当前位置:文档之家› 专业电阻焊的基本原理

专业电阻焊的基本原理

一、设备管理的功效与意义

二、公司设备管理现状及发展方向

三、电阻焊基本原理

设备管理的功效与意义

工厂是一个资源转换的单位实体,它将

环境中的人、财、物、信息等转换为价

值更高的产品,而作为企业各级管理人

员不管是高、中、基层管理人员的目的,是充分利用内部资源,根据职能作为工

程设备方面的管理人员的工作重点,是

充分利用资源中的“物”。这里的物指

机器设备及其工具。

简单地讲:设备管理就是使设备经常处于良好的技术状态保持正常的生产秩序,确保完成生产目标,完成预定的产量、质量指标。

一、关系到产品的产量和质量

二、关系到产品的成本

三、关系到安全生产和环境保护

四、关系到企业生产资金的合理

公司设备管理现状及发展方向

1、事后维修阶段

2、设备预防维修管理阶段

3、设备系统管理阶段

4、设备综合管理阶段

电阻焊基本原理

比亚迪工程部

谢经朝

2001-5-4

电阻焊是利用焊件通电时产生的内部电阻热作热源,加热焊件,且在外力作用下完成焊接过程。

电阻热与机械力的恰当配合是获得优质电阻焊接头的必要条件

电阻焊是一个电热转换工艺:

电流流经工件而产生热能

Q=(I w2*R c*T)/S

式中:

Q :热能

I w :焊接电流

R c :工件的电阻

T :焊接时间

S:电极面积

良好焊接的必要条件:

工件表面清洁无氧化物等

给被焊工件施加一定机械力

给被焊工件通一定电流使产生电阻热

电阻焊中电阻的组成:点焊:电流I w 电阻

R

R ew R w R c R ew R w 电极1

电极2工件1

工件2

R ew:电极与焊件接触电阻,R w 焊件间接触电阻,R c 工件间接触电阻

电阻焊的种类

按电阻焊方法分有:

1、点焊

2、凸焊

3、缝焊

4、缝对焊

4、电阻对焊

5、闪光对焊

按电源的波形分:

1、直流/电容式

2、交流式

3、晶体管式

4、变频式

电压

时间

电阻焊的主要优、缺点

优点

1、热量集中、加热时间短、焊接变形小。

2、冶金过程简单,一般不需要填充材料、及熔剂,不需要保护气体。

3、能适应多类同种及异种金属的焊接,包括镀层钢板的焊接。

4、工艺过程简单,易于实现机械化及自动化,上岗前不需要对焊工进行长期培训。

5、焊接生产率高,成本低。

6、劳动环境较好,污染小。

缺点

1、设备复杂,需配备较高技术等级的维修人员。造价较高,一次投资费用大。

2、电容量大,且多数为单相焊机,对电网造成不平衡负载严重,必须接入容量较大的电网。

3、对影响强度的某些内在指标(例如点焊的熔核直径及焊透率,对焊的熔合不良和灰斑等)目前尚缺少简便、实用的无损检测手段。因此阻碍了电阻焊在质量要求特别高的场合(如航空、航天工业等)的进一步推广应用。

对焊时的温度分布:焊接温度

温度

单面多点点焊时的温度分布:焊接温度

温度

直流高频电阻焊基本原理介绍

直流高频电阻焊基本原理介绍高频焊接起源于上世纪五十年代,它是利用高频电流所;接推动了直缝焊管产业的巨大发展,它是直缝焊管(E;质量的好坏,直接影响到焊管产品的整体强度,质量等;所谓高频,是相对于50Hz的交流电流频率而言的,;电流;集肤效应是指以一定频率的交流电流通过同一个导体时;分布于导体的所有截面的,它会主要向导体的表面集中;方根成正比,与频率和磁导率的平方根成反比;钢板的表面; 高频焊接起源于上世纪五十年代,它是利用高频电流所产生的集肤效应和相邻效应,将钢板和其它金属材料对接起来的新型焊接工艺。高频焊接技术的出现和成熟,直接推动了直缝焊管产业的巨大发展,它是直缝焊管(ERW)生产的关键工序。高频焊接质量的好坏,直接影响到焊管产品的整体强度,质量等级和生产速度。 1高频焊接的基本原理 所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢?集肤效应是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,

集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。邻近效应是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。 2 高频焊接设备的结构和工作原理 了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

