当前位置:文档之家› 10Gb以太网物理层接口

10Gb以太网物理层接口

10Gb以太网物理层接口
10Gb以太网物理层接口

10Gb以太网物理层接口

背板互连

IEEE标准委员会最近针对以太网背板提出了802.3ap标准,规定了在标准FR4PCB上高达40英寸走线长度下10Gb以太网的工作规范。10GBASE-KX标准提供了两种不同的实现方式:10GBASE-KX4和10GBASE-KR。10GBASE-KX4标准规定了4个通道(类似XAUI),而10GBASE-KR则是在一个通道上采用64/66B编码方式实现的。目前,对于具有总体带宽需求或需要解决走线密集过高问题的背板,有许多家供应商提供的SerDes芯片均采用10GBASE-KR解决方案,如表1所示。

表1 802.3ap规范所提出的3种背板互连方案

铜互连物理层接口

1.10GBASE-CX4

10GBASE-CX4是高性能数据中心的理想选择,CX4在短距离互连中具有低成本和零附加延时的优点。屏蔽双绞线电缆的使用与InfiniBand互连类似,XAUI信号的传输距离可以远至15m,如果增加信号补偿,可以使成本范围之内的每端口成本降到最低。CX4连接器的引脚定义中也提供了电源引脚。市场上也有CX4连接器的光缆,而且电缆本身具有电-光和光-电转换电路,信号传输距离可以远远超过15m。

2.10GBASE-T

10GBASE-T是最近刚刚发布的千兆位数据传输标准,它使用人们熟悉的紧凑型RJ-45连接器和廉价的6类电缆,信号传输距离可以远至55m,并且在千兆位和10Gb传输速率之间支持自动协商。新划分的6类电缆的延伸版本,或称为Cat6a电缆规范可以降低UTP电缆对儿之间的串扰,10GBASE-T的信号传输距离可以远至100m,目前该规范仍然处于草案阶段。已经有多家供应商进行了10GBASE-T的传输试验,然而10GBASE-T的不足也是明显的,功耗比较大而且信号有几微秒的延时,这种情况可能在器件成熟后会得到改善。对于企业千兆位汇聚产品而言,10GBASE-T可能是一种比较好的选择。

光互连物理层接口

对于数据中心的互连应用,光纤连接是一种比较简洁的方案,这是由于光纤尺寸小、重量轻、易于管理、信号传输距离长、EMI敏感性低,以及比较低的延迟。与铜互连相比,光纤互连成本的降低将使其更具有竞争力,如表2所示。

1.带状光缆

带状光缆是由多条光纤组成的扁平光纤,它有4条发送光纤和4条接收光纤,具有重量轻、柔韧性好的特点,带有CX4连接器,信号传输距离大约是100m。当使用850nmVCSEL光信号时,扁平光缆的成本相对较低,而且功耗也很低(但不是可以忽略),但信号的传输延迟基本上是可以忽略的。

2.10GBASE-SR

10GBASE-SR规范中的“SR”是短距离(shortrang)的意思。该规范定义的信号传输距离从26m(采用老式62.5μm多模式光纤)到86m(采用标准50μm多模式光纤),以及到300m(采用850nmVCSEL技术的高质量优化激光器OM3多模式光纤)。该标准规定的信号传输功耗很低,而且信号传输延时低于1μs。

3.10GBASE-LRM

10GBASE-LRM是最近才得到批准公布的规范,它规定以1310nm的光信号在老式FDDI的多模式光纤上的传输距离可以高达200m。该规范要求在接收端进行电色散补偿(ElectronicDispersionCompensation,EDC),而且传输器件也非常昂贵。其主要优点是可以使用已经安装好的FDDI光纤,信号的传输延时也是很低的,只有650ns。

