3)

1.2城市生活垃圾处理方法简介 (3)

2 填埋场气体的收集系统3

2.1收集系统的概述4

2.2气体收集系统的类型和构造5

3填埋气6

3.1填埋气体的组成6

3.2 填埋气体的特性6

3.3 填埋气体产生原理6

3.4 填埋场气体的产生过程6

3.5影响填埋场气体生成的因素8

3.6垃圾填埋气体对环境的危害9

4主要计算9

4.1填埋场库容及覆土量9

4.2填埋气体的产气量10

5填埋气体的收集方式13

5.1 导气系统13

5.2 排气系统13

6抽气井布置13

6.1 抽气井布点13

6.2 抽气井及井口装置15

7填埋场的工艺流程15

7.1 填埋区划分15

7.2 垃圾填埋工序16

7.3垃圾填埋工艺图16

8结论17

参考文献17

《固体废弃物与噪声控制课程设计》课程设计任务书

一.课程设计题目

填埋气体的收集系统

二.设计参数

1.垃圾以250t/d(240t/d、230t/d、220t/d、210t/d)进行填埋;考虑垃圾填埋压实后的密度为650kg/m3,垃圾资源化和填埋期间的自然降解对垃圾的减容率为15%,覆盖土容积按填埋垃圾量的10%计,

2.填埋气体产气量计算

任选一种填埋气体的计算方法,进行产气量的估算。

三.课程设计报告的内容

经对比后,确定填埋场的结构;计算服务年限为10年(2016年-2025年)的填埋场库容及覆土量;对填埋气体的产气量进行估

算并确定收集系统;若气体需要收集,进行抽气井布点(回收气体占总产气量的60%),并画出填埋场的工艺流程图、抽气井及井口装置图、竖直抽气井的布置图;绘制设计任务书中的图纸;写出设计说明书及计算说明书。

四.格式

课程设计说明书内容完整、计算准确、论文简洁、文理通顺、装订整齐、A4打印;图表要整齐,每个图、表都要有名称和编号,并与说明书内容一致,最后成果及图表要字体工整。

(正文:宋体,5号字;1号标题小4号字;行间距:20磅;页眉(固体废弃物与噪声控制课程设计)、页码:如-1-;所有公式必须用公式编辑器进行编辑。表格必须三线表。)

五.设计时间

2014年6月16日~2014年6月20日

环境工程教研室

2014-6-12

1概述

1.1生活垃圾的定义

根据《中华人民共和国固体废物污染物环境防治法》中的规定,生活垃圾是指在日常生活中或者为日常生活提供服务的活动中产生的固体废物以及法律、行政法规规定视为生活垃圾的固体废弃物。

一般而言,工业废弃物之外的固体废弃物都可以统称为生活垃

圾。但是在日常生活中所讲的生活垃圾是指由家庭日常产生并由城市环境卫生机构收集处置的混合固体废弃物,以及与这类废物性质类似的办公、商业、园林废弃物等。生活垃圾一般可分为四大类:可回收垃圾、厨余垃圾、有害垃圾和其他垃圾。

1.2城市生活垃圾处理方法简介

目前,对城市生活垃圾的处理主要有以下三种方法:

①填埋法

一般分为简易填埋和卫生填埋。

简易填埋就是不采取任何措施对垃圾进行露天堆放,自然填沟和填坑处理,这是最原始的城市垃圾处理方式,对空气、水源等环境造成严重污染。卫生填埋是将生活垃圾在选定的合适场抢先做好底部防渗、沼气收集、垃圾渗滤液及污水处理等设施后进行填埋,填埋过程中采取除臭、灭蝇等措施。防止蚊蝇大量滋生和垃圾产生的恶臭污染周围的环境。垃圾填埋到一定高度后进行逢场处理,加上覆盖材料,让垃圾堆体经过长期的物理、化学和生物作用达到稳定状态的一种处理方法。可以防止对地下水、大气及周哦为环境污染,垃圾填埋产生的沼气可收集发电,也可产生一定的经济效益。它是目前我国生活垃圾所采取的主要处理方法。

②焚烧法

焚烧是一种城市生活垃圾的高温热处理技术,即以一定量的过剩空气与被处理的废物在焚烧炉内进行氧化燃烧反应。产生惰性气态物和无机不可燃物,以形成稳定的固态残渣的处理方法。其优点是可使垃圾高度减量化、无害化,同时可利用焚烧产生的热量发

电,产生经济效益。

③堆肥法

垃圾堆肥是在一定温度下,对垃圾进行发酵、生物分解,将其中的有机物质转化为农作物所需要的腐殖土,使垃圾达到无害化的一种方法。这种方法比较简单、投资少,可以做到垃圾资源化。

2填埋场气体的收集系统

收集填埋气体的作用时减少填埋气体向大气的排放量、控制填埋气体的无序迁移,并为填埋气体的回收利用做准备。收集系统可分为主动式和被动式两种,被动式收集系统利用垃圾体内的气体压力来收集填埋气体,主动收集系统则是采用抽真空的方法来控制气体的流动。

主动气体收集系统主要由抽气井、集气管、冷凝水收集井和泵站、真空源、气体处理站(回收或焚烧)以及气体监测设备等组成。

被动收集设施根据设置方向分为竖向收集方式和水平收集方式两种类型。被动收集系统的优点是费用较低,而且维护保养也比较简单。若将排气口与带阀门的管子连接,被动收集系统即可转变成主动收集系统。

2.1收集系统的概述

我国城市垃圾中可迅速降解的有机物含量一般大于国外垃圾,填埋垃圾开始产气的时间较国外早,产气速率也较国外的快,但相应的产气持续周期比国外的填埋场短。目前,我国填埋气体普遍采用被动自然排放,对环境存在着许多隐患,因此对于新建的卫生填

埋场的填埋气体应“主动抽气、集中点燃排放”,填埋气体的导排、处理和利用措施应根据填埋场的规模、生活垃圾成分、产气速率、产气量和用途等来确定,填埋气体不利用时,应主动导出,并采取集中燃烧处理。

由于大部分沼气在填埋场填埋过程中就已形成,所以填埋气采集应在填埋过程中就开始实施。对于分层堆放的填埋场,可采用水平采气系统,但要注意采气管道的铺设不要影响垃圾的填埋。对已建成封场的填埋场,可采用表面收集或竖井收集技术。但填埋深度大于20m采用主动导气时,应采用水平收集与竖井收集相结合的方式。

垂直收集管的设置按填埋进程分,主要有三种方式:

⑴在填埋垃圾前从填埋区最低部起一次建设一定高度,以后随垃圾填埋、堆体的升高续接,直到达到设计堆体最终高度并高出一定距离。这种方式有利于填埋堆体渗滤液的排出,可相对更好的控制垃圾堆体的含水率,以避免由于堆体水分含量过大造成垃圾运输困难,还可控制堆体中渗滤液的侧向压力过大导致的渗滤液从堆体侧向渗出;不利的是收集管直接与场低防渗层接触,接触部位要特别处理,防止局部垂直压力过大损坏防渗层,同时也会对填埋作业带来一定的不便。

⑵在填埋过程中,堆体达到一定高度(如4m)以后开始设置收集管,以后随堆体的升高续接,直至达到设计的最终高度并高出一定距离。这种方式不用收集管部位特殊处理,但不利于渗滤液的导排。

⑶在填埋堆体达到设计的最终高度或一定的高度(如10m)后采用打井插管方式设置收集管。这种方式非常有利于填埋作业的顺利进行,建立集中的收集系统可一次完成,比较有利于施工。

垂直收集管的设置按所采用的材料划分也可有三种形式:

⑴完全石笼式,适用于在填埋过程中设置,使用铁丝网或钢板围成直径600~1000mm的圆柱体,在其内填充卵石。

⑵石笼与HDPE管结合的形式,在石笼中间设置HDPE花管,这种形式有利于导气及气体的收集

⑶以HDPE花管为主的形式,主要用于在堆体达到设计高度后打井设置收集管。

2.2气体收集系统的类型和构造

在填埋场使用时和关闭之后,经营者可能需要对气体的流动实行控制。收集填埋场废气的系统有两种类型,即被动收集系统和主动收集系统[6]。

(1)被动气体收集系统

被动气体收集系统让气体直接排出而不使用机械手段如气泵或水泵等。这个系统可以在填埋场外部或内部使用。周边的沟槽和管路作为被动收集系统阻止气体通过土体向侧向流动并直接将其排入大气。如果地下水位较浅,沟槽可以挖至地下水位那个深度,然后回填透水的石渣或埋设多孔管作为被动系统的隔墙,根据周围土的种类,需要在沟槽外侧设置实体的透水性很小的隔墙,以增进沟槽内被动排气量。如果周围是砂性土,其透水性和沟槽填土相似,则需在沟槽外侧铺一层柔性薄膜,以阻止气体流动,让气体经排气口排出。如果周

边地下水位较深,作为一个补救办法,也可用泥浆墙阻止气体流动。图1.2表示一种典型的被动排气方式,它既有中间覆盖又有封顶系统。被动气体收集系统的优点是费用较低,而且维护保养也较简单。图2.1一个独立的被动气体排放系统示意图图2.2典型的填埋场排放气体被动收集系统

(2)主动气体收集系统

若被动气体收集系统不能有效地处理填埋场气体,就必须采用主动气体收集系统,利用动力形成真空或产生负压,强迫气体从填埋场中排出。极大多数主动气体收集系统均利用负压形成真空,使填埋废气通过抽气井、排气槽或排气层排出。主动气体收集系统构造的主要部分有抽气井、集气管、冷凝水脱离和水泵站、真空源、气体处理站(回收或焚烧) 以及监测设备等。