电阻焊及各种焊机原理

一、电阻焊定义 电阻焊是将被焊工件压紧于两电极之间,并通过电流,利用电流流经接触面及邻近区域产生的电阻热將其加热到熔化或塑性状态,使之形成金属结合的一种方法。电阻焊是压(力)焊的一种。 二、电阻焊的优、缺点 1、优点: ※熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。 ※加热过程短、热量集中。故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。 ※不需要焊丝、焊条等填充金属,以及氧、乙炔、氦等焊接材料,焊接成本低。 ※操作简单,易于实现机械化和自动化,改善了劳动条件。 ※生产效率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。 2、缺点 ※目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,靠各种监控技术来保证焊接稳定性。 ※点、缝焊的搭接接头不仅增加了构件的重量,且因在两板之间的熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低 ※设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。 三、电阻焊工艺分类 ※点焊 ※凸焊 ※缝焊 ※对焊

3.1、点焊 ?电阻点焊,简称点焊;将焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。 ?点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3MM的冲压、轧制的薄板构件 3.1.1点焊接头的形成 ?电阻点焊原理和接头形成,可简述为:将焊件压紧在两电极之间,施加电极压力后,阻焊变压器向焊接区通过强大焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心,简称“熔核”。 ?熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。 ?加热停止后,核心液态金属以自由能量最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。 ?通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点。 ?同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强列再结晶而形成塑性环,该环先于熔核形成始终伴随着熔核一起长大,它的存在可防止周围气体侵入和保证熔核态金属不至于沿板缝向外喷溅。 ? 3.2、凸焊 ?凸焊,是在一工件的贴合面上预先加工出一个或多个突起点,使其与

电子元器件基础知识培训(资料)

电子元件基础知识培训 一、电阻 1、电阻的外观、形状如下图示: 2、电阻在底板上用字母R (Ω)表示、图形如下表示: 从结构分有:固定电阻器和可变电阻器 3、电阻的分类: 从材料分有:碳膜电阻器、金属膜电阻器、线绕电阻器、热敏电阻等 从功率分有:1/16W 、1/8W 、1/4W(常用)、1/2W 、1W 、2W 、3W 等 4、电阻和单位及换算:1M Ω(兆欧姆)=1000K Ω(千欧姆)=1000'000Ω(欧姆) 一种用数字直接表示出来 5电阻阻值大小的标示 四道色环电阻 其中均有一 一种用颜色作代码间接表示 五道色环电阻 道色环为误 六道色环电阻 差值色环 四道色环电阻的识别方法如下图 五道色环电阻的识别方法如下图 常用四道色环电阻的误差值色环颜色 常用五道色环电阻的误差值色是 是金色或银色,即误差值色环为第四 棕色或红色,即第五道色环就是误 道色环,其反向的第一道色环为第一 差色环,第五道色环与其他色环相 道色环。 隔较疏,如上图,第五道色环的反 向第一道即为第一道色环。 四道色环电阻阻值的计算方法: 阻值=第一、第二道色环颜色代表的数值×10 即上图电阻的阻值为:33×10=33Ω(欧姆) 第三道色不订所代表的数值 0

五道色环电阻阻值的计算方法: 阻值=第一、二、三道色环颜色所代表的数值×10 即上图电阻阻值为:440×10=4.4Ω(欧姆) 7、电阻的方向性:在底板上插件时不用分方向。 二:电容 1、 电容的外观、形状如下图示: 2、 电容在底板上用字母C 表示,图形如下表示: 从结构上分有:固定电容和可调电容 3电容的分类 有极性电容:电解电容、钽电容 从构造上分有: 无极性电容:云母电容、纸质电容、瓷片电容 4、 电容的标称有容量和耐压之分 电容容量的单位及换算:1F ”(法拉)=10 u F(微法)=10 pF (皮法) 5、 电容容量标示如下图: 100uF ∕25V 47uF ∕25V 0.01 uF 0.01uF ∕1KV 0.022uF ∕50V 上图的瓷片电容标示是用103来表示的,其算法如下:10×10=0.01 uF =10000 pF 另电容的耐压表示此电容只能在其标称的电压范围内使用,如超过使用电压范围则会损坏炸裂或失效。 6、 电容的方向性:在使用时有极性电容要分方向,无极性不用分方向。 三、晶体管 (一)晶体二极管 1、晶体二极管外形如下图: 第四道色不订所代表的数值 -2 6 12 3

摩擦焊原理简介

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加

热功率显著增大的b点止。摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气隔开。 (3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其围从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里的e 点也是焊机主轴开始停车的时间点(可称为e′点),也是顶锻压力开始上升的点(图10的?点)以及顶锻变形量的开始点。在稳定摩擦阶段中,工件摩擦表面的

电阻基础知识

电阻基础知识 电阻” 导电体对电流的阻碍作用称着电阻,用符号R 表示,单位为欧姆、千欧、兆欧,分别用Ω、kΩ、MΩ 表示。 一、电阻的型号命名方法 国产电阻器的型号由四部分组成(不适用敏感电阻) 第一部分:主称,用字母表示,表示产品的名字。如R 表示电阻,W 表示电位器。 第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。 第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6- 精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。 第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等。例如:R T 1 1 型普通碳膜电阻a1} 二、电阻器的分类 1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。 2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。 3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。

4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 三、主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa 及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压围,电压每变化1 伏,电阻器的相对变化量。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理 焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊,电子束焊,激光焊等多种,研究表明激光焊接技术将逐步得到广泛应用。 1. 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和

焊工基础知识.