表2 铜互连和光互连物理层接口方案

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

?以太网电接口采用UTP设计的EMC设计指导书 一、UTP(非屏蔽网线)的介绍 非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,每一根导线在传输中辐射的电波会与另外一根的抵消,这样可降低信号的干扰程度。 用来衡量UTP的主要指标有: 1、衰减:就是沿链路的信号损失度量。 2、近端串扰:测量一条UTP链路对另一条的影响。 3、直流电阻。 4、衰减串扰比(ACR)。 5、电缆特性。 二、10/100/1000BASE-T以太网电接口原理图设计 10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。 1、网口变压器未集成在连接器里的网口电路原理图 网口电路主要包括PHY芯片,网口变压器,网口连接器三部分,图中左侧的八个49.9Ω的电阻是差分线上的终端匹配电阻,其阻值的大小由差分线的特性阻抗决定,当变压器内的线圈匝数发生变化时,其阻值也跟随变化,保证两者的阻抗匹配。由电容组成的差模、共模滤波器可以增强EMC性能。在线圈的中心抽头处接的电容可以有效的改善电路的抗EMC性能,合理的选择电容值可以使电路的EMC做到最优。电路的右侧四个75Ω的电阻是电路的共模阻抗。 2、网口变压器集成在连接器里的网口电路原理图

网口电路主要包括PHY芯片,网口连接器两部分,网口变压器部分集成在接口内部,同样左侧的49.9Ω的电阻阻值也是由变压器的匝数及差分线的特性阻抗决定的。中间的电容组成共模、差模滤波器,滤除共模及差模噪声。75Ω的共模电阻也集成在网口连接器的内部。 3、网口指示灯电路原理图 带指示灯的以太网口电路原理图与不带指示灯灯的大致相同,只是多出指示灯的驱动电路。 注意点: 1)、两个匹配电阻是否需要根据PHY层芯片决定,如有的PHY层芯片内部集成匹配电阻就不需要。匹配电阻是接地还是接电源也是由PHY芯片决定,一般接电源。 2)、芯片侧中间抽头需要通过磁珠串接电源,并且注意每一路接一个磁珠,并通过电容0.01-0.1uf接数字地。 3)、点灯部分电路,link和ACT灯走线要加磁珠处理,同时供电电源也要加磁珠处理。但所有显示驱动灯的电源可以共用一个磁珠。 4)、变压器与连接器部分的匹配电阻75欧姆和50欧姆精度可以放低到5%。

以太网标准和物理层及数据链路层专题

资料编码产品名称 使用对象产品版本 编写部门资料版本 以太网标准和物理层、数据链路层专题 拟制:日期: 审核:日期: 审核:日期: 批准:日期: 华为技术有限公司 版权所有侵权必究 修订记录 日期修订版本作者描述

目录 1 以太网标准 5 1.1 以太网标准 5 1.2 IEEE标准 5 1.3 物理层 8 1.3.1 以太网接口类型 8 1.3.2 电口 8 1.3.3 光口 11 1.4 FE自协商 12 1.4.1 自协商技术的功能规范 13 1.4.2 自协商技术中的信息编码 14 1.4.3 自协商功能的寄存器控制 16 1.4.4 GE自协商 18 1.5 物理层芯片和MAC层芯片接口简介 19 1.5.1 MII 19 1.5.2 MDIO管理寄存器 20 1.5.3 RMII 20

1.5.4 SMII 21 1.5.5 SS-SMII 21 1.5.6 GMII 22 1.5.7 TBI 22 2 以太网数据链路层 23 2.1 以太网的帧格式 23 2.2 以太网的MAC地址 25 2.3 CSMA/CD算法 26 2.3.1 CSMA/CD发送过程 27 2.3.2 CSMA/CD如何接收 28 2.4 半双工以太网的限制 31 2.5 以太网流量控制 34 2.5.1 反压(Backpressure) 34 2.5.2 PAUSE 流控 34 关键词: 以太网物理层数据链路局域网城域网协议标准祯结构

摘要: 本文详细地阐述了以太网的标准,以太网在各个传输层面的具体结构和工作方式以及控制方式。 缩略语清单: 无。 参考资料清单 无。 以太网标准和物理层、数据链路层专题 1 以太网标准 1.1 以太网标准 局域网(LAN)技术用于连接距离较近的计算机,如在单个建筑或类似校园的集中建筑中。城市区域网(MAN)是基于10-100Km的大范围距离设计的,因此需要增强其可靠性。但随着通信的发展,从技术上看,局域网和城域网有融合贯通的趋势。 1.2 IEEE标准 IEEE是电气和电子工程师协会(Institute of Electrical and Electronics Engineers)的简称,IEEE组织主要负责有关电子和电气产品的各种标准的制定。IEEE于1980年2月成立了IEEE 802委员会,专门研究和指定有关局域网的各种标准。IEEE 802委员会由6个分委员会组成,其编号分别为802.1