3.填埋气

3.1填埋气体的组成

填埋场的主要气体包括NH3、CO2、CO、H2、H2S、CH4、N2和O2等,其中以CH4和CO2的含量最高。其典型特征为温度约43-49℃,相对密度约 1.02-1.06,水蒸气含量达到饱和,高位热值为15630-19537KJ/m3。

3.2填埋气体的特性

填埋气为CH4、CO2以及

其它一些微量成分,如

N2、H2S、H2和挥发性有机

物等,其中CH4的含量达到40%~60%。CH4和CO2是主要的温室气体,CH4对O3的破坏是CO2的40倍,产生的温室效应比CO2高20倍以上,CH4和CO2产生的温室效应会使全球气候变暖。甲烷易燃易爆,当其与空气混合比达到5%~15%时,极易引发爆炸和火灾事故。CO2的密度较大,是空气的1.5倍,CH4的2.8倍,会向填埋下部迁移,在填埋场地势较低处富集,有可能通过填埋场基础薄弱处渗出,沿地层下移并与地下水接触。由于CO2易溶于水,不仅会使水的pH值降低,而且会使地水矿物质含量增高,使地下水硬化。填埋气的恶臭气味会引起人的不适,其中含有多种致癌、致畸的有机挥发物。这些气体如不采取适当措施加以回收处理,而直接向场外排放,会对周围环境和人员造成伤害。

图3.1 城市固体废弃物填埋场气体产出概念模型

3.3 填埋气体产生原理

填埋气是填埋场内的有机物质通过微生物降解、挥发和化学反应而产生的一种混合气体, 由CH4、 CO2、O2、N2、H2和多种痕量气体组成, 主要成分是CH4和 CO2。填埋气产生持续时间很长, 大致可以分为5 个阶段。

3.4填埋场气体的产生过程

城市固体废弃物在其分解期间会产生大量气体,填埋废气的生成是一个生化过程,有机废弃物经由微生物分解产生 CO2、CH4和其它气体。这些气体中,主要是 CO2、CH4等气体,也有少量的微量气体。主要气体系废弃物中有机成分经分解生成的,微量气体虽然数量很少,但其中一部分可能有毒,会对公众健康带来危害。填埋场中各

类气体生成的百分分布典型值。如表3.2所示,

表3.2 城市固体废弃物填埋场气体成分典型值

成分占干燥体积百分比成分占干燥体积百分比

CH4(沼气) 45~60NH311~110

CO240~60H20~12

N22~5CO0~12

O211~110微量成分 101~ 16

S、H2SO4等0~110

其中CH4和CO2是废弃物中生物降解有机废料在厌氧环境中分解生成的。图3.3表示埋场气体组成随时间的变化。

最初,填埋场中气体的分布和大气是一样的,约80 %为N2,20 %为O2,还有少许CO2和其它气体。后来填埋场中的微生物开始分解有机材料,氧气减少,二氧化碳增加,需氧环境转变为厌氧环境。一开始填埋场气体中甲烷很少,但随着时间增加其含量愈来愈高,二氧化碳的含量反而略有减少。这些气体实际上是以甲烷和二氧化碳为主的一种

混合气体,经过较长时

间,当填埋场中的有机材料消耗完时,所有气体的生成也就中止了。

图3.3 填埋场气体组成随时间的变化

用重型建筑机械和碾压机压紧的垃圾,在填埋场隔绝空气的状态下,由微生物的生化降解作用而产生填埋气体。其分解过程经过5个阶段:好氧分解阶段;液化产酸阶段;CH4增长阶段;稳定产CH4阶段;填埋场的稳定阶段[4]。

(1)好氧分解阶段;填埋初期,垃圾中的有机物进行好氧分解,时间可持续数天至几个月;该阶段主要是好氧微生物作用,产

生的气体主要有CO2、H2O、NH3。

(2)液化产酸阶段;好氧分解进行中,填埋区内O2逐渐减少,转入厌氧消化、水解产酸阶段;该阶段主要是厌氧菌作用,产生的气体有CO2、H2及少量CH4。

(3)CH4增长阶段;随着CH4菌增长,CH4含量增加,挥发性有机酸积累下降,pH值增加为碱性;该阶段可持续1~2年。

(4)稳定产CH4阶段;此阶段为动态平衡阶段,挥发性有机酸积累很少,主要产生CH4、CO2,气体组成稳定,是填埋场气体利用的主要阶段;大型垃圾填埋场此阶段可持续10年以上。

(5)填埋场的稳定阶段;可降解有机物基本耗尽,产生的气体、渗滤液量减少,填埋场出现不均匀沉降,空气重新进入填埋场,封场后的土地利用在此阶段进行。

上述五个阶段并不是绝对孤立的,它们相互作用互为依托,有时会发生一些交叉。各个阶段的持续时间,则根据不同的废物、填埋场条件而有所不同。因为填埋场中垃圾是在不同时期进行填埋的,所以在填埋场的不同部位,各个阶段的反应都在同时进行。3.5影响填埋场气体生成的因素

填埋场气体产出能力取决于很多因素,包括废弃物的构成、含水量、pH 值以及有效营养成分等。一开始,当可分解的垃圾倒入填埋场时,垃圾带着周围大气中的氧一起进入,经过一段细菌分解的自然过程,耗尽了空气中的氧(需氧分解) ,在填埋场中形成厌氧环境,这通常发生在填埋单元封闭后6个月或更长一段时间内。厌氧环境是产生甲烷的必要条件之一。如果氧气重新进入填埋场,带有氧气的废弃

物将回复到需氧状态,并使产生甲烷的细菌群体被杀死,需要再过一段时间以后,甲烷产出能力才能回复正常。由于此时填埋场内尚有部分甲烷存在,甲烷逐渐减少完全取决于刚填埋的需氧废弃物有多少,还有其它一些因素。二氧化碳则在需氧和厌氧状态均可产生。在静止状态下,填埋场气体的构成大概一半为甲烷,另一半为二氧化碳,另有少量的氮。

表3.4 填埋气体的产生过程

阶段主要特征结束标志持续时间

初期调整阶段过渡阶段

酸化阶段

CH4发酵阶

成熟阶段气体中主要为CO2,

温度急剧升高

ORP 降低, 有H2产生

气体主要成分是CO2,

pH 值达到最低

CH4含量为50 %左右,

pH 值升高

CH4和CO2浓度急剧下

降, 重新出现N2

填埋气体中不含O2

气体中不含有N2、H2

浓度开始降低

游离脂肪酸的形成达

到峰值, 开始产生

CH4

气体中CH4、CO2开始

减少且产生N2

气体中以N2为主且厌

氧分反应结束

几小时~1 周

1~6 个月

3个月~3 年

8~40 年

1~40 年或更长

只要存在一定条件,填埋场气体将不断生成,这些条件包括:垃圾成柱状堆积,缺少空气的环境,温度在10~57 ℃之间以及纤维素或其它有机材料(甲烷细菌的作用物) 的有效作用。给填埋场加水可加快气体的产出,在干旱地区干燥的填埋场内,长时间(也许要100 年) 内也只有少量气体生成,而对那些有机材料可适当加水的填埋场,在8~15 年内,填埋场废气将生成得很快,以后就降到较低的水平(见图3.4) 。当气体生成时,填埋场内存在一定的气体压力,已经量测到的压力大约为0125~0175 kPa ,有些单元可高达1150kPa ,这些压力已可使气体从

填埋场中排入大气,渗入土内,甚至进入周围的建筑之中。

3.6 垃圾填埋气体对环境的危害

由填埋气体的组分决定了其具有易燃、易爆的危险性和有毒性。填埋气体极易引起火灾及爆炸,其毒性污染大气环境,威胁工作人员及附近居民的身体健康。由于填埋气体还具有迁移作用,因此不仅对填埋场内构成危害,而且对场外的服务设施,财产造成危害。这些易燃、有害气体将破坏附近的农作物、蔬菜、树木或灌木,并且对相邻的将要开辟的场地是一种潜在的危害,如北京的一处垃圾填埋场附近居民厨房发生的爆炸事件。根据国外有关资料,在垃圾填埋场附近250米范围内搞任何开发项目都应对LFG 的横向迁移规律进行现场测试,并对其潜在危险性进行全面评价。 4主要计算

4.1 填埋场库容及覆土量:

(1)任意年的垃圾填埋量: 可由5365v mpt

v t +=ρ计算得到:

其中:t v -----任意年总填埋场库容;

s v -----任意年的覆土量;

由于垃圾资源化和填埋期间的自然降解对垃圾的减容率为15%; 则任意年的垃圾填埋量为:

(2)任意年的覆土容积:

由于覆盖土容积按填埋垃圾的填埋量的10%计;

则任意年的覆土容积为:

(3)任意年的填埋场库容:

(4)10年的填埋场库容:

(5)10年的覆土量:

4.2 填埋气体的产气量:

本次设计中选用Marticorena经验模型

该模型是针对具体的垃圾填埋场提出的,其前提假设垃圾是按年份分层填埋的,该模型认为各处气体的产生具有等同性和可累加性,在以年为单位的时间尺度上,一个地区的垃圾也可认为是分层分块填埋于不同处,所以将该预测模型应用于区域填埋气体产生量的预测是可行的。

(1)该模型推导如下:

式中: MP一时间为t的垃圾的特定产甲烷潜能,Nm3/t;

MP0一新鲜垃圾的特定产甲烷潜能,Nm3/t;

t一时间,a ;

t d一垃圾生命持续时间,a ;

D一某一层垃圾的特定年产甲烷率,Nm3/(t·a);

F一整个垃圾场的甲烷产率,Nm3/a;

T i一第i年中垃圾的质量,t;

