当前位置:文档之家› 现代分子生物学考试复习资料

现代分子生物学考试复习资料

现代分子生物学考试复习资料
现代分子生物学考试复习资料

一、绪论

1分子生物学:在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。

2、1953年Watson 和Crick提出DNA双螺旋模型

3、分子生物学研究内容:DNA重组技术(基因工程)、基因表达的调控、生物大分子的结构和功能研究、基因组、功能基因组与生物信息学研究

二、染色体与DNA

核小体:由H2A、H2B、H3和H4四种组蛋白各两个分子组成八聚体和大约200 bp的DNA区段组成。

组蛋白:分为5种类型(H1,H2A,H2B,H3,H4),

其特性如下:

-

1、进化上的极端保守性;

2、无组织特异性;

3、肽链上氨基酸分布的不对称性;

4、组蛋白的修饰作用包括甲基化、乙基化和磷酸化;

5、富含赖氨酸的组蛋白H5

C值(C value)一种生物单倍体基因组所含DNA的总量。

C值反常现象也称为C值谬误。指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系,某些较低等的生物C值却很大,如一些两栖动物的C 值甚至比哺乳动物还大。

基因:编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列

真核生物基因组的结构特点:

1 真核基因组庞大一般都远大于原核生物基因组,

2真核基因有断裂基因,即有内含子,

3转录产物是单顺反子,

4非编码区域多于编码区域.,占90%以上

5有大量顺式作用元件。包括启动子、增强子、沉默子等

6有大量重复序列

7有大量的DNA多态性

.

8具有端粒结构

原核生物基因组的特点:

1基因组很小DNA含量少,

2有重叠基因,转录产物是多顺反子,

3结构简练,大部分都是编码区域,

4DNA一般不与蛋白质结合

5存在转录单元,转录形成多顺反子mRNA

单顺反子:只编码一个蛋白质的mRNA;

{

多顺反子mRNA:两个以上相关基因串在一起转录所得到的信使核糖核酸(mRNA),由DNA链上的邻位顺反子所界定;

顺式作用元件:存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,其本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用;

反式作用因子:是指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质;

端粒:是线状染色体末端的一种特殊结构,一特定的DNA-蛋白质复合体结构(由DNA简单重复序列组成富含GT)

DNA的复制:每个子代DNA分子的一条链来自亲代DNA ,另一条链是新合成的,这种方式称半保留复制,无论原核还是真核生物,DNA的复制主要从固定的起始点一双相等速方式进行复制。

真核生物DNA的复制特点:

1.真核生物有多个复制起始位点,而原核只有一个起始位点。

2.真核生物复制一旦启动,在完成本次复制前,不能在再启动新的复制

(

3.真核生物具有多种聚合酶。

4真核生物DNA复制起始需要起始点识别复合物参与. 。

5.真核生物DNA复制叉的移动速度约50bp/s,还不到大肠杆菌的1/20。

原核生物DNA的复制特点:

1 DNA复制的起始:DNA双螺旋的解旋,需DNA解旋酶、单链结合蛋白(SSB)及拓扑异构酶

2 DNA复制的引发,无论前导链还是后随莲链开始DNA合成时,都需要RNA引物复制

3.冈崎片段与半不连续复制,前导链DNA的合成以5'-3'方向,随着亲本双链的解开而连续进行复制,后随链在合成过程中,一般亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向,按照5'-3'方向合成一系列的冈崎片段,然后再把它们连接成完整的冈崎片段,是在DNA半不连续复制中产生的长度为1000-2000bp的DNA片段,即连接成完整的后随链

4.复制的终止:有终止子终止

聚合酶Ⅲ是主导的聚合酶,RNA聚合酶h对引物水解,DNA连接酶对冈崎片段连接。

"

1、 DNA的修复:错配修复切除修复、重组修复、DNA直接修复及SOS反应

10、DNA的转座:由可移位因子介导的遗传物质重排现象。

转座子:是存在于染色体DNA上可自主复制和移位的基本单位。

转座子分类:插入序列(IS)、复合型转座子、TnA家族;

插入序列(IS):最简单的转座子不含有任何宿主基因,是很小的DNA片段(约1kb),末端具倒置重复序列,转座时往往宿主靶位点,一小段DNA形成IS序列两端的正向重复区。

复合型转座子:是一类带有某些抗药性基因的转座子,其两翼往往是两个相同或高度同源的IS序列,一旦形成复合转座子,IS序列就不能再单独移动,因为它们的功能被修饰了,只能作为复合体移动。

TnA家族:是一类没有IS序列的体积庞大的转座子。

11、转座可分为复制型和非复制性

[

12、转座作用的遗传学效应:

①转座引起插入突变;

②转座产生新的基因

③转座产生的染色体畸变;

④转座引起的生物进化.

三、生物信息的传递-从DNA到RNA

1、转录:指拷贝出一条与DNA链序列完全相同(除T-U外)的RNA单链的过程,是基因表达的核心步骤。

2、翻译:以新和成的mRNA为模板,把核苷酸三联遗传密码子翻译成氨基酸序列,合成多肽链的过程,是基因表达的最终目的。

$

3、编码连(有义链)双链DNA中与mRNA序列相同,编码蛋白质的那条DNA链,并把另一条根据碱基互补原则指导mRNA合成的DNA链成为模板链或反义链。

4、转录的基本过程包括模板的识别、转录起始、通过启动子及转录的延伸和终止。

模板的识别:主要指RNA聚合酶与启动子DNA双链相互作用并与之相结合的过程(真核生物RNA聚合酶不能直接识别基因的启动区,需与转录调控因子结合形成转录起始前复合物);转录起始:RNA聚合酶结合在启动子上以后,RNA链上第一个核苷酸链的产生;

转录延伸:RNA聚合酶释放σ因子离开启动子后,核心酶沿模板DNA链移动并使新生RNA链不断延长的过程;

转录终止:当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA 杂合物分离,转录泡瓦解,DNA恢复成双链状态,而RNA聚合酶和RNA链都被从模板上释放出来。

