当前位置:文档之家› 常用塑料片材的物理性能和化学特性

常用塑料片材的物理性能和化学特性

常用塑料片材的物理性能和化学特性
常用塑料片材的物理性能和化学特性

常用塑料片材的物理性能和化学特性

材料

名称

可燃性

特性

用途

优点

缺点

PP

聚丙烯

可燃

1、铰链结合性特优

2、耐热性佳

3、所有塑料中最轻

4、电气特性优

5、耐药品性优

1、低温时耐冲击性差

2、耐候性不佳

1、各种容器,尤其耐热品

2、链结合形成品

3、玩具类

4、胶卷、软片、薄板

5、板、管道

PVC

聚氯乙烯

自消性

1、柔软程度可自由调整

2、硬且强韧

3、耐候性优

4、耐水性、药品性优

5、成本较低

1、耐热、耐寒性差

2、耐冲击性差

3、耐绕曲性差

1、管道、配管零件

2、电线覆皮、鞋类

3、工业、特殊化学部品

4、卷、软片、薄板、皮革

5、橡胶的代替品

PA

尼龙

自消性

1、强韧、耐冲击性优

2、耐热耐寒、耐药耐油性优

3、具有自润性,摩擦抵抗力小

1、吸水性差、缺乏尺寸安全性

2、抗强酸力弱

1、机械部用品

2、汽车、电气制品

3、裤袜、软管

POM

聚甲醛

可燃

1、强韧、富弹性、耐疲劳

2、具有自润性、摩擦抵抗力小

3、耐药品性优

1、抗紫外线力差

2、热分解即产生福马林气体

3、抗酸碱力弱

1、负荷重工业制品

2、汽车、电气制品

3、玩具类

4、金属的代替品

PC

自消性

1、强韧、耐冲击性优

2、耐热耐寒、耐候性优

3、尺寸精确,安定性优

4、具有通明性

1、耐疲劳差

2、抗紫外线力差

3、抗酸碱力弱

1、负荷重工业制品

2、耐热电气制品、金属的代替品

3、安全帽、计器类、眼药瓶、食器PU

可燃

1、耐磨性佳、耐候、耐寒、耐氧化

2、弯曲度、伸展性好

3、软硬度可调

1、软度等级低,易黏膜缩水

2、原料干燥时间长

1、鞋类及运动产品

2、吸震消音、裤袜套

3、软质手感的提把、扶手

仪器分析是以物质的物理性质或物理化学性质为 基础

仪器分析是以物质的物理性质或物理化学性质为基础,探求这些性质在分析过程中所产生分析信号与物质内在关系为基础,进而对其进行定性、定量及结构分析和动态分析的一类测定方法。仪器分析方法与分类:光学分析法非光谱法(nonspectrum method)光谱法(sepectrum method) 其他仪器分析方法和技术分离分析法(色谱分析法电化学分析法光学分析法定义:利用待测组分的光学性质(如光的发射、吸收、散射、折射、衍射、偏振等)进行分析测定。理论基础:物理光学、几何光学与量子力学分类:吸收光谱法、发射光谱法,散射光谱法,旋光(偏振光)分析法、折射分析法、X射线及电子衍射分析法等紫外可见光谱仪原子吸收光谱仪电化学分析法定义:利用待测组分在溶液中的电化学性质进行分析测定。理论基础:电化学、化学热力学分类:电位分析法、极谱与伏安分析、电导分析、库仑分析等分离分析法(色谱分析法)定义:利用待测组分间的溶解能力、亲和能力、吸附和解吸能力、迁移速率等性能方面的差异,先分离后分析测定。理论基础:化学热力学、化学动力学分类:气相色谱法,液相色谱、薄层色谱法、离子色谱法,超临界流体色谱法等仪器分析方法的主要性能参数精密度:指在相同条件下用同一方法对同一试样进行多次平行测定结果之间的符合的程度。(重复性与再现性) 表示:标准偏差S表示或相对标准偏差Sr(或RSD)表示。是测量中随机误差的量度,S、Sr越小,精密度越高.准确度:多次测定的平行值与真值(或标准值)相符合的程度。相对误差Er=(x-μ)/ μ×100% Er越小,准确度越高选择性:指分析方法不受试样中基体共存物质干扰的程度。选择性越好,干扰越少。灵敏度b:是指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度.(在浓度线性范围内校正曲线的斜率.)b=dA/dC(dM) 检出限——指某一分析方法在给定的置信度能够被仪器检出的待测物质的最低量浓度。(最小浓度,最小质量,最小物质的量) 相对检出限,绝对检出限表示: AL=A0+3S0; 能产生净响应信号AL-A0的待测物质的浓度或质量即为该分析方法对该物质的检测限D=(AL-A0)/b,AL为最小响应信号。精密度,准确度,检出限是评价分析方法的最主要技术指标仪器分析的特点(1)分析速度快。(2)灵敏度高,相对灵敏由10-4%(ppm)到10-7 % (ppb),绝对灵敏由μg到ng。(3)容易实现在线分析和遥控监测。计算机与网络的应用.(4)用途广泛——定性分析、定量分析外、结构分析。仪器分析的局限性仪器设备复杂。仪器分析一般需用已知组成的标准物质来对照。相对误差较大,一般不适于常量和高含量分析。分析质量保证体系包括:人员的考核、仪器的维护、分析质量控制、原始记录归档及查询等制度和措施。要求实事求是地记录数据和测定过程,防止伪造实验数据的可能性,并保证测定数据的责任性和追溯性。这是一项管理方面的任务,是一种防止虚假分析结果的廉价措施,是人品和诚信的保证。样品采集及制备原则:代表性,步骤:采集、综合、抽提;方法:随机与代表性取样相结合提取和消解溶剂提取:溶剂选择,提取过程与方法消化:干法消化与湿法消化.新技术应用:压力密封消解与微波加热消解样品纯化:色谱法、化学法、萃取法样品浓缩与衍生:浓缩目的:提高待测组分浓度,除去过多溶剂浓缩方法:常压、减压、氮气吹干、冷冻干燥衍生目的吸收定义:当光与物质接触时,某些频率的光被选择性吸收并使其取样强度减弱。本质:光能转移到物质的分子或原子中。分来:分子吸收与原子吸收.特性:透射率T=I/I0,吸光度A=Lg(I0/I)朗伯-比尔定律:在一定浓度范围内,物质的吸光度A 与吸光样品的浓度C及厚度L的乘积成正比,这就是光的吸收定律A=kCL 发射:当物质受到激发后,从高能态回到低能态时,往往以光辐射的形式释放出多余能量,可分为原子发射、分子发射以及X 射线光的透射:光通过透明介质时,如果只是引起微粒的价电子相对于原子核的振动, 它所需要的光能,只是瞬时被微粒所保留,当物质回到原来的状态时,又毫无保留地将能量(光)重新发射出来, 在这个过程中没有净能量的变化,因此光频率也没有变化;只是传播速度减慢:以能源与物质相互作用引起原子、分子内部量子化能级之间迁移所产生的光的吸收、发射、散射等波长与强度的变化关系为基础的光分析法,称为光谱法与光谱有关的能量是Er、Ev 、Ee ,E光= hν= E2-E1= △E= △Ee +△Ev+ △Er △Ee为外层电子跃迁所引起的内能变化;△Ev为振动能级跃迁所引起的内能变化;△Er为转动能级跃迁所引起的内能变化; 由于物质内部的粒子运动所处的能级和产生能级跃迁时的能量变化都是量子化的,因此,在产生能级跃迁时只能吸收或发散与粒子运动相对应的特定频率的光能,形成相应的特征光谱。不同的物质由于其组成和结构的不同,粒子运动时所具有的能量也不同,获得的特征光谱也不同,因此根据试样物质的光谱可以研究物质的组成和结构原子光谱主要是由原子核外电子在不同能级间跃迁而产生的辐射或吸收,它的表现形式为线光谱。△E一般在2~20eV之间,按式△E=hν=h c/ λ可以估算波长多分布在紫外及可见光区(200~780nm)吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自旋原子核吸收特定的光子之后,由低能态被激发跃迁到高能态,此时将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,其寿命很短,当回到基态或较低能态时,有时以热或光的形式释放所吸收的的能量,由此获得的光谱就是发射光谱。散射光谱:无能量交换的为瑞利散射,有能量变化的为拉曼散射。非光谱法:圆二、旋光、折射、干涉、衍射等原子发射光谱法优点:多元素同时检测能力;灵敏度高(ICP);选择性好;准确度高;试样用量少,测定范围广。缺点:只能用于元素总量分析,无法确定空间结构及官能团;无法进行元素价态和形态分析;常见非金属元素如O、S、N等谱线在远紫外区,无法检测原子的基本状态:基态、激发态原子发射或发光:处于激发态的电子有降低能级的趋势,即回跃迁到基态或能级较低的激发态.。此时电子以电磁辐射形式将多余能量释放出来。产生原子发射光谱.特征光谱:由于每一种元素都有其特有的电子构型,即能级层次,所以各元素的原子只能发射出它特有的波长的光,经过分光系统得到各元素发射的互不相同的光谱. 定性分析:利用足够能量使原子受激发而发光,根据某元素的特征频率或波长的谱线是否出现,即可确定试样中是否存在该种原子。定量分析:分析试样中待测原子数目越多,则被激发的该种原子的数目也多,相应的谱线强度也越大,如与已知含量的标样的谱线强度相比,即可测定试样中该种元素的含量。谱线的自吸:原子在高温区发射某一波长的辐射,被处于边缘低温状态的同种原子所吸收的现象. 谱线的自蚀:但浓度达