(2)公式中各量的确定

MP0的确定

MP0为新鲜垃圾的产CH4潜能(Nm3/t),各国研究者关于MP0进行过大量研究,确定该值的方法有现场实验法、实验室实验法、理论计算法等,所得MP0的数值从2O到200(Nm3/t),根据对现场垃

圾填埋场进行的产CH4的潜能实验,测定的MP 0为85(Nm 3/t),将测定值与各种理论计算值比较,发现与COD 法的计算结果比较接近.同时,根据对各城市的垃圾成分调查结果发现,北京、上海、深圳等大城市的干基有机物比例约有25%~35%,中小城市的干基有机物比例约有15%~25%.又通过垃圾概化分子式的方法计算,我国城市垃圾中干基有机物的COD 转化系数约为1.2( kg 一COD /kg 一DVS).每千克COD 分解产生0.35mol 的CH 4,按照垃圾中的有机物在填埋场中厌氧分解的转化率为85%,大城市垃圾中的干基有机物比例平均为30%,中小城市垃圾中的干基有机物比例平均为20%,确定出大城市垃圾填埋场的MP 0为85(Nm 3/t),中小城市垃圾填埋场的MP 0为65(Nm 3/t).

t d 的确定

t d 的数值有很多争议,Bogner 等人提出为20年,而Findikakis 等人则提出是l2年.实际上,因为特定的填埋场各种条件相差很大,只能通过在填埋场不同深度取样进行产气潜能分析得出.为了考察我国城市垃圾在填埋场中的垃圾持续产CH 4时间,通过对垃圾填埋场进行了现场调查,填埋垃圾大约在4—5年后其产CH4过程即趋于结束.因此,我们选取大城市d=5年,中小城市d=4年,这基本符合我国城市垃圾中可堆腐有机物以厨余废物为主,分解周期较短的特点.

表4.1 计算结果

年份 )exp(d i t --)exp()(0d

i t d MP i t D --=-)(i t D T i -?/Nm 3/t

1 1.00 16.25 1482812

2 0.78 12.68 1157050

3 0.61 9.91 904288

4 0.47 7.64 697150

5 0.37 6.01 548412

6 0.29 4.71 429788

7 0.22 3.58 326675

8 0.17 2.76 251850

9 0.14 2.28 208050

10 0.11 1.79 163338

T i 的确定

T i 是填埋场第i 层中废弃物的吨数,可以按照填埋场每年填入废弃物量进行确定.

(3)计算

设该垃圾填埋场位于中小型城市,则由上述资料可知,MP 0=65(Nm 3

/t),d=4a. 则:a t T i /91250250365=?= 根据以上三个公式经计算,结果见表4.1。

由表4.1可得当从垃圾填埋开始到第十年期间,每一年产甲烷的量。由上述模型知,对中小型城市,填埋垃圾大约在4~5年后其产CH4过程即趋于结束,在五年以后产CH 4量会很少,但在此不忽略。每一年的产CH 4量见表4.2。

表4.2每一年CH 4的产量

第i 年 产CH 4量/Nm 3

/t(以Q(i)表示)

1 1482812

2 1157050

3 904288

4 697150

5 548412

6 429788

7 326675

8 251850

9 208050 10 163338

则,第t 年整个垃圾填埋场的产气量为:∑==t

i i Q t F 1)(,可得,在第t

年时垃圾的累计产气量,如表4.3所示。

表4.3第t 年时填埋场的累计产气量

第t 年 在第t 年时整个填埋场的累计产气量/m 3N /a 十五年的总产气量/m 3

N /a 1 1482812

2 2639862

3 3544150

4 4241300

5 4789712

6 521950045290024

7 5546175

8 5798025

9 6006075

10 6022413

若认为,垃圾填埋四年后就不再产生CH4气体,则从第五年到第九年的产气量均相等。

则可知第t 年整个填埋场的累计产气量为:

当t ≤4时,F(t)=∑=t

i i Q 1,则可得第t 年的累计产气量和总产气量,如表4.4

所示:(认为第十年的垃圾产生一年的甲烷气体)

表4.4 第t 年时填埋场的累计产气量

第t 年 在第t 年时整个填埋场的累计产气量/Nm 3/t 十年的总产气量/Nm 3/t 1 1482812

2 2639862

3 3544150

4 4241300

5 478971237339496

6 4789712

7 4789712

8 4789712

9 4789712

10 1482812

所以产生的气体量=总气体量X60%=37339496X60%=22403697.6m3=2.2x107 m3

5垃圾填埋的收集方式

5.1导气系统

导气系统由垂直导气管组成,垂直导气管安装在渗沥液收集管的支座上,管间距40m。导气管管材采用特制穿孔工程塑料管,管径为DN200。导气管四周设石笼透气层即铅丝网包拢级配碎石滤料(300mm厚,粒径50~150mm。),导气系统的铺设随着填埋作业逐层上升而逐根加高。

5.2排气系统

排气系统采用分散排放方式,即每根导气管均设一根排气管,将收集的填埋气在排气管口点燃。排气管口高出最终覆盖层1m(即距离地面高约6.5m),有利于填埋气体的扩散。

6抽气井布置

6.1抽气井布点

抽气井按三角形布置,影响半径应通过现场试验确定。但由于抽气井的布置会影响集气/输气管路径,应根据现场条件和实际限制因素,对抽气井进行适当调整。同时,在建设LFG抽气井的过程

中,井的确切位置还需要根据遇到的情况适当进行调整。

为了优化竖井的布置和确定有效的产气范围,抽气井按等边三角形的形式来布置,井间距离要使其影响区域相互交叠。即:式中,D为三角形布局的井间距离,m;R为抽气井的影响半径,m。

填埋固废的体积为:

填埋高度为19m,则填埋场的面积为:

设填埋场的长为:a=400m,则填埋场的宽b为:

设井间距为50m,抽气井到填埋场的距离为:55m

所以抽气井取7座。

400m

图6.1 填埋场抽气井布点图

6.2 抽气井及井口装置:

图6.2 抽气井结构图

图6.3 竖直抽气井

7填埋场的工艺流程

7.1填埋区划分

根据地形特点,将填埋作业区划分为一、二两个填埋区域,每个区域内按10×10m(或根据地形条件以100m2为单位)划分填埋单元,从最低点分层填埋。

7.2垃圾填埋工序

垃圾进场后按划分好的单元卸下,用推土机摊平摊铺均匀至厚度为0.6~0.8m后,再用垃圾压实机反复压实使其密度不小于

0.85t/m3,然后继续填埋第二、第三层……,至垃圾压实厚度达到2m,然后覆盖0.2m的土层,继续向下一部分推进。当天的垃圾按填埋单元填埋完成后,表面需再覆盖一层0.2m的土层,做到当日垃圾当日覆盖。

当一个填埋区域的垃圾填埋完成并压实到0.85t/m3后,表面要覆盖一层0.5m厚的土层,以保证填埋场整体的环境。

当填埋场最终完成填埋后,整个填埋区的表面要覆盖一层0.5m 厚的粘土(渗透系数≤10-7cm/s),或覆盖人工合成材料,上部再填0.5m厚的盐土,并均匀压实。

垃圾最终填埋完成后,至少在三年内封闭监测,不准使用,要特别注意防火、防爆。三年后经鉴定达到安全期后可作为人造景观及一些无机类物资堆放场地等。未经长期观测,填埋场地区绝对不能作为工厂、商店、学校等建筑用地。

此外,为便于降水的自然排放,垃圾堆体顶面应由最高点坡向四周,保证坡向平整,坡度不小于5%。

7.3垃圾填埋工艺流程图

8结论

本次设计的题目是对填埋气体的处理,垃圾填埋的主要处理对象是城市生活垃圾及部分建筑垃圾,现在城市生活垃圾处理方法有三种:填埋,焚烧和回收利用。设计中还对垃圾填埋场的气体产生过程做了介绍,在填埋场隔绝空气的状态下,由微生物的生化降解作用而产生填埋气体。其分解过程经过5个阶段:好氧分解阶段;液化产酸阶段;甲烷增长阶段;稳定产甲烷阶段;填埋场的稳定阶

垃圾填埋场渗滤液处理方案

垃圾处理场 渗滤液处理工程方案 二〇一六年三月

一、工程概况 1、项目简介 根据《中华人民共和国环境保护法》规定“防止环境污染,保护人民健康,促进经济发展”的原则、国务院(98)253号令《建设项目环境保护设计规定》及有关法规的规定,需对生产和生活垃圾进行有效治理或综合利用。 在睢县城建局领导的高度重视下,以及当地主管部门的关心下,决定对睢县垃圾填埋场垃圾渗滤液进行升级改造,减轻渗漏废水对附近水环境的污染、保护人民身体健康、改善人类的环境卫生条件,使其达到2008年4月2日国家重新颁布的《生活垃圾填埋污染控制标准》(GB16889-2008)版新标准后排放,故提出此方案。 设备采用预处理+硝化+反硝化+MBR+NF+RO处理工艺,配有自控系统装置,有自动切换,报警功能。对垃圾渗滤液设施、设备和工艺进行方案设计,以供各方决策和参考。 为严格遵守有关环境法规,保护环境,本着经济建设和环境保护同步进行的“三同时”原则。我单位受投资者邀请,在进行初步调研,并经多项垃圾渗滤液成功的实践经验的基础上,编制该垃圾填埋场渗滤液设计方案,以供有关部门决策、实施。为了保护水体环境不受垃圾渗滤液影响,针对该垃圾填埋场渗滤液具体水质的特点,本方案拟采用常规的“预处理+硝化+反硝化