5、RNA聚合酶:原核生物的RNA聚合酶全酶α2ββ’ωσ、核心酶α2ββ’ω转录起始过程需要全酶,由σ辨认起始点,延长过程仅需核心酶催化。真核生物有3类RNA聚合酶。RNA聚合酶I的转录产物是45Rrna,经剪接加工后生成mRNA。RNA聚合酶II在核内转录生成hnRNA,经剪接加工生成mRNA。RNA聚合酶III的转录产物是tRNA、5srRNA等真核RNA聚合酶一般由8-16个亚基组成(三类DNA聚合酶的敏感性不同酶,酶II最敏感,最不敏感酶I,酶III具有种属特异性)

6、启动子:一段位于结构基因5‘端上游的约100-200bp的具有独立功能的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性。

7、转录单元:是一段从启动子开始至终止子结束的DNA序列。RNA聚合酶从转录起始位点开始沿着模板前进,指导终止子为止,转录出一条RNA链。

~

8、原核生物启动子具有-10位的TATA区和-35位的TGACA区是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力,在原核生物中-35位和-10位间的距离约16-19bp,小于15bp或大于20bp都会降低启动子的活性。

9、增强子:明显地提高基因转录的效率。

特点:1)能远距离增强启动子的活性,一般位于上游-200bp

(2)无方向性;在启动子的上游和下游均起作用

(3)顺式调节只调节位于同一条染色体上的靶基因

(4)无物种和基因特异性

(5)具有组织特异性

(6)有位相性

(7)有的增强子可以对外部信号产生反应

10、真核基因的启动子在-25~-35区含有TATA序列,在-70~-80区含有CCAAT序列(CAAT

box),在-80~-110含有GC区,TATA区上游的保守序列称为上游启动子元件(UPE)

11、基因转录实际上是RNA聚合酶、转录调控因子和启动子区各种调控元件相互作用的结果。

12 RNA转录的抑制剂(1)DNA模板功能抑制剂,通过与DNA结合而改变模板的功能。放线菌素D(2)RNA聚合酶的抑制剂,与RNA聚合酶结合而抑制其活力。利福霉素、利迪链霉素和a-鹅膏蕈碱。

14、原核生物mRNA的特征:

①半衰期短

②以多顺反子的形式存在

③5’端无帽子结构或只有短的PolyA尾巴。

#

15真核生物mRNA的特征:

①单顺反子形式存在

②5‘端的帽子及3'的40-200个左右的poly(A)结构。

16、SD序列:存在于原核生物起始密码子AUG上游7-12个核苷酸处,有一段可与核糖体16S rRNA配对结合的、富含嘌呤的4-7个核苷酸的共同序列,一般为AGGA,此序列称SD序列. 17ρ因子:一种NTP酶,它通过催化NTP的水解促使新生RNA链从三元转录复合物中解离出来,从而终止转录。通常原核生物的终止子在终止点之前均有一个富含GC碱基的二重对称区,其产生RNA可形成发家式结构。

18、GU-AG法则(Chambon法则):多数细胞核mRNA前体中内含子的边界序列位GU,3'边界为AG,把这种保守序列称为GU-AG法则

19mRNA的剪接:从hnRNA分子去除非编码序列,形成成熟mRNA的过程。

RNA的编辑:指转录后的RNA编码区发生剪辑的加入,删除或丢失导致DNA所变美女吗的遗传信息的改变。

RNA的再编辑:RNA编码和读码方式的改变称为RNA的再编码。

内含子的变位剪接:在真核生物个体发育或细胞分化时可以有选择地越过某些外显子或某个剪接点进行变位剪接,产生出组织或发育阶段特异性mRNA.

五、基因的表达与调控(上) -原核基因表达调控模式

1、基因表达调控在两个水平上体现(1)转录水平上的调控(2)转录后水平上的调控包括①mRNA加工成熟水平上的调控②翻译水平上的调控。原核生物的基因调控主要发生在转录水平上。

2、调控模式(1)负转录调控系统分为负控诱导和负控阻遏二大类。负控诱导系统-阻遏蛋白不与诱导物结合时,阻遏蛋白与操纵区相结合,结构基因不转录,阻遏蛋白结合上诱导物时,阻遏蛋白与操纵区分离,结构基因转录;负控阻遏系统-阻遏蛋白与效应物结合时,结构基因不转录。(2)正转录调控系统为正控诱导系统和正控阻遏系统。在正控诱导系统中,诱导物的存在使激活蛋白处于活性状态,转录进行;在正控阻遏系统中,效应物分子的存在使激活蛋白处于非活性状态,转录不进行。

3、弱化子:

操纵子:指原核生物中有一个或多个相关基因以及转录翻译调控与案件组成的基因表达单元,包括启动子(p)、操纵基因(o)和在功能上相关的几个结构基因。

{

5、色氨酸操纵子与负控阻遏系统

trp操纵子中产生阻遏物的基因是trpR,trp位于大肠杆菌染色体图上25分钟处,trpR

位于90分钟处。trpR基因产物被称为辅阻遏蛋白,其与色氨酸相结合形成有活性的阻遏物,与操纵区结合并关闭trp mRNA转录。这个系统中的效应分子是色氨酸及其衍生物。

当培养基中色氨酸含量较高时,它与游离的辅阻遏蛋白相结合,并使之与操纵区DNA 紧密结合;

当培养基中色氨酸供应不足时,辅阻遏物失去色氨酸并从操纵区上解离,trp操纵子去阻遏。

弱化系统

色氨酸操纵子通过弱化作用实现惊喜的转录表达调控,在trp mRNA 5' 端trpE基因的起始密码前有一个长162bp的mRNA片段被称为前导区,其中有四个间隔区彼此配对能形成不同的茎-环结构,其中3-4配对区正好位于终止密码子的识别区,前导区编码的多肽被称为前导肽。其中第10和第11位上有相邻的两个色氨酸密码子.