材料物理与化学历年复试笔试题(重要)

华工材物化复试笔试题 2010年 1、一个人海中溺水,救生员离海有一距离,救生员在水中、陆地上的速度不一样,找一最快路线。 2 、列举生活常见的发光显示器,并说明主要特征。 有机发光显示器(OLED,Organic Light Emitting Display)是一种利用有机半导体材料制成的、用直流电压驱动的薄膜发光器件,OLED显示技术与传统的LCD 显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。OLED的工作原理十分简单,有机材料ITO 透明电极和金属电极分别作为器件的阳极和阴极,在一定电压的驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴相遇形成激子,使发光分子激发而发出可见光。根据使用的有机材料不同,OLED又分为高分子OLED和小分子OLED,二者的差异主要表现在器件制备工艺上:小分子器件主要采用真空热蒸发工艺;高分子器件则采用旋转涂覆或喷涂印刷工艺。 特点: 1.薄膜化的全固态器件,无真空腔,无液态成份; 2. 高亮度,可达300 cd/m2以上; 3.宽视角,上下、左右的视角宽度超高170度; 4.快响应特性,响应速度为微秒级,是液晶显示器响应速度的1000倍; 5.易于实现全彩色; 6.直流驱动,10V以下,用电池即可驱动; 7.低功耗; 8.工艺比较简单,低成本; 9.分辨率;10.温度特性,在-40℃~70℃范围内都可正常工作。 3 、发光二极管原理,光电二极管的原理 (1)发光二极管(LED)由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。 它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关 (2)光电二极管(Photo-Diode,PD)是将光信号变成电信号的半导体器件,由

物理化学小论文题目讲解

物理化学期中课程小论文 一形式要求: 1.题目(见后) 2.背景介绍(提出问题) 3.基本物理化学原理(鼓励自学内容) 4.实际应用的例子 5.结论/感受/未来展望 6.参考文献 二文字数量要求: 1.论文必须独立完成; 2.论文应有自己的分析和观点,不能是文献资料的拼接; 3.论文的字数:最少不得少于2000字,最多不超过5000字,以2000-3000字为宜; 三打印要求:A4,电子稿(手写可以) 封面题目,目录,班级,姓名,学号,时间 包括封面在内不超过4页 四上交时间限定:14周周三(可以与该次作业一起上交),过时不候。 五论文格式:(见附页) 题目(不超过20个字,字体4号,居中);

姓名;(小5号字,居中) 班级;(小5号字,居中) 电话和E-mail (小5号字,居中); 摘要(不超过100字,小5号字); 关键词(3-5个,小5号字); 正文(包括引言,具体讨论和结论,5号字)参考文献