焊工基础知识培训手册 第一章焊接过程基本理论及分类 焊接是通过加热或加压,或两者兼用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法叫做焊接。 焊接是一种生产不可拆卸的结构的工艺方法。随着近代科学技术的发展,焊接已发展成为一门独立的科学,焊接不仅可以解决各种钢材的连接,还可以解决铝、铜等有色金属及钛等特种金属材料的连接,因而已广泛用于国民经济的各个领域,如机械制造、造船、海洋开发、汽车制造、石油化工、航天技术、原子能、电力、电子技术及建筑等部门。据统计,每年仅需要进行焊接加工之后、使用的钢材就占钢材总产量的55%左右。可见焊接技术应用的前景是很广阔的。 一、焊接分类 焊接时的工艺特点和母材金属所处的状态,可以把焊接方法分成熔焊、压焊和钎焊三类,金属焊接的分类如下: 1.熔焊:焊接过程中,将焊件接头加热至熔化状态,不加压力的焊接方法,称为熔焊。 熔焊是目前应用最广泛的焊接方法。最常用的有手工电弧焊,埋弧焊,CO2气体保护焊及手工钨极氩弧焊弧焊等。 2.压焊:焊接过程中,必须对焊件施加压力,加热或不加热的焊接方法,称为压焊。压焊两种形式: (1)被焊金属的接触部位加热至塑性状态,或局部熔化状态,然后加一定的压力,使金属原子间相互结合形成焊接接头,如电阻焊、摩擦焊等。 (2)加热,仅在被焊金属接触面上施加足够大的压力,借助于压力引起的塑性变形,原子相互接近,从而获得牢固的压挤接头,如冷压焊、超声波焊、爆炸焊等。 3.钎焊:采用熔点比母材低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,但低于母材熔点的温度,利用毛细作用使液态钎料润湿母材,填充接头间隙并与母材相互扩散,连接焊件的方法,称为钎焊。钎焊分为如下两种: (1)软钎焊用熔点低于4500C的钎料(铅、锡合金为主)进行焊接,接头强度较低。(2)硬钎焊用熔点高于4500C的钎焊(铜、银、镍合金为主)进行焊接,接头强度较高。

高频焊接原理

高频焊接原理 1 高频焊接的基本原理 所谓高频,是相对于50Hz的交流电流频率而言的,一般是指50KHz~400KHz的高频电流。高频电流通过金属导体时,会产生两种奇特的效应:集肤效应和邻近效应,高频焊接就是利用这两种效应来进行钢管的焊接的。那么,这两个效应是怎么回事呢? 集肤效应是指以一定频率的交流电流通过同一个导体时,电流的密度不是均匀地分布于导体的所有截面的,它会主要向导体的表面集中,即电流在导体表面的密度大,在导体内部的密度小,所以我们形象地称之为:“集肤效应”。集肤效应通常用电流的穿透深度来度量,穿透深度值越小,集肤效应越显著。这穿透深度与导体的电阻率的平方根成正比,与频率和磁导率的平方根成反比。通俗地说,频率越高,电流就越集中在钢板的表面;频率越低,表面电流就越分散。必须注意:钢铁虽然是导体,但它的磁导率会随着温度升高而下降,就是说,当钢板温度升高的时候,磁导率会下降,集肤效应会减小。 邻近效应是指高频电流在两个相邻的导体中反向流动时,电流会向两个导体相近的边缘集中流动,即使两个导体另外有一条较短的边,电流也并不沿着较短的路线流动,我们把这种效应称为:“邻近效应”。邻近效应本质上是由于感抗的作用,感抗在高频电流中起主导的作用。邻近效应随着频率增高和相邻导体的间距变近而增高,如果在邻近导体周围再加上一个磁心,那么高频电流将更集中于工件的表层。 这两种效应是实现金属高频焊接的基础。高频焊接就是利用了集肤效应使高频电流的能量集中在工件的表面;而利用了邻近效应来控制高频电流流动路线的位置和范围。电流的速度是很快的,它可以在很短的时间内将相邻的钢板边部加热,熔融,并通过挤压实现对接。 2 高频焊接设备的结构和工作原理 了解了高频焊接原理,还得要有必要的技术手段来实现它。高频焊接设备就是用于实现高频焊接的电气—机械系统,高频焊接设备是由高频焊接机和焊管成型机组成的。其中高频焊接机一般由高频发生器和馈电装置二个部分组成,它的作用是产生高频电流并控制它;成型机由挤压辊架组成,它的作用是将被高频电流熔融的部分加以挤压,排除钢板表面的氧化层和杂质,使钢板完全熔合成一体。 高频发生器过去的焊管机组上使用高频发生器是三回路的:高频发电机组;固体