当培养基中色氨酸浓度低,核糖体很难通过两个相邻的色氨酸密码子,当4区被转录完成时,核糖体才进行到1区,这时前导区2-3配对,不形成3-4配对的终止结构。

当培养基中色氨酸浓度高,核糖体顺利通过两个相邻的色氨酸密码子,在4区被转录之前就到达2区,这样3-4区自由配对形成茎-环状终止子结构,转录停止。

;

6、半乳糖(gal)操纵子

半乳糖操纵子有3个结构基因:galE、galT、galK,半乳糖操纵子的调节基因是galR,诱导物是半乳糖。

gal操纵子有两个特点:①它有两个启动子,其mRNA可从两个不同的起始点开始转录;②它有两个O区,一个在P区上游-67~-73,另一个在结构基因galE内部。

从S1起始的转录只有在无葡萄糖时才能顺利进行,RNA聚合酶与S1的结合需要半乳糖、CRP 和较高浓度的cAMP。当腺苷环化酶突变(cya-)或cAMP受体蛋白突变(crp-)时,gal操纵子不能从S1起始转录。当有cAMP-CRP时,转录从S1开始;当无cAMP-CRP时,转录从S2开始。

为什么gal操纵子需要双启动子因为半乳糖不仅可以作为唯一碳源供细胞生长,而且与之相关的物质—尿苷二磷酸半乳糖(UDPgal)是大肠杆菌细胞壁合成的前体,细胞必须随时合成差向异构酶,以保证尿苷二磷酸的供应。在没有外源半乳糖的情况下,细胞通过半乳糖差向异构酶(galE基因产物)的作用由UDP-葡萄糖合成UDPgal。

如果只有S1一个启动子,由于这个启动子的活性依赖于cAMP-CRP,当培养基中有葡萄糖存在时就不能合成异构酶。如果S2是唯一的启动子,那么,即使有葡萄糖存在,半乳糖也将使操纵子处于充分诱导状态,能量被浪费。

7、阿拉伯糖操纵子

阿拉伯糖操纵子有三个结构基因:araB、araA和araD ,代谢时以araA、B、D的次序进行。与araBAD相邻的是一个复合的启动子区域,两个操纵区和一个调节基因araC,AraC蛋白同时显示正负调节因子的功能。araBAD和araC基因的转录是分别在两条链上以相反的方向进行的。

阿拉伯糖本身就是诱导物。

正调控a没有AraC蛋白时,由Pc启动子起始araC基因转录;

负调控b.葡萄糖水平较高时,AraC蛋白与操纵区O2以及ara I上半区相结合,形成DNA回转结构,araBAD基因不表达;

c.有阿拉伯糖但无葡萄糖存在时,AraC与阿拉伯糖相结合,变构成为激活蛋白,与araO1和araI区相结合,在CRP-cAMP的共同作用下起始结构基因表达。

8、阻遏蛋白LexA的降解与细菌中的SOS应答

SOS体系的诱导表达过程是把LexA阻遏蛋白从这些参与SOSDNA修复系统的许多基因的上游调控区移开的过程。通过Rec蛋白对Lex的水解实现的。

9、二组分系统:(最简单的细胞信号系统)由二种不同的蛋白质组成:即位于细胞质膜上的传感蛋白及位于细胞质中的应答调节蛋白。

10、反义RNA:能与mRNA中特定序列配对并改变配对mRNA构象,导致翻译开启或关闭,也可能导致目标mRNA快速降解的一些非编码小RNA分子。

|

11、魔斑核苷酸:缺乏氨基酸时rel+菌株合成的PPGPP和PPPGPP,其主要作用是影响RNA 聚合酶与启动子结合的专一性

(1)严紧控制:当细菌处于饥饿条件下,缺乏维持蛋白质合成的氨基酸,其大部分活性区域将被关闭,此称之为严禁控制(PPGpp、pppGpp积累)。

(2)、松弛控制(基因型rel-)当氨基酸缺乏时,蛋白质合成下降,由于不合成魔斑核苷酸RNA的合成速度没有下降

12、原核基因调控特点:(1)主要在转录水平调控。(2)δ因子决定RNA聚合酶识别特异性。(3)主要通过操纵子模式进行调节。(4)阻遏蛋白对转录转录的抑制作用是普遍存在的负调控作。

八、基因的表达与调控(下)—真核基因表达调控的一般规律

1、基因家族:真核生物的基因组中有很多来源相同、结构相似、功能相关的基因;

复杂多基因家族:一般由几个相关基因构成,基因之间由间隔序列隔开,并作为独立的转录单位;

2、GT-AG法则:几乎每个内含子5’端起始的两个碱基都是GT,而3’最后两个碱基总是AG。即RNA剪接的信号序列5‘GT——AG 3’。

-

3、组成型剪接:一个基因的转录产物通过剪接只能产生一种成熟的mRNA。如:肌红蛋白重链基因。

选择性剪接:同一基因的转录产物由于不同的剪接方式形成不同mRNA。如:小鼠淀粉酶基因。

4、DNA水平上的调控:是真核生物基因表达调控的一种方式,它包括基因丢失、扩增、重排和易位等,通过这些方法可以消除或变换某些基因并改变他们的活性。

5、DNA的甲基化对基因表达的调控机制:

DNA甲基化主要形成5-甲基胞嘧啶和少量的7-甲基鸟嘌呤及N6-甲基腺嘌呤,导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,即抑制了转录因子与启动区DNA 的结合效率。甲基化达到一定程度时会发生从常规的B-DNA向Z-DNA过度。由于Z-DNA机构收缩,螺旋加深,使许多蛋白质因子结合的元件缩入大沟而不利于基因转录的起始。甲基化的引入不利于模板与RNA聚合酶的结合,降低了其体外转录活性,甲基化CpG的密度和启动子强度之间的平衡决定了该启动子是否具有转录活性。

6、反式作用因子中的DNA结合位点或结合域:

①螺旋-转折-螺旋(H-T-H):蛋白质分子中至少有两个a螺旋,中间由短侧链氨基酸残基形成“转折”,与DNA相互作用时,同源域蛋白的第一二两个螺旋往往靠在外侧,其第三个螺旋则与DNA大沟结合,并通过其N端的余臂与DNA的小沟结合。

②锌指结构:是一种常出现在DNA结合蛋白中的结构基元。是由一个含有大约30个氨基酸的环和一个与环上的4个Cys或2个Cys和2个His配位的Zn构成,形成的结构像手指状。

③碱性-亮氨酸拉链(bIIP结构):两个蛋白质a螺旋上的亮氨酸之间相互作用形成二聚体,形成“拉链”,通过肽链氨基端有一个含20~30个碱性氨基酸结构域与DNA结合。若不行成二聚体,该碱性区对DNA的亲和力明显降低。