六、物理化学课程小论文参考题目 (物理化学原理在实际科研生产中的应用) 1 物理化学家小传及其对有化学的贡献; 2 以合成氨反应为例说明你对热力学第二定律的认识和思考; 3 稀溶液的依数性及其应用; 4 物理化学热力学研究的现状,应用,局限性分析和改进的设想; 5 物理化学发展中的偶然发现和对你的启发; 6 以合成氨为例说明影响化学平衡的主要因素及其在科研和生产实践中的应用; 7 用物理化学方法对现实生活或生产中某些现象进行解释; 8 热力学第一定律及其应用; 9 相图在化学化工或实际生活中的应用; 10 化工中的界面现象。 11基于LabVIEW软件的物理化学实验仿真系统的开发与应用 12多壁碳纳米管储氢的物理吸附与化学吸附特性 13交互智能性物理化学实验课件的设计与开发 14物理化学实验仿真软件的研究与开发 15中外两本优秀物理化学教材的比较研究 16中学化学实验中物理知识凸现状况的研究 17物理化学实验课程中实验题目的设计与研究 18化学电源与物理电源产品策略研究 19初中化学、物理、生物交融性教学的研究 20硅系延期药物理化学性质及燃烧性质的研究

漫谈物理化学的发展及学科特点

漫谈物理化学的发展及学科特点 2007化教一班222007316011045 王祖龙 摘要:经历漫长而艰难的发展,物理化学终以一门新的学科出现。它具有自身独特的特点,并在化学中占有极重要位置。随着人们不断的深入认识,越来越多地为人们服 务。 关键词:物理化学形成发展学科特点前景 世界的变化日新月异,尤其在当今,新兴学科层出不穷,但统而观之,它们有一个重要特点,即很多都是边缘学科(亦称交叉学科,1926年美国首次出现)——横跨两种或两种以上基础学科。边缘学科的产生,是随着人们对物质运动形式及固有次序的逐步揭示,是当基础学科发展到一定阶段时的必然结果,是人们知识的深化。 化学,在其漫长的发展历程中,形成了自己独有的特色,并且一直以来对于人类文明的发展起到了很大的推动作用。与此同时,一系列化学的分支学科也不断形成,大大的丰富了化学知识,拓展了人们的眼界。在所有化学分支学科中,当属物理化学最为重要。 而物理化学,作为最早形成的第一门边缘学科,被称为交叉学科的典范,是现代化学的核心内容和理论基础,在基础化学课程体系中起着龙头作用。它的形成与发展经历了较漫长而艰难的时期。 一、物理化学的形成与发展 “物理化学”这个术语曾在十八世纪首先被罗蒙诺索夫创用,但是它的主要研究方向和基本内容却是在十九世纪下半叶才被确定下来。至今其研究内容也都是在当时的基础上不断深入发展的。对于物理化学的形成,不得不提到一个人——杰出的俄国一德国物理化学家奥斯特瓦尔德(Ostwald,W.F.,1853一1932),他为物理化学作出了最伟大的贡献,在1887年创办了第一份名副其实的专业性期刊:德文的《物理化学杂志》(Zeitschrift physikalische Chemie)121,标志着物理化学的形成.。奥斯特瓦尔德因此被称为“物理化学之父”,也曾被列宁誉为“伟大的化学家和渺小的哲学家”。 在十九世纪下半叶以前的近代化学初期,化学家往往又是物理学家,他们研究的问题常常相互有关,相互渗透和相互补充。例如,1807年法国化学家盖吕萨克观测到气体向真空膨胀后温度没有变化,于是物理学家便据此作出“气体膨胀至真空没有作功”这种结论。又如道尔顿,他起初是一位物理学家,后来才研究化学。他从长期观测气象着手,研究空气组成并得出气体的“微粒说”;再经过对碳的两种氧化物以及多种氢化物的组成的化学分析实验,在1804年正式提出倍比定律,后来将物理原子论(即哲学“微粒说”)发展成为“化学原子论”,成为了近代化学诞生的标志。 到了十九世纪下半世纪,随着工业生产力的发展,以及此前大量拥现的化学和物理学成就的逐步积累,近代化学迅速向专业化分工,化学家在研究方向及方法上和物理学家终于分道扬镰。物理化学正是在这个时期开始独立形成的。在这一时期,主要是以李比希和杜马等为代表的有机化学家。有机化学取得了重大的成就,使得从类型理论向结构理论的发展逐步系统化。同时在这一时期,有少数化学家(有的本来也就是物理学家和数学家)关心物理学的理论和发现,这就使得化学和物理学相结合起来,例如拉乌尔(Raoutt,F.M,1830一1901,法国)、瓦格(Waage,P.1933一1990,娜威)、范霍夫(Van't Hoff,J.H.,1852一1911) 以及能斯特(Nernst,H.W.,1864一1941,德国)等。他们都为物理化学最终成为现代化学的一个独立分支做出了开创性的工作,是初期物理化学的共同奠基人。 从道尔顿提出原子论以来,近代化学前期到奥斯特瓦尔德创办《物理化学杂志》之间,有着许多与物理化学形成有关的十分重要的史实: 1、关于原子一分子学说

物化相平衡复习习题

选择题 1. 二元恒沸混合物的组成 (A)固定(B) 随温度而变(C) 随压力而变(D) 无法判断答案:C 2. 一单相体系, 如果有3种物质混合组成, 它们不发生化学反应, 则描述该系统状态的独立变量数应为 (A) 3个(B) 4个(C) 5个(D) 6个答案:B。F=C-P+2=3-1+2=4 3.通常情况下,对于二组分物系能平衡共存的最多相为(A) 1 (B) 2 (C) 3 (D) 4 答案:D。F=2-P+2=4-P,F不能为负值,最小为零。当F=0时P=4。4.正常沸点时,液体蒸发为气体的过程中 (A) ΔS=0 (B) ΔG=0 (C) ΔH=0 (D) ΔU=0 答案:B。此为可逆过程故ΔG=0。5. 以下各系统中属单相的是 (A) 极细的斜方硫和单斜硫混合物(B) 漂白粉(C) 大小不一的一堆单斜硫碎粒(D) 墨汁答案:C。 6. NaCl(s), NaCl水溶液及水蒸汽平衡共存时, 系统的自由度(A) F=0 (B) F=1 (C) F=2 (D) F=3 答案:B。F=C-P+2,C=2,P=3,故F=2-3+2=1。 7. 如果只考虑温度和压力的影响, 纯物质最多可共存的相有(A) P=1 (B) P=2 (C) P=3 (D) P=4 答案:C。F=C-P+2=1-P+2=3-P,当F最小为零时P=3。7. 对于相律, 下面的陈述中正确的是(A) 相律不适用于有化学反应的多相系统(B) 影响相平衡的只有强度因素 (C) 自由度为零意味着系统的状态不变 (D) 平衡的各相中, 系统包含的每种物质都不缺少时相律才正确答案:B 8. 关于三相点, 下面的说法中正确的是(A) 纯物质和多组分系统均有三相点(B) 三相点就是三条两相平衡线的交点(C) 三相点的温度可随压力改变 (D) 三相点是纯物质的三个相平衡共存时的温度和压力所决定的相点答案:D 9. 用相律和Clapeyron 方程分析常压下水的相图所得出的下述结论中不正确的是(A) 在每条曲线上, 自由度F=1 (B) 在每个单相区, 自由度F=2 (C) 在水的凝固点曲线上, ΔHm(相变)和ΔVm的正负号相反(D) 在水的沸点曲线上任一点, 压力随温度的变化率都小于零答案:D 10. 二组分系统的最大自由度是