第二、三章 以太网标准和物理层

修订记录 第二章以太网标准 目标: 了解以太网标准结构。 熟悉各以太网标准定义的内容 一、以太网标准 局域网(LAN)技术用于连接距离较近的计算机,如在单个建筑或类似校园的集中建筑中。城市区域网(MAN)是基于10-100Km的大范围距离设计的,因此需要增强其可靠性。但随着通信的发展,从技术上看,局域网和城域网有融合贯通的趋势。 IEEE是电气和电子工程师协会(Institute of Electrical and Electronics Engineers)的简称,IEEE组织主要负责有关电子和电气产品的各种标准的制定。 IEEE于1980年2月成立了IEEE 802委员会,专门研究和指定有关局域网的各种标准。IEEE 802委员会由6个分委员会组成,其编号分别为802.1至802.6,其标准分别称为标准802.1至标准802.6,目前它已增加到12个委员会,这些分委员会的职能如下: ·802.1--高层及其交互工作。提供高层标准的框架,包括端到端协议、网络互 连、网络管理、路由选择、桥接和性能测量。 ·802.2--连接链路控制LLC,提供OSI数据链路层的高子层功能,提供LAN 、 MAC子层与高层协议间的一致接口。 ·802.3--以太网规范,定义CSMA/CD标准的媒体访问控制(MAC)子层和物理 层规范。 ·802.4--令牌总线网。定义令牌传递总线的媒体访问控制(MAC)子层和物理 层规范。 ·802.5--令牌环线网,定义令牌传递环的媒体访问控制(MAC)子层和物理层 规范。 ·802.6--城域网MAN,定义城域网(MAN)的媒体访问控制(MAC)子层和物理

以太网EMC接口电路设计与PCB设计说明

以太网EMC接口电路设计及PCB设计 我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。 下图1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。 图1 以太网典型应用 1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。 图2 变压器没有集成在网口连接器的电路PCB布局、布线参考 a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了

顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去; b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小; c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小; d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil); e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级; f)指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开; g)用于连接GND和PGND的电阻及电容需放置地分割区域。 2.以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点: a)优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里; b)当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%; c)差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射,此电阻有些接电源,有些通过电容接地,这是由PHY芯片决定的; d)差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

RMII模式以太网PHY芯片DP83848C的应用

引言 DP83848C是美国国家半导体公司生产的一款鲁棒性好、功能全、功耗低的10/100 Mbps单路物理层(PHY)器件。它支持MII(介质无关接口)和RMII(精简的介质无关接口),使设计更简单灵活;同时,支持10BASE~T和100BASE-TX以太网外设,对其他标准以太网解决方案有良好的兼容性和通用性。 MII(Medium Independent Interface)是IEEE802.3u规定的一种介质无关接口,主要作用是连接介质访问控制层(MAC)子层与物理层(PH-Y)之间的标准以太网接口,负责MAC 和PHY之间的通信。由于MII需要多达16根信号线,由此产生的I/O口需求及功耗较大,有必要对MII引脚数进行简化,因此提出了RMII(Reduced Medium Independent Interface,精简的介质无关接口),即简化了的MII。 1 硬件设计 1.1 电路设计 DP83848C的收发线路各是一对差分线,经过变比为1:1的以太网变压器后与网线相连。以太网变压器的主要作用是阻抗匹配、信号整形、网络隔离,以及滤除网络和设备双方面的噪音。典型应用如图1所示。 图2是DP83848C与MAC的连接电路。其中,Xl为50 MHz的有源振荡器。