+MBR+NF+RO处理”工艺,该处理工艺较为简单,操作运行方便,日常费用低 廉,出水稳定。 2、设计要求: 遵守国家对环境保护、垃圾填埋场渗滤液治理的制定的法规、标准及规范,服从单位的总体规划,执行各种相关的标准和规定;节约能源,最大限度降低运行费用;延长设备的使用寿命。 3、方案设计原则: 1. 水质 工程出水水质必须达到2008年7月1日实施的《生活垃圾填埋场污染控制标准》(GB16889-2008)版新标准表2中的排放限值 2. 设计原则 1)严格执行国家现行的环保技术标准、规范,遵守国家和地方环保的有关 法律、法规及排放标准; 2)选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做 到操作简单、管理方便、占地小、投资省、运行费用低; 3)本工程系环境工程,尤其要注意环境保护,避免和减少二次污染。要求 改善劳动卫生条件,贯彻安全生产和清洁文明生产的方针; 4)为了提高污水处理站管理水平,设计采用PLC程序控制,减轻操作人员 的劳动强度;

填埋气体收集工程专项方案

填埋气体收集工程 专项方案

施工组织设计(方案)报审表 工程名称:含山县垃圾场封场项目工程编号:

含山县垃圾场封场项目工程填埋气体收集工程专项施工方案 安徽省通源环境节能有限公司 二O一四年四月

会签一览表

目录1 编制依据 1.1 有关工程文件 1.2 有关规范规程 2 工程概况 2.1 工程概况 2.2 设计说明 3 施工部署 4 主要施工方法 4.1 工艺流程 4. 2 施工方案 4. 2.1 沟槽开挖 4. 2.2 验槽 4. 2.3 HDPE管施工 4. 2.4沟槽回填 5 质量证措施 5.1 质量保证组织机构 5.2 工程质量保证措施 6 工期保证措施 7 安全保证措施 7.1 成立安全组织机构 7.2 安全技术措施

7.3 安全注意事项 8 文明施工、环境保护措施 8.1 建立健全强有力的环保体系 8.2 实行环保目标责任制 1 编制依据 1.1 有关工程文件 1.1.1 《含山县垃圾场封场项目岩土工程勘察报告》 1.1.2 施工组织设计 1.2 有关规范规程 1.2.1 生活垃圾填埋场填埋气体收集处理及利用工程技术规范 1.2.2 生活垃圾卫生填埋封场技术规程 2 工程概况 含山县垃圾场封场项目工程包括土方整理工程、进场道路工程、垂直防渗系统、封场覆盖系统、渗滤液收集导排系统、地表水收集系统、填埋气收集系统、绿化等工程,工程投资约1255万元;含山县拉垃圾场占地面积为18000㎡,垂直防渗设计总长度约393.029m. 2.2 填埋气体工程概况 含山县老垃圾场垃圾堆放过程中产生了二次污染--填埋气体。填埋气体无控制的排放将会造成大气污染和爆炸隐患,并危害植物生长。本

垃圾填埋场在水平收集条件下一维气体运移模型

垃圾填埋场在水平收集条件下一维气体运移模型 【摘要】:在垃圾填埋场中的水平层上部和下部提取沼气越来越常见,一维稳态垃圾填埋气模型开发用于协助评估和设计收集系统。模型可用模拟一层垃圾气体压力分布在各种操作条件,包括上部和下部边界给定的流量和压力,该模型可预测填埋场中最大压力的位置,已经能够形成多大的真空压力,必须应用于特定气体收集在水平集气层。模型的实用程序说明了几个感兴趣的场景。在一个垃圾填埋渗滤液收集系统,如果没有气体收集,相当大的气体压力可以在底部形成,垃圾填埋场渗滤液收集系统在开始设计时就应考虑,影响真空参数包括:垃圾深度产气率。垃圾的渗透系数的评价表明不单独依赖渗滤液收集系统用来移除气体,因此模型可用来说明一个水平在衬垫下层结合气体从底部抽取的垃圾填埋场。提出了几个建议用于改善垃圾填埋场气体收集效率。 1介绍 在美国城市固体垃圾填埋场通常配备垃圾填埋气收集系统来满足监管要求,解决环境和安全问题并控制的气味。传统的垃圾填埋场气体收集方法涉及到在垃圾体中安装大半径竖井和随后应用真空方法在腐烂的垃圾中提取沼气(主要是是甲烷和二氧化碳)。当一个垃圾体填埋场达到最终阶段和配有一个低渗透率的覆盖层时,竖井的使用是最有效的。然而在一些情况下,垃圾填埋场运营商面对在垃圾填埋场达到最终阶段之前早些时候释放气体时收集气体的需要。例如美国环境保护局发表新能源性能标准指导表明大型填埋场要处理每年至少50吨非甲烷有机物。为防止超过规定非甲烷有机物排放量被超过,气体的收集和控制系统必须在30个月内安装。最新颁布的要求规定生化垃圾填埋场安装并使用气体收集控制系统已经比传统的垃圾填埋场的时间提前很多。 在垃圾体达到最终阶段之前垃圾填埋场运营商可以使用几种可供选择填埋气收集技术。水平井可以在垃圾体中放置,当足够的垃圾添加后,气体收集系统就能够工作。渗滤液收集系统(LCS)被设计用来促进从垃圾体中排出渗滤液,包括垃圾体下衬垫系统之上有渗透性的介质,因此这也可以用来当做集气系统。覆盖在垃圾和土体的土工膜能够减少和阻挡气体从表面和边坡散溢。使用所有这些技术,可以想象一个垃圾填埋气收集系统可以在设计中根本没有竖井。 如综上所述填埋气运移模型能够有助于工程师设计气体收集系统。数学模型来模拟填埋气产生,构成和运移在之前已经发表。在填埋场中关于竖向抽取气体大量的解析和数值模型已经发展。.young模拟平流气体运移和压力在填埋场中水平抽气井在单相等温二维稳态条

填埋气体的收集系统

填埋气体的收集系统 Prepared on 24 November 2020

目录 1概述3 生活垃圾的定义 (3) 城市生活垃圾处理方法简介 (3) 3 4 5 6 6 6 6 6 8 9 9 9 10 13 13 13 13 13 15 15 15 16 16 17 17 《固体废弃物与噪声控制课程设计》课程设计任务书一.课程设计题目 填埋气体的收集系统 二.设计参数

1.垃圾以250t/d(240t/d、230t/d、220t/d、210t/d)进行填埋;考虑垃圾填埋压实后的密度为650kg/m3,垃圾资源化和填埋期间的自然降解对垃圾的减容率为15%,覆盖土容积按填埋垃圾量的10%计, 2.填埋气体产气量计算 任选一种填埋气体的计算方法,进行产气量的估算。 三.课程设计报告的内容 经对比后,确定填埋场的结构;计算服务年限为10年(2016年-2025年)的填埋场库容及覆土量;对填埋气体的产气量进行估算并确定收集系统;若气体需要收集,进行抽气井布点(回收气体占总产气量的60%),并画出填埋场的工艺流程图、抽气井及井口装置图、竖直抽气井的布置图;绘制设计任务书中的图纸;写出设计说明书及计算说明书。 四.格式 课程设计说明书内容完整、计算准确、论文简洁、文理通顺、装订整齐、A4打印;图表要整齐,每个图、表都要有名称和编号,并与说明书内容一致,最后成果及图表要字体工整。 (正文:宋体,5号字;1号标题小4号字;行间距:20磅;页眉(固体废弃物与噪声控制课程设计)、页码:如-1-;所有公式必须用公式编辑器进行编辑。表格必须三线表。) 五.设计时间 2014年6月16日~2014年6月20日 环境工程教研室 2014-6-12 1概述 生活垃圾的定义

渗滤液的收集及处理

5、渗滤液的产生及收集处理 5.1垃圾渗滤液概况 垃圾渗滤液是指垃圾在堆放和填埋过程中由于压实、发酵和降水渗流作用而产生的一种高浓度有机废水。渗滤液包括垃圾自身所含的水分、垃圾分解所产生的水及浸入的地下水。渗滤液量的大小主要受控于垃圾本身的含水率、,因而导致同一填埋场渗滤液随时降水与径流强度及填埋垃圾分解的阶段过程空变化,其组成、浓度等特征均有较大不同。 城市垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。主要来源有: (1)降水的渗入,降水包括降雨和降雪,它是渗滤液产生的主要来源。 (2)外部地表水的渗入,这包括地表径流和地表灌溉。 (3)地下水的渗入,这与渗滤液数量和性质与地下水同垃圾接触量、时间及流动方向等有关;当填埋场内渗滤液水位低于场外地下水水位,并没有设置防渗系统时,地下水就有可能渗入填埋场内。 (4) 垃圾本身含有的水分,这包括垃圾本身携带的水分以及从大气和雨水中的吸附量。 (5) 覆盖材料中的水分,与覆盖材料的类型、来源以及季节有关。 (6) 垃圾在降解过程中产生的水分,与垃圾组成、pH 值、温度和菌种等有关,垃圾中的有机组分在填埋场内分解时会产生水分。 垃圾在填埋场产生的渗滤液与时间的关系可分为以下几个阶段: (1)调整期:在填埋初期,垃圾体中水分逐渐积累且有氧气存在,厌氧发酵作用及微生物作用缓慢,此阶段渗滤液量较少。 (2) 过渡期:本阶段滤液中的微生物由好氧性逐渐转变为兼性或厌氧性,开始形成渗滤液,可测到挥发性有机酸的存在。 (3) 酸形成期:滤液中挥发性有机酸占大多数,pH 值下降,cr OD C 浓度极高,5BOD /cr OD C 为0.4~0.6,可生化性好,颜色很深,属于初期的渗滤液。 (4) 甲烷形成期:此阶段有机物经甲烷菌转化为CH4和CO2,pH 值上升,cr OD C 浓度急剧 降低,5BOD /cr OD C 为0.1-0.01,可生化性较差,属于后期渗滤液。