电阻的基础知识

电阻的基础知识 加入时间:2003年8月31日显示次数:40206 打包邮递推荐给朋友投票评论常用电阻有碳膜电阻、碳质电阻、金属膜电阻、线绕电阻和电位器等。表1是几种常用电阻的结构和特点。 图1 电阻的外形

大多数电阻上,都标有电阻的数值,这就是电阻的标称阻值。电阻的标称阻值,往往和它的实际阻值不完全相符。有的阻值大一些,有的阻值小一些。电阻的实际阻值和标称阻值的偏差,除以标称阻值所得的百分数,叫做电阻的误差。表2是常用电阻允许误差的等级。 国家规定出一系列的阻值作为产品的标准。不同误差等级的电阻有不同数目的标称值。误差越小的电阻,标称值越多。表2是普通电阻的标称阻值系列。表3中的标称值可以乘以10、100、1000、10k;100k;比如1.0这个标称值,就有1.0Ω、10.OΩ、100.OΩ、1.0kΩ、10.0kΩ、100.0kΩ、1.0MΩ;10.0MΩ; 不同的电路对电阻的误差有不同的要求。一般电子电路,采用Ⅰ级或者Ⅱ级就可以了。在电路中,电阻的阻值,一般都标注标称值。如果不是标称值,可以根据电路要求,选择和它相近的标称电阻。 当电流通过电阻的时候,电阻由于消耗功率而发热。如果电阻发热的功率大于它能承受的功率,电阻就会烧坏。电阻长时间工作时允许消耗的最大功率叫做额定功率。电阻消耗的功率可以由电功率公式: P=I×U P=I2×R P=U2/R 计算出来,P表示电阻消耗的功率,U是电阻两端的电压,I是通过电阻的电流,R是电阻的阻值。电阻的额定功率也有标称值,常用的有1/8、1/4、1/2、1、2、3、5、10、20瓦等。在电路图中,常用图2所示的符号来表示电阻的标称功率。选用电阻的时候,要留一定的余量,选标称功率比实际消耗的功率大一些的电阻。比如实际负荷1/4瓦,可以选用1/2瓦的电阻,实际负荷3瓦,可以选用5瓦的电阻。

焊接基础知识培训

金属材料知识介绍 目录

1.焊接基础知识 (3) 1.1焊接方法分类 (3) 1.2 焊接电弧……………………………………………………………………………………………………… .3 1.3焊条的组成和作用 (4) 1.4焊条的分类…………………………………………………………………………………………………… .4 2.几种常见的焊接方法 (5) 3. 金属材料的焊接性能…………………………………………………………………………………………… .6 3.1焊接性能………………………………………………………………………………………………………. .6 3.2影响焊接接头性能的因素 (7) 3.3不同钢材的焊接性能分析 (7) 3.4焊接接头的缺陷及防止措施 (6) 4.焊接结构设计 (10) 4.1 焊接结构材料选择 (10) 4.2 焊接结构的工艺性 (10) 5.焊接接口的形式和坡口 (12) 5.1接口形式 (12) 5.2 坡口形式的选择 (13)

基本焊接方法 1.焊接的基本知识 1.1 焊接方法分类 定义:利用原子间的扩散与结合,使分离的金属材料牢固地连接起来,成为一个整体的过程。 原子之间的扩散与结合,通常采用加热、加压或两者并用。可以用填充材料(或不用), 将金属加热到熔化状态。 焊接方法分类: 1)熔焊: 将待焊处母材金属熔化以形成焊缝的焊接方法称为熔焊。 2)压焊: 焊接过程中,必须对焊件施加压力(加压或加热),以完成焊接的方法称为压焊。 3)钎焊: 钎焊是硬钎焊和软钎焊的总称。采用比母材金属熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点、低于母材溶化温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法。 1.2. 焊接电弧 由焊接电源供给、具有一定电压的两极间或电极与母材间,在气体介质中产生的强烈而持久放电现象称为焊接电弧。电弧燃烧后,弧柱中充满了高温电离气体, 放出大量的热能和强烈的光。焊接电弧由阴极区、阳极区和弧柱三部分组成。如图1-1所示。阴极区是电弧紧靠负电极的区域, 阴极区很窄,约为0.1um-0.01um ,温度约为2400K 。阳极区是指电弧紧靠正电极的区域,阳极区较阴极区宽,约为10um-1um ,温度约为2600K 。电弧阳极区和阴极区之间的部分称为弧柱,弧柱区温度最高,可达6000K-8000K 。焊接电弧两端间(指电极端头和熔池表面间)的最短距离称为弧长。