1.2 PCB布局布线 布局方面,精度为1%的49.9 Ω电阻和100 nF的去耦电容应靠近PHY器件放置,并通过最短的路径到电源。如图3所示,两对差分信号(TD和RD)应平行走线,避免短截,且尽量保证长度匹配,这样可以避免共模噪声和EMI辐射。理想情况下,信号线上不应有交叉或者通孔,通孔会造成阻抗的非连续性,所以应将其数目降到最低;同时,差分线应尽可能走在一面,且不应将信号线跨越分割的平面,如图4所示。信号跨越一个分割的平面会造成无法预测的回路电流,极可能导致信号质量恶化并产生EMI问题。注意,图3和图4中,阴影部分为错误方法。 2 RMll模式描述 RMII模式在保持物理层器件现有特性的前提下减少了PHY的连接引脚。

以太网信号质量问题之收发器驱动偏置电阻的处理

以太网信号质量问题之收发器驱动偏置电阻的处理 一前言 对于系统设计人员来说,模数混合电路中最困难的地方在于模拟部分的设计,其中最具代表性的就是我们经常要面对的物理层收发器(PHY)及其收发回路和匹配网络的设计。即使对于应用比较成熟的以太网物理层设计而言,DA C驱动电流的基准偏置,差分信号线对的走线,乃至于匹配电阻的位置,都有可能影响到其物理层的信号质量并通过接口技术指标测试暴露出来。 二以太网口信号质量测试分析 1 100Base-TX接口测试环境及其设置 100Base-TX接口测试原理 100Base-TX接口的测试采用业内比较通用的诱导发包的

方法来引导DUT发出扰码后的IDLE进行测试,更多细节请参考美国力科公司《Ethernet solution-QualiPHY》专项技术文档, 测试设备: 测试拓扑如图1:

图1 Ethernet接口指标测 试连接框图 2 测试中出现的问题 本次测试将主要验证产品上4个以太网100Base-TX接口的技术指标。对于其中比较直观的100Base-TX物理层的眼图模板,《ANSI+X3_263-1995》标准中有着明确的眼图模板定义见图2。 图2 100Base-TX 眼图模板 关于100Base-TX接口技术指标的测试方法,《IEEE Std 802.3-2000》标准中也有详细的说明,工程师按照诱导发包的测试方法进行了网口眼图的测试,测试过程中

发现测试网口出现了信号波形碰触模板的问题,波形见图3: 图3 以太网口测试眼图_FAIL 3 问题分析解决 从眼图初步分析来看,发送信号的幅度应该是满足要求的。但是可以明显的发现信号边沿还是比较缓,而且从单个波形来看边沿有不单调的问题。方案的原厂是一家通讯业内专注于IP宽带解决方案的国际型大公司,其以太网模块部分应该经过详细验证过。最大的可能是二次开发过程中板级系统设计时的一些关键技术参数的配合问题。工程师在进行了信号幅度以及上升下降时间等细节指标的

以太网接口PCB设计经验分享

以太网口PCB布线经验分享 目前大部分32 位处理器都支持以太网口。从硬件的角度看,以太网接口电路主要由 MAC 控制器和物理层接口(Physical Layer ,PHY )两大部分构成,目前常见的以太网接口 芯片,如LXT971 、RTL8019 、RTL8201、RTL8039、CS8900、DM9008 等,其内部结构也 主要包含这两部分。 一般32 位处理器内部实际上已包含了以太网MAC 控制,但并未提供物理层接口,因此,需外接一片物理层芯片以提供以太网的接入通道。 常用的单口10M/100Mbps 高速以太网物理层接口器件主要有RTL8201、LXT971 等,均提供MII 接口和传统7 线制网络接口,可方便的与CPU 接口。以太网物理层接口器件主 要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX 编码/ 解码器和双绞线媒体访问单元等。 下面以RTL8201 为例,详细描述以太网接口的有关布局布线问题。 一、布局 CPU M A RTL8201 TX ± 变 压 RJ45 网口 器 C RX± 1、RJ45和变压器之间的距离应当尽可能的缩短. 2、RTL8201的复位信号Rtset 信号(RTL8201 pin 28 )应当尽可能靠近RTL8021,并且,如果可能的话应当远离TX+/-,RX+/-, 和时钟信号。 3、RTL8201的晶体不应该放置在靠近I/O 端口、电路板边缘和其他的高频设备、走线或磁性 元件周围. 4、RTL8201和变压器之间的距离也应该尽可能的短。为了实际操作的方便,这一点经常被放弃。但是,保持Tx±, Rx±信号走线的对称性是非常重要的,而且RTL8201和变压器之间的距离需要保持在一个合理的范围内,最大约10~12cm。 5、Tx+ and Tx- (Rx+ and Rx-) 信号走线长度差应当保持在2cm之内。 二、布线 1、走线的长度不应当超过该信号的最高次谐波( 大约10th) 波长的1/20 。例如:25M的时钟走线不应该超过30cm,125M信号走线不应该超过12cm (Tx ±, Rx ±) 。 2、电源信号的走线( 退耦电容走线, 电源线, 地线) 应该保持短而宽。退耦电容上的过孔直径 最好稍大一点。 3、每一个电容都应当有一个独立的过孔到地。 4、退耦电容应当放在靠近IC的正端(电源),走线要短。每一个RTL8201 模拟电源端都需要退耦电容(pin 32, 36, 48). 每一个RTL8201 数字电源最好也配一个退耦电容。 5、Tx±, Rx ±布线应当注意以下几点: (1)Tx+, Tx- 应当尽可能的等长,Rx+, Rx- s 应当尽可能的等长; (2) Tx±和Rx±走线之间的距离满足下图: (3) Rx±最好不要有过孔, Rx ±布线在元件侧等。