常用化学试剂物理化学性质

氨三乙酸 化学式CH6N9O6,分子量191.14,结构式N(CH2COOH)3,白色棱形结晶粉末,熔点246~249℃(分解),能溶于氨水、氢氧化钠,微溶于水,饱和水溶液pH为2.3,不溶于多数有机溶剂,溶于热乙醇中可生成水溶性一、二、三碱性盐。属于金属络合剂,用于金属的分离及稀土元素的洗涤,电镀中可以代替氰化钠,但稳定性不如EDTA。 丙酮 最简单的酮。化学式CH3COCH3。分子式C3H6O。分子量58.08。无色有微香液体。易着火。比重0.788(25/25℃)。沸点56.5℃。与水、乙醇、乙醚、氯仿、DMF、油类互溶。与空气形成爆炸性混和物,爆炸极限2.89~12.8%(体积)。化学性质活泼,能发生卤化、加成、缩合等反应。广泛用作油脂、树脂、化学纤维、赛璐珞等的溶剂。为合成药物(碘化)、树脂(环氧树脂、有机玻璃)及合成橡胶等的重要原料。 冰乙酸 化学式CH3COOH。分子量60.05。醋的重要成份。一种典型的脂肪酸,无色液体。有刺激性酸味。比重1.049。沸点118℃,可溶于水,其水溶液呈酸性。纯品在冻结时呈冰状晶体(熔点16.7℃),故称“冰醋酸”,能参与较多化学反应。可用作溶剂及制造醋酸盐、醋酸酯(醋酸乙酯、醋酸乙烯)、维尼纶纤维的原料。 苯酚 简称“酚”,俗称“石炭酸”,化学式C6H5OH,分子量94.11,最简单的酚。无色晶体,有特殊气味,露在空气中因被氧化变为粉红,有毒!并有腐蚀性,密度1.071(25℃),熔点42~43℃,沸点182℃,在室温稍溶于水,在65℃以上能与任何比与水混溶,易溶于酒精、乙醚、氯仿、丙三醇、二硫化碳中,有弱酸性,与碱成盐。水溶液与氯化铁溶液显紫色。可用以制备水杨酸、苦味酸、二四滴等,也是合成染料、农药、合成树脂(酚醛树脂)等的原料,医学上用作消毒防腐剂,低浓度能止痒,可用于皮肤瘙痒和中耳炎等。高浓度则产生腐蚀作用。 1,2-丙二醇 化学式CH3CHOHCH2OH,分子量76.10,分子中有一个手征性碳原子。外消旋体为吸湿性粘稠液体;略有辣味。比重1.036(25/4℃),熔点-59℃,沸点188.2℃、83.2℃(1,333Pa),与水、丙酮、氯仿互溶,溶于乙醚、挥发油,与不挥发油不互溶,左旋体沸点187~189℃,比旋光度-15.8。丙二醇在高温时能被氧化成丙醛、乳酸、丙酮酸与醋酸。为无毒性抗冻剂。可用于酿酒、制珞中,是合成树脂的原料。医学上用作注射剂、内服药的溶剂与防腐剂,防腐能力比甘油大4倍,此外还可用于室内空气的消毒。 丙三醇 学名1,2,3-三羟基丙烷,分子式C3H8O3,分子量92.09,有甜味的粘稠液体,甜味为蔗糖的0.6倍,易吸湿,对石蕊试纸呈中性。比重1.26362(20/20℃)。熔点7.8℃,沸点290℃(分解)167.2℃(1,3332Pa)。折光率1.4758(15℃),能吸收硫化氢、氰化氢、二氧化硫等气体。其水溶液(W/W水)的冰点:10%,-1.6℃;30%,-9.5℃;50%,-23℃;80%,-20.3℃。与水、乙醇互溶,溶于乙酸乙酯,微溶于乙醚,不溶于苯、氯仿、四氯化碳、二硫化碳、石油醚、油类。可以制备炸药(硝化甘油)、树脂(醇酸树脂)、润滑剂、香精、液体肥皂、增塑剂、甜味剂等。在印刷、化妆品、烟草等工业中作润滑剂。医学上可用滋润皮肤,防止龟裂;作为栓剂(甘油栓)可用作通便药。切勿与强化剂如三氧化铬、氯酸钾、高锰酸钾放在一起,以免引起爆炸。 蓖麻油 化学式C57H104O9,分子量933.37。无色或淡黄色透明液体,具有特殊臭味,凝固点-10℃,比重