电阻基础知识学习资料

贴片电阻资料大全 简述: 我们常说的贴片电阻(SMD Resistor)学名叫:片式固定电阻器,是从Chip Fixed Resistor直接翻译过来的。特点是耐潮湿,耐高温,可靠度高,外观尺寸均匀,精确且温度系数与阻值公差小。 按生产工艺分厚膜(Thick Film Chip Resistors)、薄膜(Thin Film Chip Resistors)两种。厚膜是采用丝网印刷将电阻性材料淀积在绝缘基体(例如玻璃或氧化铝陶瓷)上,然后烧结形成的。我们通常所见的多为厚膜片式电阻,精度范围±0.5% ~ 10%,温度系数:±50PPM/℃~ ±400PPM/℃。薄膜是在真空中采用蒸发和溅射等工艺将电阻性材料淀积在绝缘基体工艺(真空镀膜技术)制成,特点是低温度系数(±5PPM/ ℃),高精度(±0.01%~±1%)。 封装有:0201,0402,0603,0805,1206,1210,1812,2010,2512。其常规系列的精度为5%,1%。阻值范围从0.1欧姆到20M欧姆。标准阻值有E24,E96系列。功率有1/20W、1/16W、1/8W、1/10W、 1/4W、1/2W、1W。 特性: ?体积小,重量轻 ?适合波峰焊和回流焊 ?机械强度高,高频特性优越 ?常用规格价格比传统的引线电阻还便宜 ?生产成本低,配合自动贴片机,适合现代电子产品规模化生产 使用状况:由于价格便宜,生产方便,能大面积减少PCB面积,减少产品外观尺寸,现在已取代绝大部分传统引线电阻。除一些小厂或不得不使用引线电阻的设计,各种电器上几乎都在使用。目前绝大部分电子产品,以0603、0805器件为主;以手机,PDA为代表的高密度电子产品多使用0201、0402的器件;一些要求稳定和安全的电子产品,如医疗器械、汽车行驶记录仪、税控机则多采用1206、1210等尺寸偏 大的电阻。 市场状况:目前,在全球的市场份额中,排名依次是台湾、日本、中国、韩国,欧美几乎不再生产。主要的生产厂商几乎都在中国建立生产基地。台湾国巨(Yageo)公司为世界上第一大生产商。日本企业则生产一些如0201、0402、高精度、高电压,具有工艺难度,利润高的系列。台湾及国内工厂则多生产些常规系列。零售市场多见为一些台湾厂和国产的品牌,如国巨(Yageo)、风华(FH)、三星机电、厚生、丽智、 美隆。 贴片电阻基本结构(ChipR Construction)

手工焊接PCB电路板培训基础知识

目录 一、课程目标 二、介绍手工焊接工具 三、PCB(Printed Circuit Boards印刷电路板简介)及焊接方法 四、不良焊点的种类 五、注意事项 六、用于分辨组件类别的大写字母 七、手工焊锡技朮要点 八、焊接原理及焊接工具