④碱性-螺旋-环-螺旋(bHLH结构):羟基端100-200个氨基酸残基可形成两个双性a螺旋,北非螺旋的环状结构隔开,通过蛋白质的氨基端与DNA结合,bHLH类蛋白只有形成同源或异源二聚体时,才具有足够的DNA结合能力。当这类异源二聚体中的一方不含碱性区时,该二聚体明显缺乏对靶DNA的亲和力。

⑤同源域蛋白:同源域是指编码60个保守氨基酸序列的DNA片断,广泛存在于真核生物基因组内。同源转换区蛋白具有调节功能,与这些蛋白C端类似于原核基因阻遏物螺旋-转角-螺旋结构有关。

7、反式作用因子的唯一结构基础:是否具有转录活化域。反式作用因子转录活化域有多种,通常依赖于DNA结合结构域以外的30-100个氨基酸残基。不同的转录活化域大体上有下列三个特征性结构:(1)带负电荷的螺旋结构(2)富含谷氨酰胺的结构(3)富含脯氨酸的结构。

8、(1)受cAMP水平调节的A激酶

A激酶(PKA):依赖于cAMP的蛋白激酶。许多转录因子都可以通过cAMP介导的蛋白质磷酸化过程而被激活,因为这类基因的5’端启动区大都拥有一个或多个cAMP应答元件。膜上的受体R与外源配基结合,引起受体构象变化,并与GTP结合蛋白结合,R与G耦合激活了与膜相关的腺苷酸环化酶,导致胞内cAMP浓度上升,活化A激酶,释放催化亚基并进入核内,实现底物水平磷酸化。

(2)C激酶与PIP2、IP3和DAG:磷酸肌醇级联放大的细胞内信使是磷脂酰肌醇-4,5-二磷酸(PIP2)的两个酶解产物:肌醇-1,4,56-三磷酸(IP3)和二酰基甘油。IP3和DAG是该途径的主要活性分子,G蛋白通过活化的受体调控磷酸肌醇酶系统的活性。C激酶活性依赖于Ca2+。

(3)酪氨酸激酶(PTK)途径:包含跨膜受体家族与胞质非受体家族两大类。跨膜酪氨酸激酶由胞外结合配体结构域、跨膜结构域、和细胞质激酶结构域组成,非受体酪氨酸激酶除有一段与前者同源的激酶结构域外,还有SH2\SH3结构域。SH2可与带有磷酸络氨酸的蛋白质结合,SH3参与受体分子的膜定位。

(4)蛋白质磷酸化参与细胞分裂的调控:当细胞中P21蛋白过量存在时,大量细胞周期蛋白E-CDK2复合物与P21蛋白结合,使CDK2丧失磷酸化pRb蛋白的功能,未被磷酸化的pRb蛋白与转录因子E2F结合,使E2F无法激活一系列与DNA合成有关酶的表达,使细胞分裂受阻。当P53、P21含量下降时,细胞周期蛋白E-CDK2复合物就能有效地将PRb蛋白磷酸化,此时PRb蛋白无法与E2F相结合,后者发挥转录因子作用,激活各个与DNA合成有关基因表达,引起细胞分裂。

9、应答元件:能与某个(类)专一蛋白质因子结合,从而控制基因特异性表达的DNA上游序列。如HSE、GRE。

10、激素调节转录组织特异性的根本原因:靶细胞含有大量激素受体蛋白,而非靶细胞中没有或很少有这类受体。

11、固醇类激素受体蛋白分子都有相同的结构框架:

保守性高位于分子中央的DNA结合区,位于C端的激素结合区和N端功能区。通常情况下,手提袋那百种激素结合结构域妨碍了DNA结合域及转录调控趋发挥生理功能,只有与相应激素结合后才能打破这种障碍。

13、分子伴侣:细胞中一类能够识别并结合到不完全折叠或装配的蛋白质分子上以帮助这些多肽正确折叠、转运、或防止他们聚集的蛋白质,其本身不参与终产物的形成。

14、hsp(热休克蛋白):基因中内含子数量很少,尚未发现hsp70基因中有内含子,hsp的这一基本特征保证他们一旦转录,不需要剪接就可以产生成熟的mRNA以适应hsp大量快速表达的需要。

15、HSF (热激因子):以单体形式存在,没有DNA结合能力,并与HSP70结合,当受到热激或其他环境胁迫时,细胞内变性蛋白增多,并与HSP70结合,使HSE被释放,形成三体进入核内与HSE特异性结合,促进基因转录,引起包括HSP70在内的许多热休克应答基因表达,产生大量HSP70蛋白,热激温度消失后,大量游离的HSP70蛋白与HSF结合,形成单体脱离DNA. HSF具有多个可形成拉链的疏水DNA区域,其中3个位于N端,靠近DNA结合,参与促进HSF三体的形成,第4个位于C端,是维持HSF单体构象所必需的

十、基因组与比较基因组学

1、基因组:是指生物有机体的单倍体细胞中所有DNA,包括细胞核内的DNA和各种细胞器DNA。

2、基因组文库:将某种生物体全部基因组DNA,用限制性酶切割,产生一定长度的DNA片段,与载体重组,进入宿主细胞进行克隆,这些存在于所有重组体内的基因组DNA片段的集合。

3、DNA测序的基本原理:

Sanger的双脱氧链终止法:

在DNA测序中,加入模板DNA特异性引物,DNA聚合酶,四种dNTP以及四种ddNTP,由于ddNTP没有3’—OH基因,核苷酸无法继续延长,因此会产生出不同长度的DNA片段混合物,他们具有相同的5’端,并在3’端的ddNTP处终止,通过凝胶电泳分离,放射自显影,就可以直接读出DNA的核苷酸顺序。

4、人类基因组计划( HGP):是由美国科学家于1985年率先提出,由六个国家(美国、英国、德国、日本、法国、中国)的科学家共同参加的旨在阐明人类基因组30亿个缄基对的序列,发现所有人类基因,破译人类全部遗传信息,使人类在分子水平上真正全面认识自我的科学计划。HGP的主要任务:物理图、转录图、遗传图、序列图。

5、遗传图(连锁图):指基因或DNA标记在染色体上的相对位置与遗传距离。cM(基因或DAN片段在染色体交换过程中分离的频率);

6、物理图:以已知核苷酸序列的DNA片段(序列标签位点STS)为“路标”,以碱基对作为基本测量单位(图距)的基因组图;