钢的物理化学相分析方法的研究

25Cr3Mo3NiNb钢的物理化学相分析方法的研究* 刘庆斌 卢翠芬 (钢铁研究总院,北京,100081) 摘 要本文系统研究了25Cr3Mo3NiNb钢的物理化学相分析方法。对不同回火温度下试验钢中各析出相的结构、化学组成和含量进行了测定,揭示了25Cr3Mo3NiNb钢中各析出相随回火温度的析出规律。随回火温度升高,试验钢中相继析出M3C、M2C、M(CN)、M7C3等碳化物。关键词 25Cr3Mo3NiNb钢 析出相 物理化学相分析 25Cr3Mo3NiNb是新近研制的一种高强度中碳结构钢,其通过适当的热处理工艺,可获得良好的强韧性配合。本文系统研究了该合金钢的物理化学相分析方法,对不同回火温度下试验钢中各析出相的结构、化学组成和含量进行了测定,揭示了25Cr3Mo3NiNb钢中各析出相随回火温度的析出规律。随回火温度升高,试验钢中相继析出M3C、M2C、M(CN)、M7C3等碳化物。 1 实验部分 1.1 试样的化学成分及热处理制度 试样中主要元素的质量分数/%:碳0.3,铬3.0,钼3.0,镍0.7,铌0.1,铜0.2,氮0.01,硅0.1锰0.2。试样的热处理制度见表1。 表1 试样的热处理制度 Table1 Heat treatment specifitions of samples 编号 No. 热处理制度 Heat treatment specifitions 11 1050℃×1h水淬 60 1050℃×1h水淬→500℃×2h水冷 66 1050℃×1h水淬→575℃×2h水冷 69 1050℃×1h水淬→620℃×2h水冷 35 1050℃×1h水淬→640℃×2h水冷 79 1050℃×1h水淬→660℃×2h水冷 1.2 析出相的电解提取 25Cr3Mo3NiNb钢中存在少量残余奥氏体相。采用氯化钾+柠檬酸水溶液电解提取碳化物时,残余奥氏体相不定量提取,干扰碳化物的测定。经实验,在1%氯化锂,10%乙酰丙酮甲醇溶液,I=0.03A/cm2,T<-5℃的电解制度下,可使基体和残余奥氏体完全电离,而碳化物定量保留。 1.3 相的分离 1.3.1 M3C相的分离:经实验,(5+95)盐酸乙醇,加热回馏1h,可溶解M3C相,定量保留其它相。1.3.2 M2C相的分离:M2C与MC相的化学稳定性极为相似,文献[1,2]曾采用50g/L~100g/L氢氧化钠溶液加热煮沸溶解M2C相,文献[3]介绍采用硫酸磷酸混合酸(1+1+18)加热煮沸可溶解M2C相。经实验25Cr3Mo3NiNb钢中析出的M2C相在上述两种条件下均不溶解,即使在400g/L氢氧化钠溶液中,加热回馏数小时也不溶解,这主要是其化学组成的不同造成其化学稳定性发生差异。我们对该合金钢经电解提取并分离M3C相后的M2C+MC+M7C3相残渣进行了试验,以确定M2C与其他相的分离方法,见表2。由表2结果并结合定量分析确定,⑽号分离条件可溶解M2C相,保留Nb(CN) 和M7C3相。 1.3.3 M7C3相的分离:经实验,硫酸—过氧化氢水溶液,沸水浴中加热,可溶解M2C和Nb(CN)相,保留M7C3相。 表2 M2C相与MC相的分离方法 Tab.2 Separate method of M2C and MC 编号 No. 分离方法 Separate method 保留相 Remains ⑴ 400g/LNaOH,沸水浴3h M2C 、Nb(CN) 、M7C3 ⑵ 400g/LNaOH,煮沸3h M2C 、Nb(CN) 、M7C3 ⑶ 400g/LNaOH,加热回馏3h M2C 、Nb(CN) 、M7C3 ⑷ 400g/LNaOH,加热回馏5h M2C 、Nb(CN) 、M7C3 ⑸硫酸(1+1),加热回馏3h M2C 、Nb(CN) ⑹硫磷混酸,加热回馏3h M2C 、Nb(CN) ⑺硝酸(1+99),室温3h M2C 、Nb(CN) 、M7C3 ⑻硝酸(3+97),室温3.0h Nb(CN)、M7C3、M2C(少) ⑼硝酸(5+95),室温3.0h Nb(CN)、M7C3、M2C(少)⑽硝酸(1+9),室温3.0h Nb(CN)、M7C3 2 结果与讨论 2.1 析出相类型 电解提取及经分离富集得到的粉末经X-射线衍射分析确定[6],该钢的析出相为:

物理化学性质

甲醇 MSDS 基本信息 中文名:甲醇;木酒精木精;木醇英文名: Methyl alcohol;Methanol 分子式:CH4O 分子量: 32.04 CAS号: 67-56-1 外观与性状:无色澄清液体,有刺激性气味。 主要用途:主要用于制甲醛、香精、染料、医药、火药、防冻剂等。 物理化学性质 熔点: -97.8 沸点: 64.8 相对密度(水=1):0.79 相对密度(空气=1): 1.11 饱和蒸汽压(kPa):13.33/21.2℃ 溶解性:溶于水,可混溶于醇、醚等多数有机溶剂临界温度(℃):240 临界压力(MPa):7.95 燃烧热(kj/mol):727.0 甲醇由甲基和羟基组成的,具有醇所具有的化学性质。[3] 甲醇可以在纯氧中剧烈燃烧,生成水蒸气(I)和二氧化碳(IV)。另外,甲醇也和氟气会产生猛烈的反应。[4] 与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易 燃烧。燃烧反应式为: CH3OH + O2 → CO2 + H2O 具有饱和一元醇的通性,由于只有一个碳原子,因此有其特有的反应。例如:① 与氯化钙形成结晶状物质CaCl2·4CH3OH,与氧化钡形成B aO·2CH3OH的分子化合物并溶解于甲醇中;类似的化合物有MgCl2·6CH3OH、CuSO4·2CH3OH、CH3OK·CH3OH、AlCl3·4CH3OH、AlCl3·6CH3OH、AlCl3·10CH3OH等;② 与其他醇不同,由于-CH2OH基与氢结合,氧化时生成的甲酸进一步氧化为CO2;③ 甲醇与氯、溴不易发生反应,但易与其水溶液作用,最初生成二氯甲醚(CH2Cl)2O,因水的作用转变成HCHO与HCl;④ 与碱、石灰一起加热,产生氢气并生成甲酸钠;CH3OH+NaOH→HCOONa+2H2;⑤与锌粉一起蒸馏,发生分解,生成 CO和H2O。[2] 产品用途 1.基本有机原料之一。主要用于制造甲醛、醋酸、氯甲烷、甲胺和硫酸二甲酯等多种 有机产品。也是农药(杀虫剂、杀螨剂)、医药(磺胺类、合霉素等)的原料,合成对苯二甲酸二甲酯、甲基丙烯酸甲酯和丙烯酸甲酯的原料之一。还是重要的溶剂,亦