一课程目标 通过参加本培训课程,学习规的焊接操作,让伯操作人员掌握基本工具的正确使用﹔保养﹔以及日常锡焊接和维修过程中正确的焊接和焊接后的PCBA可接受标准的认识及自我判定﹐以及常见封装形式的元器件的焊接技术. 二介绍手工焊接工具 电烙铁、焊锡丝、助焊剂、吸水海绵、吸锡器、镊子、斜口钳。 平时注意爱护工具,工作结束后将工具放回原位. 1 .使用电烙铁须知 1.1 烙铁种类﹕电烙铁是利用电流的热效应制成的一种焊接工具﹐分恒温烙铁和常温烙铁﹔烙铁 头按需要可分为﹕弯头﹔直头﹔斜面等 1.2烙铁最佳设置温度﹕各面贴装组件适合的温度为325度﹔一般直插电子料﹐烙铁温度一般 设置在330-370度﹐焊接大的组件脚温度不要超过380度﹐但可以增大烙铁功率. 1.3烙铁的使用及保养﹕ a.打开电源,几秒钟后烙铁头就达到本身温度。.尽量使用烙铁头温度较高,受热面积较大的部 分焊接﹐不用时将烙铁手柄放回到托架上. b.应先使用海绵将烙铁清理干凈后,才开始焊接;在海绵上轻擦烙铁头,避免焊锡四溅. c.用细砂纸或锉刀除去烙铁头上的氧化层部分. d.工作结束和中午吃饭时应加焊锡保护铁头.在温度较低时镀上新焊锡,可以使焊锡膜变厚而减 免氧化,有效的延长烙铁头的使用寿命. e.焊接时不要使用过大的力,不要把烙铁头当在改锥等工具. f.烙铁头中有传感器,传感器是由很细的电阴线组成的,所以不能磕碰烙铁头 g.换烙铁头时需要关闭电待烙铁头温度冷却.(注:不要用手直接取,避免烫伤;也不可用金属夹 取) 2.海绵的清洗 a.海绵应用清水早晚冲洗两遍,温度不要太高,不要用肥皂及各种洗涤剂搓洗. b.不要使用干燥或过湿的海绵(用手挤压海绵无水份流出为最佳状态). 3.助焊剂的作用 助焊剂的种类﹕树脂系助焊剂(以松香为主)﹔水溶系助焊剂. (包括含酸性的焊膏﹔松香﹔松香酒精溶注液﹐氯化锌水溶液) 助焊剂的作用﹕ a.润滑焊点,清洁焊点,除去焊点中多余的杂质. 4.焊锡丝(线) 焊锡丝(线)是一种铅锡合金﹐俗称焊锡.(目前公司所用的都为无铅锡丝(线) 5.镊子 在电路焊接时﹐用来夹导线和电阻等小零件﹐不能用很大的力气夹大东西. 三 PCB(Printed Circuit Boards 印刷电路板)简介: 1. 拿印刷电路板的方法以及正反面的识别. a. 裸手拿PCB时,应拿 PCB的四角或边缘,避免裸手接触到焊点,组件和 连接器.

电阻焊原理

电阻焊焊接原理 焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法称为电阻焊。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 一、焊接热的产出及影响因素 点焊时产生的热量由下式决定:Q=IIRt(J)————(1) 式中:Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew——(2)如图. 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。 电极与工件间的电阻Rew与Rc和Rw相比,由于铜合金的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小,我们较少考虑它的影响。 2.焊接电流的影响 从公式(1)可见,电流对产热的影响比电阻和时间两者都大。因此,在焊接过程中,它是一个必须严格控制的参数。引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。阻抗变化是因为回路的几何形状变化或因在次级回路中引入不同量的磁性金属。对于直流焊机,次级回路阻抗变化,对电流无明显影响。

电阻基础知识培训讲义

电阻基础知识(培训用) 、电阻定义 1物质对电流的阻碍作用就叫该物质的电阻。 2、在电路中对电流有阻碍作用并且造成能量消耗的导体叫电阻 3、电荷在导体内做定向运动时会遇到阻力,这种阻力称为电阻。 电阻是导体的一种基本性质,与导体的尺寸、材料、温度有关。 二、电阻的特点 1普通电阻是线性元件2、耗能元件 三、电阻的作用 1、降压:用电阻与“用电器”串联,“用电器”的电流全部经过电阻。利用电 流经过电阻时在电阻上产生压降,从而使“用电器”两端的电压下降。原理依据是U总=U1+U2用欧姆定律可轻松算出降压电阻的阻值。电阻降压,适用于电流稳定的“用电器”,如果电流时大时小,“用电器”得的电压将时小时大。= 2、限流:电路结构完全与降压”相同,只是目的不同。降压是不让用电器”的端电压太高,限流是不让用电器”的电流太大。 3、分压:两只电阻串联,利用其中一只电阻上的压降(作为电源)为用电器”供电 ---------------------- 用 电器”与这只电阻并联。 4、分流:给用电器”并联电阻,让本该流过用电器”的电流,可以有一部分从电阻过,从而减小用电器”的电流。 分流与分压,只是目的不同,电路结构其实是相同的,不过, 重要性同等, 分压电路中的两只电阻的 而分流电路不着重研究另一只电阻。 5、阻抗匹配:是指信号在传输过程中负载阻抗和信号源内阻抗之间的特定配合关系。也即 一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,,以免接上负载后对器 材本身的工作状态产生明显的影响。 6、偏置:电阻在放大电路中的偏置作用就是使三极管有一个基本的静态工作电流,使三极管工作在线性放大区,以避免信号失真。 7、负载:电阻做负载,主要用于吸收产品在使用过程中产生的不需要的电量,或起到缓冲、制动的作用,比如修理当中将一些电阻做假负载 8、滤波:往往和电容或电感一起构成滤波电路 9、退藕或去藕:在电路中有些耦合是必要的,而有些耦合是有害的,会产生不良影响,如功放电路驱动喇叭,要很大的电流,此时,电源内阻压降较大,使电源电压降低,产生一个 不良的波动信号,这个信号如果传到前级去再进行放大,会干扰原来的放大信号,使放大器