7、转录图:以EST(表达序列标签)为标记,根据转录顺序的位置和距离绘制的图谱

序列图(分子水平的物理图):指整个人类基因组的核苷酸序列图,也是最详尽的物理图。

6、比较基因组学:是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。

7、分子标记:是以个体间遗传物质核苷酸序列变异为基础的标记。

第一代DNA遗传标记是RFLP(限制性片段长度多态性);

第二代DNA遗传标记是短的串联重复序列包括小卫星DNA和微卫星DNA,其多态性主要来自重复序列拷贝数的变化;

第三代多态性标记是单核苷酸的多态性(SNP)。

8、 PCR的主要步骤及引物设计的基本要求

①PCR的主要步骤:PCR又称聚合酶链式反应,是在体外进行的DNA复制反应过程。其基本过程包括:

A、双链DNA模板加热变性成单链(变性),温度95度左右。

B、在低温下引物与单链DNA互补配对(退火),85-90度。

C、延伸:在四种DNTP底物及Mg2+存在条件下,TaqDNA聚合酶在最适作用温度(70~75℃)下,根据碱基互补配对原则,从特异结合到DNA模板上的引物3′-OH端开始掺入单核苷酸,合成新的DNA分子。

②引物设计的基本要求:

A、引物长度一般为15~30个核苷酸。

B、引物中的碱基组成尽可能随机分布,避免出现嘌呤、嘧啶碱基堆积现象,尤其在3′端避免连续3个G或C。

C、引物自身不应存在互补序列以避免折叠成发夹结构,引物自身存在的连续互补序列,一般不超过3bp。

D、两个引物之间不应存在互补序列,尤其应避免3′端的互补重叠。

E、引物与非特异扩增区的序列的同源性不要超过70%,引物3′末端连续8个碱基在待扩增区以外不能有完全互补序列。

F、引物与模板结合时,引物的5′端可以修饰。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

现代分子生物学试题

现代分子生物学试题 邯郸学院12生技 Chapter 3 生物信息的传递——从DNA到RNA 一、名词解释: 1、Transcription 2、Coding strand (Sense strand) 3、Intron 4、RNA editing 5、Messenger RNA (mRNA) 二、判断正误: 1、基因表达包括转录和翻译两个阶段 2、mRNA是以有义链为模板进行转录的 3、转录起始就是RNA链上第一个核苷酸键的产生 4、σ因子的作用是负责模板链的选择和转录的起始 5、聚合酶可以横跨40个碱基对,所以解旋的DNA区域也是40个碱基对 6、流产式起始是合成并释放2~9个核苷酸的短RNA转录物 7、启动子是有义链上结构基因5’端上游区的DNA序列 8、大肠杆菌基因中存在-10bp处的TTCACA区 9、-35区是指5’到3’方向-35区最后一个碱基离+1碱基为35个bp 10、真核基因几乎都是单顺反子 三、单选: 1、_______号帽子存在于所有帽子结构中 A、0号 B、1号 C、2号 D、以上全不是 2、在对启动子识别中起关键作用的是_______ A、α亚基 B、β亚基 C、σ因子 D、β’亚基 3、RNA聚合酶中提供催化部位的是_______ A、α+α B、α+β C、α+β’ D、β+β’ 4、_______是细胞内更新率极高不稳定的RNA A、mRNA B、rRNA C、tRNA D、snRNA 5、mRNA由细胞核进入细胞质所必需的形式是_______ A、5’端帽子 B、多聚腺苷酸尾 C、ρ因子 D、以上都不是 6、真核生物RNA聚合酶II所形成的转录起始复合物不包括_______ A、TBP B、TFIIA C、TFIIC D、TFIID 7、真核生物转录的所在空间是_______ A、细胞质 B、细胞核 C、核孔 D、线粒体 8、ρ因子本质上是一种_______ A、核苷酸 B、蛋白质 C、多糖类 D、碱基

综述:进化论与进化生物学的发展

综述:进化论与进化生物学的发展自达尔文1859年发表《物种起源》(The Origin of Species)一书以来,“进化”(evolution)已逐渐成为生物学文献中出现频率最高的词汇之一,进化生物学(evolutionary biology)则成为当今生命科学中一个重要的前沿领域。 纵观150年来,随着科学界对生物进化现象的认识不断深化,人们对达尔文进化论的理解也随之不断深入,进化论自身也走过了曲折的发展之路。除了像其他任何一种科学理论一样需要补充和修正外,进化论还经受了来自科学领域之外的一次又一次挑战。今天,分子水平的生物进化研究正在蓬勃兴起,人们对进化论的兴趣有增无减,同时也提出了更高的要求,即以进化论为核心的进化生物学研究不仅应能够解释各种复杂生命现象,重建生物的自然历史,而且还应具有一定的预测性和应用潜力。因而,藉纪念达尔文(C. Darwin)诞辰200周年和《物种起源》出版150周年之际,回顾进化论与进化生物学的发展历程,将有助于我们全面了解该领域的科学理论与知识,并用于指导21世纪生命科学的研究。 进化论的科学本质 进化论从本质上改变了人们对地球生命现象的理解。进化论围绕生物多样性的起源与发展,引导人们探索各种生物之间的亲缘关系(或称进化谱系)。例如,作为地球生物的一员,人类究竟何时又是如何在地球上出现的?不同人种或不同人群之间关系如何?人类与其他生物(如细菌)有何种进化上的关联?如此等等,进化论为我们提供了科学的解释。 在进化论中,具有有益性状的生物存在差异的繁殖优势被称为自然选择(natural selection),因为是自然来“选择”提高生物生存与繁殖能力的性状。如果生物的突变性状降低其生存与繁殖能力的话,自然选择就会减少这些性状在生物群体中的扩散。人工选择也是一个类似的过程,但在这种情况下是人而不是自然环境使生物交配以选择理想的性状。最常见的莫过于通过人工选择来获得人们所需的家畜品系和园艺植物品种等。 迄今为止,支持进化论的证据层出不穷,从中华龙鸟化石的发现到酵母实验进化的分析,不胜枚举[1]。近年来比较突出的例子有加拿大北部“大淡水鱼”化石的发现。科学家们根据进化理论和化石分析预测出浅水鱼类向陆地过渡阶段的大致时间,随后他们将目光投向加拿大北部努维特地区的埃尔斯米尔岛,那里有大约37 500万年前的沉积岩。通过四年的努力,科学家们终于从岩层中发掘出命名为“Tiktaalik”(因纽特人的语言中意为“大淡水鱼”)的生物化石,它既具有许多鱼类特征,又具有早期四足动物的典型特征,而它的鳍包含骨骼,可形成类似于有肢动物的肢体,用来移动和支撑躯体[2]。“大淡水鱼”的发现证实了科学家们基于进化论的预测。反过来,对于进化论预测的证实也提高了达尔文理论的可信度。的确,每一种科学理论本质上都要具备对尚未观察到的自然事件或现象作出预测的能力。 另一个经典的例子是科学家们对特立尼达岛阿立波河中的虹鳉鱼进行的观察与实验。按照进化理论,不同时间尺度上的自然选择可能产生全然不同的进化效应。在仅仅几个时代的周期内,生物个体就有可能产生小规模的变异,可称之为微进化(microevolution)。科学家们发现,生活在阿立波河中的虹鳉鱼无论是其幼体还是成体均遭受较大鱼类的捕食,生活在河流上游小溪中的虹鳉鱼只有其幼体会被较小鱼类捕食,因而长期的进化过程导致该河流中的虹鳉鱼个体较小(更易于躲避捕食者),而溪流中的虹鳉鱼则个体较大(不易被较小的鱼类捕食)。科学家们将河流中的虹鳉鱼置于原来没有虹鳉鱼种群的溪流中,发现它们仅仅在20代后就进化出了溪流中虹鳉鱼的特性[3]。 毋庸讳言,在科学上,我们不可能绝对肯定地证明某种解释是完美无缺的,或者是终结性的。然而,迄今为止,许多科学解释已经被人们反复检验,不断增添的新观察结果或新的实验分析很难对其作出重大改变。换言之,科学界已广泛接受这些解释,它们是以观察自然世界获得的证据为基础的。进化理论就是其中一个代表。从这一点出发,我们可以明确地将