各元素物理化学性质

各元素物理化学性质 序号符 号 中 文 读音 原子 量 外层 电子 常见化 合价 分类英文名英文名音标其它 1 H 氢轻 1 1s1 1、-1 主/非 /其 Hydrogen ['haidr?d??n] 最轻 2 He 氦害 4 1s2 主/非 /稀 Helium ['hi:li?m] 最难液化 3 Li 锂里7 2s1 1 主/碱Lithium ['liθi?m] 活泼 4 Be 铍皮9 2s2 2 主/碱 土 Beryllium [be'rili?m] 最轻碱土金属元素 5 B 硼朋10.8 2s2 2p1 3 主/类Boron ['b?:r?n] 硬度仅次于金刚石 的非金属元素 6 C 碳探12 2s2 2p2 2、4、-4 主/非 /其 Carbon ['kɑ:b?n] 沸点最高 7 N 氮蛋14 2s2 2p3 -3 1 2 3 4 5 主/非 /其 Nitrogen ['naitr?d??n] 空气中含量最多的 元素 8 O 氧养16 2s2 2p4 -2、-1、2 主/非 /其 Oxygen ['?ksid??n] 地壳中最多 9 F 氟福19 2s2 2p5 -1 主/非 /卤 Fluorine ['flu?ri:n] 最活泼非金属,不能 被氧化 10 Ne 氖乃20 2s2 2p6 主/非 /稀 Neon ['ni:?n] 稀有气体 11 Na 钠那23 3s1 1 主/碱Sodium ['s?udi?m] 活泼 12 Mg 镁每24 3s2 2 主/碱 土 Magnesium [mæɡ'ni:zi?m] 轻金属之一 13 Al 铝吕27 3s2 3p1 3 主/金 /其 Aluminum [,ælju'minj?m] 地壳里含量最多的 金属 14 Si 硅归28 3s2 3p2 4 主/类Silicon ['silik?n] 地壳中含量仅次于 氧 15 P 磷林31 3s2 3p3 -3、3、5 主/非 /其 Phosphorus ['f?sf?r?s] 白磷有剧毒 16 s 硫留32 3s2 3p4 -2、4、6 主/非 /其 Sulfur ['s?lf?] 质地柔软,轻。与氧 气燃烧形成有毒的 二氧化硫 17 Cl 氯绿35.5 3s2 3p5 -1、1、3、 5、7 主/非 /卤 Chlorine ['kl?:ri:n] 有毒活泼 18 Ar 氩亚40 3s2 3p6 主/非 /稀 Argon ['ɑ:ɡ?n] 稀有气体,在空气中 含量最多的稀有气 体 19 K 钾假39 4s1 1 主/碱Potassium [p?'tæsj?m] 活泼,与空气或水接触发生反应,只能储存在煤油中 20 Ca 钙盖40 4s2 2 主/碱 土 Calcium ['kælsi?m] 骨骼主要组成成分

材料的物理性能与化学性能

、物理性能 物理性能是指材料固有地属性,金属地物理性能包括密度、熔点、电性能、热性能、磁性能等. 文档来自于网络搜索 ()密度:密度是指在一定温度下单位体积物质地质量,密度表达式如下:文档来自于网络搜索 ρ 式中ρ——物质地密度(); ——物质地质量(); ——物质地体积(). 常用材料地密度(℃) 材料铅铜铁钛铝锡钨塑料玻璃 钢 碳纤维复合材料密度[] 密度意义:密度地大小很大程度上决定了工件地自重,对于要求质轻地工件宜采用密度较小地材料(如铝、钛、塑料、复合材料等);工程上对零件或计算毛坯地质量也要利用密度.文档来自于网络搜索 ()熔点:是材料从固态转变为液态地温度,金属等晶体材料一般具有固定地熔点,而高分子材料等非晶体材料一般没有固定地熔点. 文档来自于网络搜索 常用材料地熔点 材料钨钼钛铁铜铝铅铋锡铸铁碳钢铝合金 熔 点℃ 熔点意义:金属地熔点是热加工地重要工艺参数;对选材有影响,不同熔点地金属具有不同地应用场合:高地熔点金属(如钨、钼等)可用于制造耐高温地零件(如火箭、导弹、燃气轮机零件,电火花加工、焊接电极等),低地熔点金属(如铅、铋、锡等)可用于制造熔丝、焊接钎料等. 文档来自于网络搜索 ()电阻率:电阻率用ρ 表示,电阻率是单位长度、单位截面积地电阻值,其单位为Ω.文档来自于网络搜索 电阻率地意义:是设计导电材料和绝缘材料地主要依据.材料地电阻率ρ越小,导电性能越好.金属中银地导电性最好、铜与铝次之.通常金属地纯度越高,其导电性越好,合金地导电性比纯金属差,高分子材料和陶瓷一般都是绝缘体.导电器材常选用导电性良好地材料,以减少损耗;而加热元件、电阻丝则选用导电性差地材料制作,以提高功率. 文档来自于网络搜索 ()导热率:导热率用导热率λ表示,其含义是在单位厚度金属,温差为℃时,每秒钟从单位断面通过地热量.单位为(.K).文档来自于网络搜索 常用金属地热导率 材料银铜铝铁灰铸铁碳钢 热导率[(.K)] (℃) 金属具有良好地导热性,尤其是银、铜、铝地导热性很好;一般纯金属具有良好地导热性,合金地成分越复杂,其导热性越差. 文档来自于网络搜索 导热率地意义:是传热设备和元件应考虑地主要性能,对热加工工艺性能也有影响. 散热器等传热元件应采用导热性好地材料制造;保温器材应采用导热性差地材料制造.热加工工艺与导热性有密切关系,在热处理、铸造、锻造、焊接过程中,若材料地导热性差,则