垃圾填埋场渗沥液回灌及沼气收集利用

2011年2月第2期 城市道桥与防洪 数C 、Φ取值的说明。根据目前所掌握的相关标准、文献及手册,目前只有对碎石桩等散体材料桩复合地基的抗剪强度有明确理论公式支持。(3)排水沟的因素:通过前面计算出的各个断面中工况四、工况五的结果可以看出,排水沟的开挖对路基的整体稳定安全系数没有直接的影响。从计算出的滑弧面亦可以看出,其滑动面均从开挖的排水沟基坑上边坡通过。此计算结果与实际的滑塌情况基本吻合。从前述的施工记录中可知,排水沟基坑边坡发生过滑塌事故,因此其上边坡土体为回填土,经计算, 再考虑回填土密实度的降低的情况下,挡墙及路基整体稳定安全系数下降了8.4%。因此,我们可以认为排水沟边坡滑塌对挡土墙下地基土稳定的影响很小。8结论 通过对本工程实例的分析介绍,总结出以下几点建议,希望在今后的相关工程设计中能够引起设计人员的重视。(1)从图1中可以看出,挡土墙下的钻孔位置均沿着挡土墙的方向设置,而沿挡土墙横向却没有布置能够反应出填方边坡下地层分布规律的钻 孔,按此种钻孔布置方式所获得的地质资料是不能够满足挡土墙边坡稳定设计要求的。因此,今后在道路挡土墙及桥涵的设计中应充分了解工程所在位置的地质情况,特别注意有无不良地质(如软弱下卧层、可液化层及断裂带等)的情况。(2)当采用C F G 桩进行基底处理设计时,应确 认是否存在潜在的滑动面穿过C F G 桩桩身,如存在,则应慎重考虑C F G 桩的抗剪能力,或通过试 验以取得复合地基的粘聚力(C 值)和内摩擦角(Φ值)。(3)当桩基基础需要考虑抗剪设计时,不建议采用C F G 桩。 (4)在挡土墙设计时,应认真对待挡土墙后水 位的变化对挡墙稳定的影响(挡土墙上泄水孔设 置的重要性应引起重视)。(5)配合施工人员发现问题应及时提出,以避免潜在的事故发生。 收稿日期:2010-09-21作者简介:李万百(1977-),男,天津人,工程师,从事污水处理和垃圾填埋场设计与研究工作。 李万百1,刘建华2,胡 斌2 (1.中国瑞林工程技术有限公司东莞分公司,广东东莞523071;2.洛阳城市建设勘察设计院有限公司,河南洛阳471000)垃圾填埋场渗沥液回灌及沼气收集利用 摘 要:垃圾渗沥液和填埋气是垃圾填埋过程中的两种主要产物,具有很强的二次污染性。该文结合工程实例,阐述了渗沥液 回灌与沼气收集利用发电相结合,不但可以实现渗沥液减量化,降低渗沥液处理成本,同时可以促进垃圾分解沼气的产生,并进行沼气收集利用发电。 关键词:垃圾填埋;渗沥液回灌;资源利用;沼气发电中图分类号:X 705 文献标识码:B 文章编号:1009-7716(2011)02-0091-03 0前言 随着我国经济的高速增长,城市垃圾产生量大幅度地增加,垃圾处理问题越来越受到人们的关注。目前,我国垃圾处理还是以垃圾填埋为主要方法,很多城市包括县城都相继建成或正在建设垃圾填埋场,垃圾填埋产生的渗沥液和沼气如不妥善处理,将会对环境造成二次污染。渗沥液是一种高浓度的有机废水,成分复杂,可生化性差,水质和水量波动性大,这些特点使得渗滤液的处理仍然是目前尚未彻底解决的难题。沼气是填埋过 程中产生的气体,许多老填埋场没有设置导气装 置,或仅是设置石笼排气,不但容易产生爆炸和火灾,垃圾填埋产生的沼气直接排入大气,还会对大气环境造成污染,产生温室效应。随着全球变暖和气候变化问题的日益突出,减少温室气体的排放,垃圾填埋场沼气的回收利用,越来越多地被应用在垃圾填埋场,实现能源再生利用,有条件的地区还可以申请C D M 碳交易。 1渗沥液回灌有利于垃圾降解 垃圾填埋过程中,垃圾中的有机物质降解是一个长期的过程,主要是厌氧发酵,有机物质在特定的厌氧条件下,微生物将有机质进行分解,将一部分碳素转化成甲烷和C O 2,在这个转化过程中, !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 相关专业91

生活垃圾填埋场渗滤液处理综述.

某城镇生活垃圾填埋场渗滤液处理工艺设计综述 郑世超 (四川理工学院材料与化学工程学院,四川自贡 643000) 摘要本文分析了填埋场渗滤液的现状,介绍了渗滤液处理的几种主要工艺,对比了好氧法、厌氧法、好氧-厌氧法、物理化学法、土地处理法及回灌技术处理渗滤液的特点,分析了综合工艺处理渗滤液的优势,描述了国内外填埋场渗滤液处理技术及其运用的现状及趋势。 关键词生活垃圾填埋场渗滤液 ABR SBR 1生活垃圾填埋场渗滤液现状 1.1渗滤液产生背景 随着我国城市化进程的加快,城镇数目不断增加,城市规模日益扩大(我国现有建制市668座,包括县城在内的中小城镇则达3万多座),人口也急剧增长,直接导致城镇生活垃圾大幅度增长,而垃圾处理设施、处理资金却面临很大的缺口,呈现垃圾包围城市的局面。垃圾问题已成为制约我国城镇发展的重要因素。 作为垃圾处理过程的副产品,渗滤液问题已严重影响我国垃圾处理事业的健康发展。现有的垃圾处理设施中,包括填埋场、焚烧场、垃圾中转站、堆场以及堆肥场都将产生大量的渗滤液。目前我国城市生活垃圾的新鲜渗滤液年产量约2900万吨,可控点源排放的渗滤液为1515万吨,如果加上填埋场/堆场历年垃圾产生的渗滤液,则其年产量估计为新鲜渗滤液的数倍,而lt渗滤液约相当于100t城市污水所含污染物的浓度。生活垃圾填埋场渗滤液一方面通过填埋场地向下渗透,随着时间延长,当填埋场底下的土壤对大部分有机污染物吸附达到饱和时,污染物会沿着地下水流向作扇形扩散,造成了对地下水的污染。另一方面经垃圾填埋场导流管引流出来的渗滤液,往往没有经过完全的处理就直接用于农田灌溉或排入江河湖泊。随渗滤液进入河流或农田的各种有机污染物、无机污染物,会使水生生物和农作物受到污染,并通过食物链和生态环境对人体健康产生危害。但到目前为止,适合我国国情、符合“高效、低耗”处理标准的渗滤液处理工艺仍处于研发阶段,渗滤液问题已成为垃圾产业化进程的“瓶颈”,严重威胁了垃圾处理设施周围环境的安全及居民的健康生活[1]。 1.2渗滤液水质分析 垃圾渗滤液是指从垃圾填埋场中渗出的黑棕红色水溶液,当垃圾含水47%时,每吨垃圾可产生0.0722t渗滤液[2]。填埋场渗滤液的来源有直接降水、

填埋气的收集与利用

填埋场气的收集与利用 陈晓东 (南昌有色冶金设计研究院 330002) [内容摘要]论述了填埋场气的产生、主要成分及其特性,提出了填埋场气产气量和收集量的估算方法,简要介绍了收集系统的设计,对填埋场气的处理和利用提出了设想。 [关键词]填埋场气收集利用 一概述 随着国民经济的发展,人民生活水平日益提高,城市人口的不断增长,城市生活垃圾越来越多,垃圾成份日益复杂多样,一种是生活垃圾,包括居民生活垃圾、商业垃圾、集市贸易垃圾、街道垃圾、公共场所垃圾和机关、学校、厂矿等单位的生活垃圾;一种是建筑废弃物,包括建筑残土、砖瓦石陶瓷等残碎物、废水泥及水泥制品残碎物和废砂及其它建材残弃物。其中生活垃圾含有有机物。为了防止垃圾对环境造成污染,必须对垃圾进行处理如卫生填埋、堆肥及焚烧等。但填埋场在一定的条件下会产生填埋场气,该气体具有易燃易爆的性质,同时还蕴藏着丰富的能量。为保证填埋场的安全和尽可能的回收能源,变废为宝,因而有必要对填埋场气加以收集,进行处理和利用。 二填埋场气的产生、主要成分和特性 (一)填埋场气的产生 填埋场气的产生与很多因素有关,包括垃圾的成分、PH值及其堆积量、填埋场的水分、温度及填埋年份等。在一定的条件下,如适当的水份、温度及酸碱度,垃圾中的有机物经过生物化学反应后,使填埋场产生大量的气体,通常称为填埋场气。国外资料一般称为LFG(landfill gas)。由于其主要成分和热值近似于沼气,也有文章称其为“沼气”。 据国内外有关资料介绍,产生填埋场气的生物化学反应分为以下四个阶段。 第一阶段为好氧生物分解,可能持续几周,主要成分是氮、氧和二氧化碳。氧气是从周围大气被垃圾带入填埋场的,经过一段时间的生物化学反应后而被逐渐被耗尽。二氧化碳将随时间的推移而迅速产生。 第二阶段为厌氧生物分解,为不产甲烷期,氮特别是氧的百分数下降很快,直到氧气耗尽进入厌氧反应阶段。本阶段的主要成分是氢、氮和二氧化碳。 第三阶段为厌氧生物分解,为产甲烷的不稳定期,二氧化碳和氮的百分数显著下降,氢和氧的浓度趋于零,甲烷的百分数很快上升。 第四阶段为厌氧生物分解,为产甲烷的假稳定期。这个阶段的甲烷、二氧化碳和氮的百分数