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

分子生物学复习题(有详细标准答案)

分子生物学复习题(有详细答案)

————————————————————————————————作者:————————————————————————————————日期:

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了“脱氧核糖核苷酸的结构”的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

现代分子生物学复习题

现代分子生物学复习题

现代分子生物学 一.填空题 1.DNA的物理图谱是DNA分子的限制性内切酶酶解片段的排列顺序。 2.核酶按底物可划分为自体催化、异体催化两种类型。 3.原核生物中有三种起始因子分别是IF-1、 IF-2 和IF-3 。 4.蛋白质的跨膜需要信号肽的引导,蛋白伴侣的作用是辅助肽链折叠成天然构象的蛋白质。 5.真核生物启动子中的元件通常可以分为两种:核心启动子元件和上游启动子元件。 6.分子生物学的研究内容主要包含结构分子生物学、基因表达与调控、DNA重组技术三部分。 7.证明DNA是遗传物质的两个关键性实验是肺炎球菌感染 小鼠、T2噬菌体感染大肠杆菌这两个实验中主要的论点证据是:生物体吸收的外源DNA改变了其遗传潜能。 8.hnRNA与mRNA之间的差别主要有两点: hnRNA在转变为mRNA的过程中经过剪接、 mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′ 东隅已逝 2 桑榆非晚!

末端多了一个多聚腺苷酸(polyA)尾巴。 9.蛋白质多亚基形式的优点是亚基对DNA的利用来说是一 种经济的方法、可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响、活性能够非常有效和迅速地被打开和被关闭。 10.质粒DNA具有三种不同的构型分别是: SC构型、 oc 构型、 L构型。在电泳中最前面的是SC构型。 11.哺乳类RNA聚合酶Ⅱ启动子中常见的元件TATA、GC、 CAAT所对应的反式作用蛋白因子分别是TFIID 、SP-1 和 CTF/NF1 。 12.与DNA结合的转录因子大多以二聚体形式起作用,转 录因子与DNA结合的功能域常见有以下几种螺旋-转角-螺旋、锌指模体、碱性-亮氨酸拉链模体。 13.转基因动物常用的方法有:逆转录病毒感染法、DNA 显微注射法、胚胎干细胞法。 14.RNA聚合酶Ⅱ的基本转录因子有、TFⅡ-A、TFⅡ-B、 TFII-D、TFⅡ-E他们的结合顺序是: D、A、B、E 。 其中TFII-D的功能是与TATA盒结合。 15.酵母DNA按摩尔计含有32.8%的T,则A为_32.8%_,G 为_17.2%_和C为_17.2%__。 16.操纵子包括_调控基因、调控蛋白结合位点和结构基因。 17.DNA合成仪合成DNA片段时,用的原料是模板DNA 东隅已逝 3 桑榆非晚!

《分子生物学大(综合)实验》课程介绍(精)

《分子生物学大(综合)实验》课程介绍 课程代码(学校统一编制) 课程名称分子生物学大(综合)实验 英文名称MolecularBiologyBigExperiment 学分:3修读期:第七学期 授课对象:生物科学、生物技术 课程主任:姓名、职称、学位 关洪斌,副教授,博士 课程简介 21世记是生命科学的世记,而分子生物学是带动生命科学的前沿科学。分子生物学是在生物大分子水平上研究细胞的结构、功能及调控的学科,在现代生物学学科发展中的重要性与不容置疑的带头作用是众所周知的。许多重大的理论和技术问题都将依赖于分子生物学的突破。随着分子生物学研究工作的不断深入,相关实验技术方法和技术日新月异的发展。为了适应分子生物学研究工作日益发展的需要,满足培养从事现代生物学研究,尤其是进行分子生物学研究的人才的需要,特设置分子生物学大(综合)实验课程。本课程的教学目标和基本要求是使学习者基本掌握分子生物学实验技术的基本原理和方法,教学内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。通过本实验可提高学生的动手能力和创造性思维能力,较好地掌握分子生物学实验操作和技能,为今后独立进行科研工作打下坚实基础。 实践教学环节(如果有) 实验内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。 课程考核 实验报告 指定教材 自编 参考书目 1.分子生物学实验指导高等教育出版社施普林格出版社,1999 2.彭秀玲,袁汉英等.基因工程实验技术.湖南科学技术出版社,1997 3.吴乃虎.基因工程原理(上下册).科学出版社,1998 4.F.奥斯伯等著:颜子颖,王海林译.分子克隆实验指南(第二版).科学出版社,1998 5.J.萨姆布鲁克等著:金冬雁,黎孟枫等译.精编分子生物学实验指南.科学出版社,1993