物理化学相图小知识

1.相律的有关概念与相律表达式 (1)独立组份数C=S-R-R′。S为物种数,R为独立化学反应计量式数目。R′ 为同一相中独立的浓度限制条件数(包括不同物种依反应计量式比例关系及离子物种电中性条件) (2)自由度数f,系指相平衡体系中相数保持不变时,所具有独立可变的强度变量数。 (3)相律内容及其数学表达式。相律就是揭示pVT平衡系统中自由度数、独立组份数和相数三者之间的制约关系。 表达式为:f=C-Φ+2;式中(式中 2 指T、p两强度变量) 当T、p中有任一固定,则表达式为:条件自由度数f*=C-Φ+1 当考虑除T、p、X B以外的其他变量或相间有某种限制时,则表达式为f=C-Φ+n;(式中n≥2)(4)相律的局限性与应用的关键性。相律是一个定性规律,它指明特定条件下该平衡系统至多存在的相数及其相应的独立变量数,但不能指明是哪些相共存?哪些性质可作为独立变量及其它们之间的定量关系?相律对单相与复相都适用,但应用相律时,首先要考察系统是否满足相律成立的条件,并确定系统的组份数。 2.单组份系统的相图与特征 (1)单组份系统相律与相图:因C=1 ,故相律表达式为f=3-Φ。显然f最小为零,Φ最多应为 3 ,因相数最少为 1 ,故自由度数最多为 2 。相图是用几何图形来描述多相平衡系统宏观状态与T、p、X B(组成)的关系。在单组份相图中有单相的面、两相平衡线和三相平衡的点,自由度分别为f=2、f=1、f=0。 (2)单组份相变的特征与类型。相变是一个连续的质的飞跃。相平衡时物质在各相中的化学势相等,相变时某些物理性质有突变。根据物性的不同变化有一级相变和连续相变(包括二级相变等高阶相变)之分;前者广为存在如气、液、固之间转变,其特点是物质在两相中的化学势一级导数不相等,且发生有限的突 变〔即〕,此 类相变平衡曲线斜率符合克拉贝龙方程。后者如氦He(Ⅰ)与He(Ⅱ)的转变。正常状态与超导状态的转变,其特点是化学势的一级导数在相变点连续〔即V1=V2,S1=S2〕,但化学势二级导数 在相变点附近则迅速变化,出现一个极大峰如; 或。二级相变平衡曲线斜率符 合爱伦菲斯(Ehrenfest)方程: 3.克拉贝龙—克劳修斯方程及其应用条件 (ⅰ)克拉贝龙方程:适用于单组份系统两相间平衡 (ⅱ)克拉贝龙—克劳修斯方程:适用与其中含气相的两相间平衡,且气相应服从理想气体状态方程。

物理化学主要内容分析全解

绪论 1. 物理化学的主要任务 2.物理化学与农业科学、生物科学 3.物理化学课程的学习方法 4.反应进度。 第1章化学热力学基础 1.1 热力学的能量守恒原理 1.1.1 基本概念 1.1.2 热力学第一定律 1.2 可逆过程与最大功 1.2.1 功与过程的关系 1.2.2 可逆过程的特点 1.3 热与过程 1.3.1 定容热Qv 1.3.2 定压热Qp 1.3.3 相变热 1.3.4 热容 1.3.5热容与温度的关系 1.4 理想气体的热力学 1.4.1 Joule实验 1.4.2 理想气体?H、?U的计算 1.4.3 理想气体的C P,m与C V,m的关系 1.4.4 理想气体的绝热可逆过程 1.5 化学反应热 1.5.1化学反应热 1.5.2 定压反应热Q p与定容反应热Q V的关系 1.5.3 热化学方程式 1.5.4 Γe s s定律 1.5.5 几种反应热 1.5.6反应热与温度的关系 1.6 自发过程的特点与热力学第二定律 1.6.1 热力学第一定律的局限 1.6.2 自发过程的特点 1.6.3 热力学第二定律 1.7 熵增加原理与化学反应方向 1.7.1 Carnot定理 1.7.2 可逆过程热温商与熵变 1.7.3 不 可逆过程的热温商与熵变 1.7.4 热力学第二定律数学表达式 1.7.5 熵增加原理 1.7.6 熵变的计算 1.8 化学反应的熵变 1.8.1 热力学第三定律 1.8.2 物质的规定熵S T和标准熵SθT 1.8.3 化学反应熵变的计算 *1.9 熵的统计意义

1.9.1概率概念 1.9.2 熵的统计意义 1.9.3 熵与混乱度的关系 阅读材料非平衡态热力学——耗散结构理论简介 第2章自由能、化学势和溶液 2.1 Gibbs自由能判据 2.1.1 热力学第一、二定律联合公式 2.1.2 Gibbs自由能及判 据 2.1.3 Holmholtz自由能 2.2 Gibbs自由能与温度、压力的关系 *2.2.1 热力学函数间的关系 2.2.2 热力学基本关系式 2.2.3 Gibbs自由能随温度的变化 2.2.4 Gibbs自由能随压力 的变化 2.3 ?G的计算 2.3.1 简单的P.V.T变化过程?G的计算 2.3.2 相变过程?G 的计算 2.3.3 化学反应?G的计算 2.4 多组分析系热力学——偏摩尔数量 2.4.1 偏摩尔数量 2.4.2偏摩尔数量的定义 2.4.3偏摩尔数量的集合公式 2.5 化学势 2.5.1 化学势 2.5.2 化学势与温度和压力的关系 2.5.3 化学势判据 2.6 气体的化学势与标准态 2.6.1 理想气体的化学势 2.6.2 实际气体的化学势 2.7 溶液中各组分的化学势 2.7.1 稀溶液的两个实验定律 2.7.2 理想溶液中各组分的化 学势 2.7.3 稀溶液中各组分的化学势 2.7.4 理想溶液的通 性*2.7.5 非理想溶液中各组分的化学势 *2.8 稀溶液的依数性 2. 8 .1 渗透压 2.8.2凝固点降低 2.8.3 沸点升高2.8.4 分配定律及应用 阅读材料土壤养分势和水势 第3章相平衡 3.1 相律 3.1.1 基本概念 3.1.2 相律 3.2 单组分体系 3.2.1 Clapeyron方程 3.2.2 水的相图 3.3 二组分双液体系 3.3.1 理想完全互溶双液系 3.3.2 非理想完全互溶双液系

物理化学练习题(上)