螺栓焊接原理介绍

螺柱焊接原理简介 螺柱焊接是将直径2-25mm的螺柱或柱状金属高效、低成本、全断面融合地焊接在金属表面的一种特种焊接工艺方法。此项技术的应用可替代一些传统的加工方法,例如:钻孔、攻丝、手工焊接、焊后处理等。 螺柱焊接过程:首先,将焊接螺柱(或柱状金属)放置于焊接母材上;随后,提升焊接螺柱,同时导通电流,在焊接螺柱和焊接母材之间激发电弧,电弧将焊接螺柱端部和焊接母材表面溶化,并形成焊接熔池;接下来,焊接螺柱和焊接母材相对运动,焊接螺柱在一定速度下受控地插入熔池;最后,焊接电流终止,电弧熄灭,同时熔池凝固,焊接过程完成,形成全断面熔合的焊缝。 螺柱焊接优点:①焊缝全断面熔合,提高了焊接部位的安全性;②焊接在瞬间完成,提高了焊接工作效率; ③可适应多种金属材料;④热影响区小,焊接母材变形小;⑤焊接损伤很小,母材背面没有或只有很小的焊接损伤;⑥保持中空零件的密闭性;⑦实现单面焊接;⑧操作简便。 螺柱焊接分类:根据焊接的特性和电源原理,我们通常将螺柱焊接分为电容储能式螺柱焊接和拉弧式螺柱焊接,前者焊接在0.003秒内完成,用于在薄板上焊接螺柱,后者焊接时间在0.1-1.5秒内完成,用于在更复杂的环境下焊接螺柱。 电容储能式螺柱焊接具体可分为:①接触式螺柱焊接;②间隙式螺柱焊接。 拉弧式螺柱焊接具体可分为:①陶瓷保护环模式螺柱焊接;②气体保护模式螺柱焊接;③短周期模式螺柱焊接(分为有气体保护和无气体保护二种)。 无论采用哪种螺柱焊接工艺,要想取得理想的焊接效果,都需要我们对以下参数严格控制: 例如:焊接时间,焊接电流,运动的可控性,设备的易操作性,被焊金属材料的成分等。 以下图示了几种常用的螺柱焊接工艺方法: ●接触式电容储能螺柱焊接: 是一种最常用的电容储能螺柱焊接方法(从下图0.001秒开始工作)

电阻焊焊接原理简介

电阻焊原理简介 1:1:什么叫电阻焊什么叫电阻焊什么叫电阻焊? ?电阻焊是将被焊工件压紧于两电极之间电阻焊是将被焊工件压紧于两电极之间,,并通以电流并通以电流, ,利用电流流经工件接触面及邻近区域产生的电阻热将其加工到熔化或塑性状态性状态,,使之形成金属结合的一种方法使之形成金属结合的一种方法. .2:2:电阻焊分几种电阻焊分几种电阻焊分几种? ?电阻焊分四种电阻焊分四种,,即:点焊点焊..缝焊缝焊..凸焊凸焊. .对焊。3:我们使用电阻焊的方法是? 我们使用的电阻焊方法是:点焊。 4:什么叫点焊? 点焊时点焊时,,工件只在有限的接触面上工件只在有限的接触面上,,既所谓的既所谓的“ “点”上被焊接起来,并形成扁球形的溶核。 5:点焊时产生的热量公式? Q=I 22RT(J)式中式中:Q---:Q---:Q---产生的热量产生的热量产生的热量(J) (J)I---I---焊接电流焊接电流焊接电流(A)(A)R---R---电极间的电阻电极间的电阻电极间的电阻((Ω)t---t---焊接时间焊接时间焊接时间(S) (S)6:6:电极间的电阻包括几种电极间的电阻包括几种电极间的电阻包括几种? ?电极间的电阻包电极间的电阻包括括3种,即:工件本身电工件本身电阻阻RW,RW,两工件间接触电两工件间接触电两工件间接触电阻 阻RC,RC,电极与工件间接触电阻电极与工件间接触电阻Rew Rew。当工件已定时,工件的电阻取 。当工件已定时,工件的电阻取决于它的电阻率。公式:决于它的电阻率。公式:R=2Rw+Rc+2Rew R=2Rw+Rc+2Rew 7:不同的电阻率的处理方法是? 电阻率高的金属导热性差(如不锈钢)但散热难,可用小电流电阻率高的金属导热性差(如不锈钢)但散热难,可用小电流。 。电阻率低的金属导热性好(如铝合金)但散热快,可用大电流电阻率低的金属导热性好(如铝合金)但散热快,可用大电流。 。电阻率取决于金属的热处理和加工方式电阻率取决于金属的热处理和加工方式. .温度。