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

现代分子生物学重点

现代分子生物学 第一章 DNA的发现: 1928年,英国Griffith的体内转化实验 1944年,Avery的体外转化实验 1952年,Hershey和Chase的噬菌体转导实验 分子生物学主要研究内容(p11) DNA的重组技术 基因表达调控研究 生物大分子的结构功能研究——结构分子生物学 基因组,功能基因组与生物信息学研究 第二章 DNA RNA组成 脱氧核糖核酸 A T G C 核糖核酸 A U G C 原核生物DNA的主要特征 ①一般只有一条染色体且带有单拷贝基因; ②整个染色体DNA几乎全部由功能基因与调控序列组成; ③几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。 染色体作为遗传物质的特点: (1)分子结构相对稳定(贮存遗传信息) (2)通过自我复制使前后代保持连续性(传递遗传信息) (3)通过指导蛋白质合成控制生物状态(表达遗传信息) (4)引起生物遗传的变异(改变遗传信息) C值以及C值反常 C值单倍体基因组DNA的总量 C值反常C值往往与种系进化的复杂程度不一致,某些低等生物却有较大的C值。如果这些DNA 都是编码蛋白质的功能基因,那么,很难想象在两个相近的物种中,他们的基因数目会 相差100倍,由此推断,许多DNA序列可能不编码蛋白质,是没有生理功能的。 DNA的中度重复序列,高度重复序列 中度各种rRNA,tRNA以及某些结构基因如组蛋白基因都属于这一类 高度卫星DNA 核小体 是由H2A H2B H3 H4 各2分子生成的八聚体和约200bp的DNA构成的,H1在核小体外面。 真核生物基因组的结构特点 ①基因组庞大; ②大量重复序列; ③大部分为非编码序列,90%以上; ④转录产物为单顺反子; ⑤断裂基因; ⑥大量的顺式作用元件; ⑦DNA多态性:SNP和串联重复序列多态性; ⑧端粒(telomere)结构。

考研普通生物学考研朱玉贤《现代分子生物学》考研真题

考研普通生物学考研朱玉贤《现代分子生物学》考研 真题 第一部分考研真题精选 一、选择题 1DNA模板链为5′-ATTCAG-3′,其转录产物是()。[浙江海洋大学2019研] A.5′-GACTTA-3′ B.5′-CUGAAU-3′ C.5′-UAAGUC-3′ D.5′-CTGAAT-3′ 【答案】B查看答案 【解析】在RNA转录过程中,RNA是按5′→3′方向合成的,以DNA双链中的反义链为模板,在RNA聚合酶催化下,以4种核苷三磷酸(NTPs)为原料,根据碱基配对原则(A-U、T-A、G-C)。因此答案选B。 2DNA的变性()。[扬州大学2019研] A.可以由低温产生 B.是磷酸二酯键的断裂 C.包括氢键的断裂 D.使DNA的吸光度降低 【答案】C查看答案 【解析】DNA的变性是指当DNA溶液温度接近沸点或者pH较高时,DNA 双链的氢键断裂,最后完全变成单链的过程。DNA的复性是指热变性的DNA经缓慢冷却,从单链恢复成双链的过程。A项,DNA的变性是由于高温引起的,故A

项错误;B项,DNA的变性是核酸双螺旋碱基对的氢键断裂,但不涉及其一级结构的改变,故B项错误;D项,当DNA溶液温度升高到接近水的沸点时(DNA变性),260nm的吸光度明显增加,这种现象称为增色效应,故D项错误。 3密码GGC的对应反密码子是()。[浙江海洋大学2019研] A.GCC B.CCG C.CCC D.CGC 【答案】B查看答案 【解析】根据碱基互补配对原则,G与C相互配对。因此答案选B。 4原核生物启动序列-10区的共有序列称为()。[扬州大学2019研] A.TATA盒 B.CAAT盒 C.Pribnow盒 D.GC盒 【答案】A查看答案 【解析】绝大部分启动子都存在两段共同序列:位于-10bp处的TATA区和-35bp处的TTGACA区。因此答案选A。 5.色氨酸生物合成操纵子为下列()方面的例子。[浙江海洋大学2019研] A.正调控可抑制操纵子 B.负调控可诱导操纵子 C.正调控可诱导操纵子

分子生物学综述

基于特定引物PCR的DNA分子标记技术研究进展 摘要: PCR是一种选择性体外扩增DNA的方法,分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种比较理想的遗传标记技术。SSR、SCAR、SRAP 和TRAP是四种最新发展的基于特定引物PCR的新型DNA分子标记技术,具有简便、高效、重复性好等优点,已在遗传育种的种质资源等各个方面得到广泛应用。介绍了这四种分子标记的基本原理和特点,综述了它们在分子生物学研究中的应用。 关键词:分子标记SSR SCAR SRAP TRAP DNA分子标记技术的研究始于1980年,本质上是指能反映生物个体或种群间基因组某种差异的特异性DNA片段,DNA分子标记大多以电泳谱带的形式表现生物个体之间DNA差异,通常也称DNA的指纹图谱。与其他几种遗传标记相比具有的优越性有:大多数分子标记为显性,对隐性的农艺形状的选择十分便利;基因组变异及其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标形状的表达,与不良性状无连锁;检测手段简单、迅速。目前DNA分子标记技术已有数十种,主要可分为4大类:基于分子杂交的DNA 分子标记技术;基于随机/特定引物PG R的DNA分子标记技术;基子限制性酶切与PCR技术的分子标记技术;基于芯片技术的DNA分子标记技术。概述新型的基于特定引物PCR的DNA分子标记技术,包括SSR,SCAR,SRAP和TRAP。目前这些I3;VA分子标记技术的应用仍具有相当的局限性,如何将它们有效地利用于分子生物学研究是函待解决的问。 1序列特异扩增区域SCAR 1. 1 SCAR标记的原理 序列特异扩增区域(sequence characterised am-plifiedreginn)简称SCAR标记,是1993年Paran和Michelma记[1]]建立的一种可靠、稳定、可长期利用的RAPD 标记技术。SCAR标记的基本流程:先用随机引物进行RAPD筛选,获取特异的RAPD标记,然后对标记进行克隆和测序,根据测定RADII标记两末端的序列设计一对引物,此引物通常包含有原来的RAPD引物序列,多为20-24,再用该引物对所研究的基因组DNA进行PCR扩增,这样就可以把与原来的RAPI3片段相对应的单一位点鉴定出来。 1. 2 SCAR标记的特点 SCAR标记方便、快捷、可靠,适合于大量个体的快速检测,结果稳定性好,重复性高。由干SCAR标记使用的引物长,因而试验的可重复性高,它克服了RAPD重复性欠佳的弱点,同时具有STS标记的优点,因此比RAPn及其他利用随机引物的方法在基因定位和作图中的应用要好,在分子标记辅助育种、种质资源鉴别等方面有着潜在的应用前景,SCAR标记是共显性遗传的。待检DNA间的差异可直接通过有无扩增产物来显示,这甚至可省却电泳的步骤。由于RAPD 扩增过程中错配几率较高,RAPD标记片段同源性高导致SCAR标记的转化成功