物理化学练习题 一、选择题 1. 理想气体模型的基本特征是 (A) 分子不断地作无规则运动、它们均匀分布在整个容器中 (B) 各种分子间的作用相等,各种分子的体积大小相等 (C) 所有分子都可看作一个质点, 并且它们具有相等的能量 (D) 分子间无作用力, 分子本身无体积 2. 理想气体状态方程pV=nRT表明了气体的p、V、T、n、这几个参数之间的定量关 系,与气体种类无关。该方程实际上包括了三个气体定律,这三个气体定律是 (A) 波义尔定律、盖-吕萨克定律和分压定律 (B) 波义尔定律、阿伏加德罗定律和分体积定律 (C) 阿伏加德罗定律、盖-吕萨克定律和波义尔定律 (D) 分压定律、分体积定律和波义尔定律 3.热力学第一定律ΔU=Q+W 只适用于 (A) 单纯状态变化(B) 相变化 (C) 化学变化(D) 封闭物系的任何变化 4.关于焓的性质, 下列说法中正确的是 (A) 焓是系统内含的热能, 所以常称它为热焓 (B) 焓是能量, 它遵守热力学第一定律 (C) 系统的焓值等于内能加体积功 (D) 焓的增量只与系统的始末态有关 5.下列哪个封闭体系的内能和焓仅是温度的函数 (A) 理想溶液(B) 稀溶液(C) 所有气体(D) 理想气体 6.下列过程中, 系统内能变化不为零的是 (A) 不可逆循环过程(B) 可逆循环过程 (C) 两种理想气体的混合过程(D) 纯液体的真空蒸发过程 7.第一类永动机不能制造成功的原因是 (A) 能量不能创造也不能消灭 (B) 实际过程中功的损失无法避免 (C) 能量传递的形式只有热和功 (D) 热不能全部转换成功 8.下面的说法符合热力学第一定律的是 (A) 在一完全绝热且边界为刚性的密闭容器中发生化学反应时,其内能一定变化 (B) 在无功过程中, 内能变化等于过程热, 这表明内能增量不一定与热力学过程无关 (C) 封闭系统在指定的两个平衡态之间经历绝热变化时, 系统所做的功与途径无关 (D) 气体在绝热膨胀或绝热压缩过程中, 其内能的变化值与过程完成的方式无关 9.关于热平衡, 下列说法中正确的是 (A) 系统处于热平衡时, 系统的温度一定等于环境的温度 (B) 并不是所有热力学平衡系统都必须满足热平衡的条件 (C) 若系统A与B成热平衡, B与C成热平衡, 则A与C直接接触时也一定成热平衡

物理化学相平衡知识点

物理化学相平衡知识点

相平衡 一、主要概念 组分数,自由度,相图,相点,露点,泡点,共熔点,(连)结线,三相线,步冷(冷却)曲线,低共熔混合物(固相完全不互溶) 二、重要定律与公式 本章主要要求掌握相律的使用条件和应用,单组分和双组分系统的各类典型相图特征、绘制方法和应用,利用杠杆规则进行有关计算。 1、相律: F = C - P + n, 其中:C=S-R-R’ (1) 强度因素T,p可变时n=2 (2) 对单组分系统:C=1, F=3-P (3) 对双组分系统:C=2,F=4-P;应用于平面相图时恒温或恒压,F=3-P。 2、相图 (1)相图:相态与T,p,x的关系图,通常将有关的相变点联结而成。 (2)实验方法:实验主要是测定系统的相变点。常用如下四种方法得到。 1

2 对于气液平衡系统,常用方法蒸气压法和沸点法; 液固(凝聚)系统,通常用热分析法和溶解度法。 3、单组分系统的典型相图 对于单组分系统C =1,F =C -P +2=3-P 。当相数P =1时,自由度数F =2最大,即为双变量系统,通常绘制蒸气压-温度(p-T )相图,见下图。 p T l B C A O s g C ' p T l B C A O s g F G D 单斜硫p T 液体硫B C A O 正交硫 硫蒸气 (a) 正常相图 (b) 水的相图 (c) 硫的相图 图6-1 常见的单组分系统相图 4、二组分系统的相图 类型:恒压的t -x (y )和恒温的p -x (y )相图。 相态:气液相图和液-固(凝聚系统)相图。 (1)气液相图 根据液态的互溶性分为完全互溶(细分为形

LNG的物理化学特性

LNG的物理化学特性 LLNG 的基本性质的基本性质 1.LNG的物理性质 主要成分:甲烷,临界温度:190.58K在常温下,不能通过加压将其液化,而是经过预处理,脱除重烃、硫化物、二氧化碳和水等杂质后,深冷到-162 O C,实现液化。 主要物理性质如表1-1所示:无色透明41.5~45.3 430~460 约-162°C 0.60~0.70 颜色高热值(MJ/m 3 )液体密度(g/l)(沸点下)沸点/°C (常压)气体相对密度表1-1 4 4 . LNG . LNG 的基本性质的基本性质2. 典型的LNG组成(摩尔分数)/% N 2 CH 4 C 2 H 6 C 3 H 8 I-C 4 H 10 N-C 4 H 10 C 5 H 12 摩尔质量/(kg/mol)泡点温度/ o C 密度/(kg/m 3 ) LNG 的基本性质的基本性质3. LNG的性质特点 温度低在大气压力下,LNG沸点都在-162°C左右。液态与气态密度比大1体积液化天然气的密度大约是1体积气态天然气的600倍,即1体积LNG大致转化为600体积的气体。 可燃性一般环境条件下,天然气和空气混合的云团中,天然气含量在5%~15%(体积)范围内可以引起着火,其最低可燃下限(LEL)为4% LNG 的基本性质

4. LNG的安全特性1)燃烧特性燃烧范围:5%~15%,即体积分数低于5%和高于15%都不会燃烧; 自燃温度:可燃气体与空气混合物,在没有火源的情况下,达到某一温度后,能够自动点燃着火的最低温度称为自燃温度。甲烷性质比较稳定,在大气压力条件下,纯甲烷的平均自燃温度为650°C。以甲烷为主要成分的天然气自燃温度较高,LNG的自燃温度随着组份的变化而变化。 燃烧速度:是火焰在空气-燃气的混合物中的传递速度。天然气的燃烧速度较低,其最高燃烧速度只有0.3m/s。 LNG 的基本性质的基本性质 低温特性隔热保冷:LNG系统的保冷隔热材料应满足导热系数低,密度低,吸湿率和吸水率小,抗冻性强,并在低温下不开裂,耐火性好,无气味,不易霉烂,对人体无害,机械强度高,经久耐用,价格低廉,方便施工等。 蒸发特性:LNG作为沸腾液体储存在绝热储罐中,外界任何传入的热量都会引起一定量液体蒸发成气体,这就是蒸发气(BOG)。标准状况下蒸发气密度是空气60%。当LNG压力降到沸点压力以下时,将有一定量的液体蒸发成为气体,同时液体温度也随之降低到其在该压力下的沸点,这就是LNG闪蒸。由于压力/温度变化引起的LNG蒸发产生的蒸发气处理是液化天然气储存运输中经常遇到的问题。 8 8 一一 . LNG . LNG 的基本性质的基本性质

相关主题
文本预览
相关文档 最新文档