电阻 电容 二极管 基础知识

电阻器基本知识 ——半飘居士 电阻器主要用途是分流,分压和负载使用 分类有固定式电阻器和电位器,其中固定式电阻器可分为膜式电阻(碳膜R T、金属膜R J、合成膜R H 和氧化膜R Y)、实芯电阻(有机R S 和无机R N)、金属线绕电阻(RX)、特殊电阻(MG 型光敏电阻、MF 型热敏电阻)四种 碳膜电阻,成本较低,性能一般。 金属膜电阻,体积小,成本较高。 线绕电阻,耐热性能好,大功率的场合。 碳膜电位器 线绕电位器,阻值范围小,功率较大 主要性能指标 额定功率:为保证安全使用,一般选其额定功率比它在电路中消耗的功率高1-2 倍,在电路图中非线绕电阻器额定功率的符号表示如下图 标称值: 色环颜色所代表的数字或意义

精密度电阻器的色环标志用五个色环表示。第一至第3色环表示电阻的有效数字,第4色环表示倍乘数,第5色环表示容许偏差 表示17.5Ω±1% 最高工作电压 如果电压超过规定值,电阻器内部产生火花,引起噪声,甚至损坏。 高频特性 在高频条件下,要考虑其固定有电感和固有电容的影响 非线绕电阻器LR《=0.05uh,CR《=5pf 线绕电阻器LR 几十uh CR 几十pf

命名方法 示例:RJ71-0.125-5.1kI 型的命名含义:R 电阻器-J 金属膜-7 精密-1 序号-0.125 额定功率-5.1k 标称阻值-I 误差5%。 稳定性;衡量电阻器在外界条件(温度、湿度、电压、时间、负荷性质等)作用下电阻变化的程度

装接前要人工老化处理,提高稳定性;人工老化分为温度循环老化和电老化两种。 (1)温度循环老化 将待用电阻器置于(9015)℃的高温箱中经4h后取出,自然冷却至室温;再置入一40℃的低温箱经4h 后取出,自然恢复至室温。这样进行只次循环后,进行筛选,剔除不合格或损坏者。 (2)电老化 在待用电阻器两端加直流电压,使用电阻器所承受的功率为额定功率的1.5倍,通电5 min后,在常温下恢复30 min。注意所加电压不要超过最大工作电压。之后进行筛选,剔除不合格或损坏者。电阻器的测量 1.固定电阻器:选择合适的量程,使指针指示值尽可能落到刻度的中段位置,即全 刻度起始的20%~80%弧度范围内,以使测量更准确。 2.熔断电阻器的检测:(熔断电阻器,是一种具有电阻器和熔断器双重作用的特殊元件。它在电路中用字母“RF”或“R”表示,分为可恢复式熔断电阻器和一次性熔断电阻器两种) 若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1 挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。 3.电位器的检测 旋柄转动是否平滑,开关通、断时“喀哒”声是否清脆 A万用表欧姆挡测“1”、“2”两端,如万用表的指针不动或与标称阻值相差很多,则表明该电位器已损坏。 B 检测电位器的活动臂与电阻片的接触是否良好。 用万用表的欧姆档“1”“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向 旋至接近“关”的位置,阻值越小越好。再顺时针慢慢旋转轴柄,电阻值应逐渐增大, 表头中的指针应平稳移动。当旋至“3”端时,阻值应接近电位器的标称值。如指针在 电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。 4 热敏电阻的检测 ①.正温度系数热敏电阻(PTC)的检测 用万用表R×1 挡,分两步 A 常温检测(室内温度接近25℃) 已损坏 将两表笔接触PTC 热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。相差过大,则说明 B 加温检测;将一热源(例如电烙铁)靠近PT C 热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。注意不要使热源与P TC 热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。 ②负温度系数热敏电阻(NTC)的检测 测标称电阻值R t Rt 是生产厂环境温度为25℃时所测得的,所以用万用表测量Rt 时,亦应在环境温度接近25℃时进行。测试时,不要用手捏住热敏电阻体,以防止人体温度对测试产生影响

相关主题
文本预览
相关文档 最新文档