以太网物理层信号测试与分析报告

以太网物理层信号测试与分析 1 物理层信号特点 以太网对应OSI七层模型的数据链路层和物理层,对应数据链路层的部分又分为逻辑链路控制子层(LLC)和介质访问控制子层(MAC)。MAC与物理层连接的接口称作介质无关接口(MII)。物理层与实际物理介质之间的接口称作介质相关接口(MDI)。在物理层中,又可以分为物理编码子层(PCS)、物理介质连接子层(PMA)、物理介质相关子层(PMD)。根据介质传输数据率的不同,以太网电接口可分为10Base-T,100Base-Tx和1000Base-T三种,分别对应10Mbps,100Mbps和1000Mbps三种速率级别。不仅是速率的差异,同时由于采用了不同的物理层编码规则而导致对应的测试和分析方案也全然不同,各有各的章法。下面先就这三种类型以太网的物理层编码规则做一分析。 1、1 10Base-T 编码方法 10M以太网物理层信号传输使用曼彻斯特编码方法,即“0”=由“+”跳变到“-”,“1”=由“-”跳变到“+”,因为不论是”0”或是”1”,都有跳变,所以总体来说,信号是DC平衡的, 并且接收端很容易就能从信号的跳变周期中恢复时钟进而恢复出数据逻辑。 图1 曼彻斯特编码规则 1、2100Base-Tx 编码方法 100Base-TX又称为快速以太网,因为通常100Base-TX的PMD是使用CAT5线传输,按TIA/EIA-586-A定义只能达到100MHz,而当PCS层将4Bit编译成5Bit时,使100Mb/s数据流变成125Mb/s数据流,所以100Base-TX同时采用了MLT-3(三电平编码)的信道编码方法,目的是使MDI的5bit输出的速率降低了。MLT-3定义只有数据是“1”时,数据信号状态才跳变,“0”则保持状态不变,以减低信号跳变的频率,从而减低信号的频率。