垃圾填埋场渗滤液处理方案

垃圾填埋场渗滤液处理 方案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

渗滤液的收集 在垃圾坝内侧设置两条H×W=2000×1000mm 渗滤液收集沟,总长220 米,收集沟为粘土盲沟,内填厚100cm 的卵石,卵石粒径8cm~12cm。沟上为厚50cm 的卵石导流层,卵石粒径4cm~6cm。收集沟底部为厚10 cm 的砾石, 砾石粒径4cm~6cm;沟内铺设两条平行的DN300 穿孔HDPE 收集管,穿孔管孔径15mm 孔距15cm。两条粘土沟将渗滤液收集沟与垃圾坝内预留的排水管道相连。穿过坝体的5 根DN300HDPE 管将坝内收集到的渗滤液输送至设置在坝外的两座转换井内。其中一个转换井作为渗滤液提升泵房将渗滤液通过一根DN300 的HDPE 管提升进入调节池。HDPE 管上设有闸阀一个,以调节排出的渗滤液量。 渗滤液收集沟下部基础采用大面积开挖施工,回填优质粘土并压实,使之形成不透水层基础面,基面垂直于坝体方向并向坝外形成2%的坡度。 有关内容详见“渗滤液收集系统平面布置图”。 渗滤液处理工艺 设计渗滤液量的确定 渗滤液的产量主要决定于降雨量、蒸发量、地下水浸入以及垃圾压实后产生的水分。渗滤液处理运行费用较高,确定适宜的处理规模,十分重要。在本工程设计中,采用经验公式计算,并参考重庆市及附近地区已有垃圾填埋场的实际运行经验对祺龙村垃圾处理场渗滤液产量进行预测。 经验公式法是根据多年的气象观测结果,以年平均降雨量为基础,来预测渗滤液产生量的方法。其计算公式为: Q=1000-1×C×I×A 式中: Q:渗滤液平均日产量,m3/d; C:渗透系数,一般在~之间; I:年平均日降雨量,mm; A:垃圾场面积,m2; 在本设计中,垃圾场面积A考虑场区截洪沟以内面积,约50000m2。本设计以两种降雨资料为基础,并考虑部分垃圾分解产生的渗滤液量,估算祺龙村垃圾场的渗滤液产量。 1、由降雨引起的渗滤液 (1)以重庆市年平均降雨量为基础,则I 为;相应渗滤液产量为: Q=1000 -1×(~)××50000=30~120m3/d (2)考虑到重庆市的降雨不均匀性,在5~8 月的(123 天)汛期中,其平均降雨量为,则I 为,渗滤液产量为: Q=1000 -1×(~)××50000=~246m3/d 2、垃圾分解产生的渗滤液

填埋气综合利用的途径

填埋气综合利用的途径 摘要:随着我国城镇化建设进程的加快和人民生活水平的提高,生活垃圾填埋场数量增加,产生的填埋气总气量也在逐年增加,而目前我国垃圾填埋场的填埋气还没有得到充分利用。讨论填埋气的典型利用途径和正在开发中的技术方法。关键词:填埋气;节能减排;利用1填埋场的填埋气排放在生活垃圾的处理方面,由于垃圾卫生填埋技术相对简单、处置量大、费用较低,已经成为了国内外大多数城市垃圾处置的主要方式。填埋场排放的气液形式的环境有害物质主要是填埋气和渗滤液。生物质或有机体在填埋场厌氧发酵条件下将产生大量的填埋气,填埋气存在安全隐患,因为填埋气主要含有甲烷(40%~60%左右)、二氧化碳(30%~50%左右)以及少量氮气和其他微量气体。CH4是一种易燃易爆的气体,当空气中浓度达到5~15%时就可能发生燃烧或爆炸。甲烷比空气轻,在垃圾填埋场中会向上移动并可能在某处积聚因而在条件成熟时形成燃烧或爆炸,国内外有过这方面的报道。另外填埋气中的甲烷所造成的温室效应是二氧化碳的21倍左右,属于强温室效应气体,对臭氧层有破坏作用。随着我国城市化进程的加快,填埋场越来越多,所产生的渗滤液和填埋气的总量也越来越大。我国每年填埋生活垃圾超过1.5亿吨,典型的生活垃圾每千克可产生0.065~0.44m3填埋气,全国每年的城市生活垃圾将产生至少100~600亿m3左右的填埋气。填埋气由于含有大量的甲烷成分,其高位热值约可达15600~19500kJ/m3,比高炉煤气的热值还高,与焦炉煤气的热值相当,具有较高的能量价值。填埋场的填埋气是一种现成的、方便的、较容易获得、可连续供应的可再生能源。如果对垃圾填埋气进行回收利用,既可减少温室气体的无序排放,消除环境污染,又可回收能量变废为宝,起到双重效果,实现生活垃圾的资源化。2填埋气的典型利用途径填埋气可以通过诸如燃烧发电、燃烧蒸发废液[1,2]和并入燃气管道等直接方式,以及液化储存、重整制取醇醚和提取作为CO2化工原料等间接方式加以利用。 2.1用于内燃机和燃气轮机发电垃圾填埋气中含有大量CO2,这使得填埋气的热值降低、火焰传播速度较慢、混合气点火温度提高。因此,填埋气在通过内燃机(一般为柴油机)燃烧释能做功发电时,一般需要采取一些技术措施,比如在柴油机的基础上增加预燃室、进气增压、用火花塞点火取代压燃点火、增加缸体体积、提高压缩比,来保证填埋气在柴油机内的稳定燃烧。内燃机发电的优点是成本低、效率较高(两缸机达33%左右)、技术较成熟,发电功率一般为160~500kW,典型应用实例有杭州天子岭、北京北神树、深圳下坪等处。填埋气用于内燃机的缺点是对内燃机有腐蚀、内燃机排出的尾气NOx含量高、对填埋气中甲烷浓度要求较高等。国外有康明斯等公司开展了以填埋气为燃料的柴油机的研究,发电效率可达35%。国内有中科院工程热物理研究所等单位掌握了燃机系统进气压缩比、歧管喷注和多腔室几何约束等关键技术[3],拥有自主知识产权的填埋气发动机设计技术,设计的单机容量达500kW,发电效率达33%以上,设备费用约为2000元/kW左右;国外同类设备费用则为国内设备费用的3倍左右。燃气轮机相比于内燃机方式的一个显著不同就是燃料的连续燃烧。连续燃烧工作方式可以提高燃烧效率,同时也降低了因不完全燃烧所产生的有害物。另外,它的NOx排放远远小于内燃机工作方式,燃气轮机无需三元催化,也可以避免象内燃机工作过程中可能出现的爆震。采用内燃机的填埋气发电要求填埋气中甲烷含量达到30~35%以上。燃气轮机工作方式在填埋气的甲烷含量低至25%时可能不能稳定工作。采用填埋气为燃料的燃气轮机一般功率为几十到几百kW。由于技术门槛较高,国内尚没有自主知识产权的以填埋气为燃料的燃气轮机设计技术。 填埋气发电一般填埋场自用或者供给附近的用户。对于并网发电,目前有2个困难:①没有具体政策,上网电价无法确定;②并网点的远近影响填埋气沼气发电的经济效益。 2.2制取二甲醚

生活垃圾填埋场渗滤液处理工程技术规范(HJ564-2010)

HJ 中华人民共和国国家环境保护标准 HJ 564-2010 生活垃圾填埋场渗滤液处理工程技术规 范(试行) Leachate Treatment Project Technical Specification of Municipal Solid Waste Landfill 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。2010—02—03发布 2010—04—01实施 环 境 保 护 部发布

前言 为贯彻《中华人民共和国固体废物污染环境防治法》和《中华人民共和国水污染防治法》,防治垃圾渗滤液对环境的污染,改善环境质量,保障人体健康,制定本标准。 本标准规定了生活垃圾填埋场渗滤液污染治理工程设计、施工、验收以及运行管理等的技术要求。 本标准为首次发布。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:中国环境保护产业协会(城市生活垃圾处理委员会)、城市建设研究院、中国环境科学研究院(固体废物污染控制技术研究所)、北京东方同华科技有限公司、维尔利环境工程(常州)有限公司、北京天地人环保科技有限公司、西门子(天津)水技术工程有限公司、北京国环莱茵环境工程技术有限公司。 本标准环境保护部2010年2月3日批准。 本标准自2010年4月1日起实施。 本标准由环境保护部解释。 I

目次 前 言 (Ⅰ) 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (2) 4 总体要求 (3) 5 水量和水质 (5) 6 工艺设计 (6) 7 检测与控制 (9) 8 施工与验收 (10) 9 运行与维护 (11) II

渗滤液的收集及处理

5、渗滤液得产生及收集处理 5、1垃圾渗滤液概况 垃圾渗滤液就是指垃圾在堆放与填埋过程中由于压实、发酵与降水渗流作用而产生得一种高浓度有机废水。渗滤液包括垃圾自身所含得水分、垃圾分解所产生得水及浸入得地下水。渗滤液量得大小主要受控于垃圾本身得含水率、,因而导致同一填埋场渗滤液随时降水与径流强度及填埋垃圾分解得阶段过程空变化,其组成、浓度等特征均有较大不同。 城市垃圾填埋场渗滤液得处理一直就是填埋场设计、运行与管理中非常棘手得问题。主要来源有: (1)降水得渗入,降水包括降雨与降雪,它就是渗滤液产生得主要来源。 (2)外部地表水得渗入,这包括地表径流与地表灌溉。 (3)地下水得渗入,这与渗滤液数量与性质与地下水同垃圾接触量、时间及流动方向等有关;当填埋场内渗滤液水位低于场外地下水水位,并没有设置防渗系统时,地下水就有可能渗入填埋场内。 (4) 垃圾本身含有得水分,这包括垃圾本身携带得水分以及从大气与雨水中得吸附量。 (5) 覆盖材料中得水分,与覆盖材料得类型、来源以及季节有关。 (6) 垃圾在降解过程中产生得水分,与垃圾组成、pH值、温度与菌种等有关,垃圾中得有机组分在填埋场内分解时会产生水分。 垃圾在填埋场产生得渗滤液与时间得关系可分为以下几个阶段:

(1)调整期:在填埋初期,垃圾体中水分逐渐积累且有氧气存在,厌氧发酵作用及微生物作用缓慢,此阶段渗滤液量较少。 (2) 过渡期:本阶段滤液中得微生物由好氧性逐渐转变为兼性或厌氧性,开始形成渗滤液,可测到挥发性有机酸得存在。 (3) 酸形成期:滤液中挥发性有机酸占大多数,pH值下降,浓度极高,/ 为0、4~0、6,可生化性好,颜色很深,属于初期得渗滤液。 (4) 甲烷形成期:此阶段有机物经甲烷菌转化为CH4与CO2,pH值上升,浓度急剧 降低,/为0、10、01,可生化性较差,属于后期渗滤液。 (5)成熟期:此时渗滤液中得可利用成分大减少,细菌得生物稳定作用趋于停止,并停止产 生气体,系统由无氧转为有氧态,自然环境得到恢复。 5、2垃圾渗滤液得主要水质特性 1、垃圾渗滤液中有机物种类多 垃圾渗滤液中有机物又可分为3 类,即低分子量得脂肪酸类、中等分子量得富里酸类物质与腐殖质类高分子量碳水化合物。渗滤液中除含有常规得污染物质外,还含有包括某些致癌、促癌与辅促致癌物质。尤其就是当生活垃圾与部分工业垃圾混合时,成份更为复杂。郑曼英等对广州大田山垃圾填埋场进行了取样分析结果表明,从垃圾渗滤液中检出得主要有机污染物77 种。其中被列入我国环境优先污染物“黑名单”得5 种。 2、与浓度高

中国填埋气估算模型用户手册

2009年5月 中国填埋气估算模型 用户手册 版本 1.1 赞助 美国华盛顿 美国环境保护局 (USEPA) 填埋场甲烷推广计划 (LMOP) 高睿智 编写 美国北卡罗来纳州 东方研究集团(Eastern Research Group, Inc.) Clint Burklin, 专业工程师 及 中国香港特别行政区 浩宏环保(香港)有限公司 包乐莱 美国环境保护局 合同号 EP-W-06-022 工作序列号 28

声明 本用户手册是受美国环境保护局(USEPA)属下之填埋场甲烷推广计划(LMOP)委托特别为中国而编写。手册中所介绍的方法以工程的专业判断作为基础,并代表一些拥有专业填埋场气体估算知识及经验的人士的标准做法。美国环境保护局及其承办商东方研究集团和浩宏环保均不担保可以获得通过模型算出的填埋气量、亦未表达或暗示任何其它保证。我们也无意将本手册及其内容或其中所含的信息作为益处提供给任何第三方。如有第三方利用本报告,必须自行承担风险。美国环境保护局及其承办商东方研究集团和浩宏环保均不会对由第三方获取、编制或提供的资料的准确性负责。 摘要 本用户手册介绍了一个计算机模型,该模型用于预测中国已有或拟建的城市生活垃圾填埋场内填埋气体产生量和回收量,版本号为1.1(中国填埋气估算模型版本1.1;以下简称“中国填埋气模型”)。此模型是由美国环境保护局填埋场甲烷推广计划承办商东方研究集团和浩宏环保共同开发的。中国填埋气模型可以用来预测填埋场填埋气的产生率,并为已安装或即将安装气体收集和控制系统的填埋场预测潜在填埋气回收率。 中国填埋气模型是以一阶衰减方程式作为基础的Excel?工作表。模型要求用户输入填埋场相关数据,包括填埋场开始营运和封场年份、垃圾年填埋量、填埋场地理位置(所处气候区域)、垃圾中大概的煤灰含量、填埋场火灾历史及其它一些决定收集效率的填埋场特征。模型会在用户提供的具体数据基础上,为输入参数选取推荐值,包括k、L0、收集效率和火灾折扣因子等,并预测填埋气产生和回收率。若用户持有可靠数据,亦可自行输入这些参数的数值。输入参数的推荐值是基于气候、垃圾特征、中国垃圾填埋方式以及这些条件对填埋气产生量的影响等而得出的。我们评估了中国四个填埋场的实际填埋气回收率,但因未能得到充分的实际回收量的数据, 难以校准模型结果,同时亦希望在收集更多的数据后推出改良版本。当填埋场相关数据不详或不充分时,我们建议了一些默认值以供使用。

生活垃圾填埋场渗滤液处理工程

附件七: 生活垃圾填埋场渗滤液处理工程 技术规范 编制说明 (征求意见稿)

目录 一编制工作概述 (1) 二法律依据、编制原则和技术依据 (2) 三调研情况 (3) 四征求意见汇总情况 (7) 五主要条文说明 (8)

一编制工作概述 1、任务来源 目前,垃圾渗滤液是垃圾填埋场伴生的二次污染物,主要来源于降水和垃圾本身的内含水。由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在一个相当大的范围内变动。 垃圾渗滤液的组分复杂,污染物浓度高、色度大、毒性强,不仅含有大量有机污染物,还含有各类重金属污染物,是一种成分复杂的高浓度有机废水。垃圾渗滤液的不当处置,不但影响地表水的质量,还会危及地下水的安全,若不加处理而直接排入环境,会造成严重的环境污染。 以保护环境为目的,对渗滤液进行处理是必不可少的,垃圾渗滤液处理的水平是衡量一个填埋场的建设水平的关键。 因此尽快制订出垃圾渗滤液处理工程技术规范是很有必要的。 2、目的和意义 我国于二十世纪八十年代中后期,开始建设卫生填埋场,已有多座卫生填埋场建成并投入使用。随着填埋场的建设,对垃圾渗滤液的处理也进行了有益的探索,从最初的单一生物处理,到目前的组合处理工艺,对垃圾渗滤液的水质、水量及处理特性有了比较全面、系统、客观的认识。但是国内一部分已经建成的填埋场渗滤液处理设施在设计理论、方法上还存在很大不足,设计人员对填埋场渗滤液的认识、设计还缺乏足够的知识和经验,也无设计标准可供参考。因此,尽快制订出垃圾渗滤液处理工程技术规范是很有必要的。 由于垃圾渗滤液的水质水量变化大、氨氮含量高、有机污染物含量高和难于生物降解的有机物含量高等问题,致使我国大部分垃圾填埋场的渗滤液处理设施出水达不到排放要求,不能称为真正意义上的卫生填埋场。垃圾渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。 由于填埋场具有投资较省,适应性强等优点,垃圾填埋处理仍是我国生活垃圾处理的一种主要方式,并且在今后相当长的时间内将占垃圾处理的主导地位。因此,为了规范渗滤液处理设施的设计、建设和运营,也应尽快制订出垃圾渗滤液处理工程技术规范。 3、主要的工作过程 本技术规范编写组在编制的过程中,主要做了以下工作:收集国内外相关的技术标准、规范等资料;在全国范围内发放问卷调查表;到具有代表性的渗滤液处理厂(站)进行调研;

垃圾填埋场渗滤液处理方案修订稿

垃圾填埋场渗滤液处理 方案 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

渗滤液的收集 在垃圾坝内侧设置两条H×W=2000×1000mm 渗滤液收集沟,总长220 米,收集沟为粘土盲沟,内填厚100cm 的卵石,卵石粒径8cm~12cm。沟上为厚50cm 的卵石导流层,卵石粒径4cm~6cm。收集沟底部为厚10 cm 的砾石, 砾石粒径4cm~6cm;沟内铺设两条平行的DN300 穿孔HDPE 收集管,穿孔管孔径15mm 孔距15cm。两条粘土沟将渗滤液收集沟与垃圾坝内预留的排水管道相连。穿过坝体的5 根DN300HDPE 管将坝内收集到的渗滤液输送至设置在坝外的两座转换井内。其中一个转换井作为渗滤液提升泵房将渗滤液通过一根DN300 的HDPE 管提升进入调节池。HDPE 管上设有闸阀一个,以调节排出的渗滤液量。 渗滤液收集沟下部基础采用大面积开挖施工,回填优质粘土并压实,使之形成不透水层基础面,基面垂直于坝体方向并向坝外形成2%的坡度。 有关内容详见“渗滤液收集系统平面布置图”。 渗滤液处理工艺 设计渗滤液量的确定 渗滤液的产量主要决定于降雨量、蒸发量、地下水浸入以及垃圾压实后产生的水分。渗滤液处理运行费用较高,确定适宜的处理规模,十分重要。在本工程设计中,采用经验公式计算,并参考重庆市及附近地区已有垃圾填埋场的实际运行经验对祺龙村垃圾处理场渗滤液产量进行预测。 经验公式法是根据多年的气象观测结果,以年平均降雨量为基础,来预测渗滤液产生量的方法。其计算公式为: Q=1000-1×C×I×A 式中: Q:渗滤液平均日产量,m3/d; C:渗透系数,一般在~之间; I:年平均日降雨量,mm; A:垃圾场面积,m2; 在本设计中,垃圾场面积A考虑场区截洪沟以内面积,约50000m2。本设计以两种降雨资料为基础,并考虑部分垃圾分解产生的渗滤液量,估算祺龙村垃圾场的渗滤液产量。 1、由降雨引起的渗滤液 (1)以重庆市年平均降雨量为基础,则I 为;相应渗滤液产量为: Q=1000 -1×(~)××50000=30~120m3/d (2)考虑到重庆市的降雨不均匀性,在5~8 月的(123 天)汛期中,其平均降雨量为,则I 为,渗滤液产量为: Q=1000 -1×(~)××50000=~246m3/d 2、垃圾分解产生的渗滤液