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

分子生物学技术在土壤生物修复中的应用研究和展望剖析

分子生物学手段 在土壤污染生物修复中的应用 摘要: 污染土壤的修复技术主要有物理修复、化学修复和生物修复,文章 综述了分子生物学技术包括环境微生物群落降解基因分析、16S rRNA序列 分析技术以及荧光原位杂交技术在生物修复技术中跟踪污染土壤中降解微 生物行为、监测降解基因和微生物群落变化,揭示了其中的分子机制的应 用现状,对各项技术应用中需要注意的问题进行了讨论并对其发展前景进 行了展望。 关键词: 分子生物学;降解基因;16S rRNA;FISH Molecular biology techniques in bioremediation of soil: Current status and future Abstract:This review starts with a brief overview of the molecular biology techniques applied to the bioremediation of soil. The principles of the catabolic gene probe analysis of microbial community, 16S rRNA sequence analysis and fluorescent in situ hybridization (FISH) and their applications to monitoring the fate of contaminant-degrading microorganisms, detecting catabolic gene and analyzing the changes of microbial community in contaminated soil are highlighted. The problems and prospects of these techniques are discussed. Key words: molecular biology; catabolic gene; 16S rRNA; FISH

分子生物学简介

分子生物学(molecular biology )从分子水平研究作为生命活动主要物质基础的生物大分子结构与功能,从而阐明生命现象本质的科学。 重点研究下述领域: (1)蛋白质(包括酶)的结构和功能。 (2)核酸的结构和功能,包括遗传信息的传递。 (3)生物膜的结构和功能。 (4)生物调控的分子基础。 (5)生物进化。 分子生物学是第二次世界大战后,由生物化学,`遗传学,微生物学,病毒学,结构分析及高分子化学等不同研究领域结合而形成的一门交叉科学。目前分子生物学已发展成生命科学中的带头学科。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA 重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 生物学的研究可以说长期以来都是科研的重点,惟其所涉及的方方面面与人类生活紧密相连。本世纪50年代以前的生物学研究,虽然有些已进入了微观领域,但总的来说,主要是研究生物个体组织、器官、细胞或是亚细胞这些东西之间的相互关系。50年代中期,随着沃森和克里克揭示出DNA分子的空间结构,生物学才真正开始了其揭开分子水平生命秘密的研究历程。到70年代,重组DNA技术的发展又给人们提供了研究DNA的强有力的手段,于是分子生物学就逐渐形成了。顾名思义,分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究;分子生物学在理论和实践中的发展也为基因工程的出现和发展打下了良好的基础,因此可以说基因工程就是分子生物学的工程应用。现在基因工程所展现出的强大生命力和巨大的经济发展潜力完全得益于分子生物学的迅猛发展,而且有证据表明,基因工程的进一步发展仍然要依赖于分子生物学研究的发展。 分子生物学是从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学一直是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系和蛋白质-脂质体系。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

分子生物学课程论文

分子生物学课程论文

PCR技术发展与应用的研究进展 王亚纯 09120103 摘要:聚合酶链式反应(polymerase chain reaction,PCR)是最常用的分子生物学技术之一,通过变性、退火和延伸的循环来完成核酸分子的大量扩增.定量PCR技术是克服了原有的PCR技术存在的不足,能准确敏感地测定模板浓度及检测基因变异等,快速PCR技术快速PCR在保证PCR反应特异性、灵敏性和保真度的前提下,在更短时间内完成对核酸分子的扩增.mRNA 差异显示PCR技术是在基因转录水平上研究差异表达和性状差异的有效方法之一.近年来已经开展了许多这三方面的研究工作,本文就定量PCR技术、快速PCR技术、mRNA差异显示PCR技术作一综述,以便更好地理解及应用这项技术。 关键字:定量PCR;荧光PCR;快速PCR;DNA聚合酶;mRNA差异显示PCR 0 前言 聚合酶链反应(polymerase chain reaction,PCR)技术由于PCR简便易行、灵敏度

高等优点,该技术被广泛应用于基础研究。但是,由于传统的PCR技术不能准确定量,且操作过程中易污染而使得假阳性率高等缺点,使其在临床上的应用受到限制[1]。鉴于此,对PCR产物进行准确定量便成为迫切的需要。几经探索,先后出现了多种定量PCR (quantitative PCR,Q-PCR)方法,其中结果较为可靠的是竞争性PCR和荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)。 随着生命科学和医学检测的不断发展,人们越来越希望在保证PCR反应特异性、灵敏性、保真度的同时,能够尽量缩短反应的时间,即实现快速PCR(Rapid PCR or Fast PCR)。快速PCR 技术不仅可使样品在有限的时间内可以尽快得到扩增,而且可以显著增加可检测的样品数量,显然,在大批量样本检测和传染病快速诊断等方面将会有重要的应用前景。例如,快速PCR在临床检测中可大大加快疾病的诊断效率;在生物恐怖袭击时能有效帮助快速鉴定可疑物中有害生物的存在与否;同时,由于PCR已经渗入到现代生物学研究的各个方面,快速PCR的实现必然可以使许多科学研究工作的进展显著加快,最终影

相关主题
文本预览
相关文档 最新文档