垃圾填埋场渗滤液处理方案

4.6 渗滤液的收集 在垃圾坝内侧设置两条H×W=2000×1000mm 渗滤液收集沟,总长220 米,收集沟为粘土盲沟,内填厚100cm 的卵石,卵石粒径8cm~12cm。沟上为厚50cm 的卵石导流层,卵石粒径4cm~6cm。收集沟底部为厚10 cm 的砾石, 砾石粒径4cm~6cm;沟内铺设两条平行的DN300 穿孔HDPE 收集管,穿孔管孔径15mm 孔距15cm。两条粘土沟将渗滤液收集沟与垃圾坝内预留的排水管道相连。穿过坝体的5 根DN300HDPE 管将坝内收集到的渗滤液输送至设置在坝外的两座转换井内。其中一个转换井作为渗滤液提升泵房将渗滤液通过一根DN300 的HDPE 管提升进入调节池。HDPE 管上设有闸阀一个,以调节排出的渗滤液量。 渗滤液收集沟下部基础采用大面积开挖施工,回填优质粘土并压实,使之形成不透水层基础面,基面垂直于坝体方向并向坝外形成2%的坡度。 有关内容详见“渗滤液收集系统平面布置图”。 4.7 渗滤液处理工艺 4.7.1 设计渗滤液量的确定 渗滤液的产量主要决定于降雨量、蒸发量、地下水浸入以及垃圾压实后产生的水分。渗滤液处理运行费用较高,确定适宜的处理规模,十分重要。在本工程设计中,采用经验公式计算,并参考重庆市及附近地区已有垃圾填埋场的实际运行经验对祺龙村垃圾处理场渗滤液产量进行预测。 经验公式法是根据多年的气象观测结果,以年平均降雨量为基础,来预测渗滤液产生量的方法。其计算公式为: Q=1000-1×C×I×A 式中: Q:渗滤液平均日产量,m3/d; C:渗透系数,一般在0.2~0.8 之间; I:年平均日降雨量,mm; A:垃圾场面积,m2; 在本设计中,垃圾场面积A考虑场区截洪沟以内面积,约50000m2。本设计以两种降雨资料为基础,并考虑部分垃圾分解产生的渗滤液量,估算祺龙村垃圾场的渗滤液产量。 1、由降雨引起的渗滤液 (1)以重庆市年平均降雨量1094.6mm 为基础,则I 为3.00mm;相应渗滤液产量为:Q=1000 -1×(0.2~0.8)×3.0×50000=30~120m3/d (2)考虑到重庆市的降雨不均匀性,在5~8 月的(123 天)汛期中,其平均降雨量为756.6mm,则I 为6.15,渗滤液产量为: Q=1000 -1×(0.2~0.8)×6.15×50000=61.5~246m3/d 2、垃圾分解产生的渗滤液 垃圾分解产生渗滤液水是一个较为复杂而缓慢的过程,其分解速率与垃圾含水率、垃圾成分及温度、温度等气候条件有关,分解水量较为难以确定。根据重庆环境卫生科研所对重庆地区城市生活垃圾进行的垃圾分解试验结果:在垃圾含水率平均为50%左右(最高含水率),

垃圾填埋系统方案

第二章施工方法及主要技术措施 第一节填埋系统方案 一、填埋工艺 1.埋填方法:采用“单元式”填埋。 2.作业区划分方式:按分区单元式填埋,从垃圾坝处逐级向上填埋,采用分层压实方法进行操作,即平铺垃圾厚0.4m,经压实后再平铺垃圾,由此重复进行,到达每日埋填高度,用杂填土进行每日覆盖。埋填高度达5m时,需进行中间覆土,覆土采用杂填土,压实厚度为0.3m,并具有一定坡度,以利雨水排出。 3.覆盖材料 当垃圾填埋至设计堆置高度时需进行终期覆盖,其目的在于土地综合利用和减少雨水的渗入。终期覆土分三部分组成,下层覆土为粘土(K<10-7cm/s=压实厚度0.3m;中间覆盖自然土(贫脊土)压实厚度0.5m;最上层为营养土,压实厚度为0.2m。终期覆土完成后以草皮绿化为宜,封场顶面坡度2%,以利于降雨的自然排除。 二、防渗工程 填埋场库区内的垃圾渗滤液,是一种高浓度的有机污水,不采取措施一旦渗漏,势必带来严重的后果。防渗工程的目的,就是采用天然的或人工的防渗层,切断库区内渗滤液向库外渗漏的通道,彻底杜绝渗滤液的外渗,以确保垃圾埋填场安全可靠运行,不致造成二次污染。 1.防渗标准:根据现行国家标准《生活垃圾填埋污染控制标准》(GB16889—1997)中的规定,防渗层的渗透系数K≤10-7cm/s。 2.防渗工艺:选择水平防渗、垂直防渗或两者相结合的防渗工艺。所谓水平防渗是指采用符合防渗标准的天然粘土层或人工衬垫材料,将库底包裹起来形成防渗层,以防止渗滤液外渗,同时防止地下水渗入垃圾填埋体,减少渗滤液的产生量。所谓垂直防渗,系指通过垂直库底方向,沿库底周边敷设于岩土中的防渗幕墙,且使幕墙与库底以下的天然隔水层相连,使得库底以下形成一个相对封闭的水系,从而阻止渗滤液外渗。垂直防渗幕墙可以通过帷幕灌浆工艺来实现,由于其将造成清污合流,增加渗滤液处理站的负荷,而且其防渗可靠性值得怀疑,宜慎重采用。 3.防渗方案比较:根据埋填场址的水文地质条件,铺设HDPE防渗层是比较可靠的选择。它具有以下显著特点:①防渗效果可靠,其渗透系数小于10-13cm/s,较膨润土板防渗性能高四个数量级;②施工铺设较膨润土板容易实施,比较适合本场址的地形;③其拉伸强度、断裂伸长率、抗截穿力等性能均优于膨润土板;④接缝采用热焊机双缝连接,接缝强度高,不产生渗漏;⑤保存和运输无特殊要求。 4.防渗施工 1)场底防渗:拟选用2.0mmHDPE膜,上下均铺设600g/m2土工布一层。铺设HDPE膜前,埋填库区场底应去除有可能损伤HDPE膜的杂物,如树根、碎玻璃、石子等。若铺设于回填土时,要求回填土密实度≥95%,HDPE膜的焊缝搭接宽度≥100mm。 2)边坡防渗:鉴于本场区有局部较徒边坡,支持层和保护层难以铺设,因此边坡防渗处理有别于场底平地防渗。边坡防渗一般有两种方式。其一是先喷浆护坡作为防渗膜的支持层,

垃圾填埋气发电简介

前言垃圾填埋气发电简介 在我国,目前70%以上的城市生活垃圾,都是集中收集后,运送到一个或多个当地城市政府所有的垃圾填埋处理厂填埋处理。目前垃圾填埋大多属于露天填埋,在垃圾填埋的过程中,因为填埋场垃圾堆放体内部缺少氧气,垃圾中的有机物会发酵产生出大量的沼气(填埋气),平均每吨垃圾在填埋场寿命期内可产生约100—200立方米的填埋气体,其主要成分是甲烷、二氧化碳、硫化氢、氮等气体。 垃圾沼气成分和天然气类似,相比天然气,垃圾沼气具有高热值,抗爆性能较好等特点,是一种很好的清洁燃料。目前全球的温室效应中,填埋气中的甲烷、二氧化碳等气体是造成全球气候变暖的气体之一,如果这些沼气直接排放到大气中,不仅会对环境造成污染,当夏天温度升高时极易爆炸,同时更是一种能源浪费。垃圾填埋气发电采用了完整地垃圾沼气收集和利用理念,通过先进的垃圾沼气收集系统,输送系统,沼气净化系统和沼气发电系统,将垃圾沼气完全利用,产生电力,并入城市大电网之中,向电力用户提供清洁能源。因此,现阶段垃圾填埋气发电是一种既能有效利用废气资源发电,又能减少空气污染的无害化处理方式,是符合国家“节能减排”提倡的大方向目标的项目,是典型的“低碳经济”。 现今沼气发电理论和设备在全球发展是成熟的,已经有数十年的发展和应用的历史。在我国,垃圾填埋气发电项目已经在杭州、北京、上海、天津、深圳等城市试点商业化运行。这些项目不仅能通过利用废气发电获得发电收益,同时垃圾填理场填埋气发电是减排填埋场温室气体排放的有效措施,已纳入了联合国清洁发展机制(CDM)项目资助范围,项目可以根据《京都议定书》、《清洁发展机制项目运行管理办法》向联合国申报CDM(清洁发展机制)项目,通过世界上的“碳交易市场”从欧盟、美国、日本等发达国家获得二氧化碳减排额外收益。由此看出,投资填埋气发电项目具有较好的环境效益和经济效益。 我国目前拥有大量垃圾填埋场,但垃圾填埋气发电应用范围还不广,利用率仍比较低。作为能源消费大国,我国利用垃圾制造沼气发电的市场前景是十分广阔的。

相关主题
文本预览
相关文档 最新文档