100G以太网物理层研究及关键模块ASIC实现.doc

100G以太网物理层研究及关键模块ASIC实现以太网以其成本低、可靠性高、安装维护简单等优点而成为普遍采用的网络技术。随着互联网技术的不断发展和用户数量的不断增加,用户对数据传输和接入带宽的需求将越来越大。为了满足快速增长的带宽需求,以太网必须向更高速度进发。 早在2010年,40G/100G以太网的标准IEEE802.3ba就获得了批准,紧接着在2013年新标准IEEE802.3bmTM/D1.1又获得通过,目前针对400G以太网的 IEEE802.3bs标准也即将颁布。因此,对高速以太网的物理层实现的研究具有重要的理论和实际意义。本文首先从IEEE802.3ba和IEEE802.3bmTM/D1.1两个标准入手,简要地介绍了它们所定义的100GE物理层体系结构和物理编码子层(PCS)的功能实现,确定需要完成的100GE发送端PCS及其时钟两电路的设计指标。 由于PCS时钟电路是基于全数字锁相环(ADPLL)结构,所以又介绍了ADPLL 的基本概念、基本原理、常用的结构和主要噪声源及噪声源对抖动的影响。然后对100G以太网物理层进行了研究,根据IEEE802.3ba和IEEE802.3bmTM/D1.1及设计指标,确定了 100GE物理层系统架构方案,其中电气接口采用4×25Gbps。并基于0.18μmCMOS工艺采用半定制设计方法完成了 100GE发送端物理编码子层(PCS)电路的设计,其中包括64B/66B编码器、256位并行扰码器、多通道分发电路和66:8变速箱。 针对PCS电路工作频率高的特点,本文对电路结构进行了优化并采用流水线方法设计和实现。其中,对于64B/66B编码器,首先详细地分析了64B/66B编码器的编码原理,然后根据编码原理设计出优化64B/66B编码器的结构,保证了其工作速度满足要求。为了提高扰码器的工作速度,设计了 256位并行扰码器,并对

以太网通信接口电路设计规范

目录 1目的 (3) 2范围 (3) 3定义 (3) 3.1以太网名词范围定义 (3) 3.2缩略语和英文名词解释 (3) 4引用标准和参考资料 (4) 5以太网物理层电路设计规范 (4) 5.1:10M物理层芯片特点 (4) 5.1.1:10M物理层芯片的分层模型 (4) 5.1.2:10M物理层芯片的接口 (5) 5.1.3:10M物理层芯片的发展 (6) 5.2:100M物理层芯片特点 (6) 5.2.1:100M物理层芯片和10M物理层芯片的不同 (6) 5.2.2:100M物理层芯片的分层模型 (6) 5.2.3:100M物理层数据的发送和接收过程 (8) 5.2.4:100M物理层芯片的寄存器分析 (8) 5.2.5:100M物理层芯片的自协商技术 (10) 5.2.5.1:自商技术概述 (10) 5.2.5.2:自协商技术的功能规范 (11) 5.2.5.3:自协商技术中的信息编码 (11) 5.2.5.4:自协商功能的寄存器控制 (14) 5.2.6:100M物理层芯片的接口信号管脚 (15) 5.3:典型物理层器件分析 (16) 5.4:多口物理层器件分析 (16) 5.4.1:多口物理层器件的介绍 (16) 5.4.2:典型多口物理层器件分析。 (17) 6以太网MAC层接口电路设计规范 (17) 6.1:单口MAC层芯片简介 (17) 6.2:以太网MAC层的技术标准 (18) 6.3:单口MAC层芯片的模块和接口 (19) 6.4:单口MAC层芯片的使用范例 (20) 71000M以太网(单口)接口电路设计规范 (21) 8以太网交换芯片电路设计规范 (21) 8.1:以太网交换芯片的特点 (21) 8.1.1:以太网交换芯片的发展过程 (21) 8.1.2:以太网交换芯片的特性 (22) 8.2:以太网交换芯片的接口 (22) 8.3:MII接口分析 (23) 8.3.1:MII发送数据信号接口 (24) 8.3.2:MII接收数据信号接口 (25) 8.3.3:PHY侧状态指示信号接口 (25) 8.3.4:MII的管理信号MDIO接口 (25) 8.4:以太网交换芯片电路设计要点 (27) 8.5:以太网交换芯片典型电路 (27) 8.5.1:以太网交换芯片典型电路一 (28)

RJ45以太网接口EMC防雷设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。 二、接口电路原理图的EMC设计 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明: (1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值0.01μF~0.1μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2) 电路防雷设计要点: 为了达到IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1可以选择成本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值电流要求大于等于50A;防护器件峰值功率要求大于等于300 W。注意选择半导体放电管,要注意器件“断态电压、维持电流”均要大于电路工作电压和工作电流。 根据测试标准要求,对于非屏蔽的平衡信号,不要求强制性进行差模测试,所以对于差模1KV以内的防护要求,可以通过变压器自身绕阻来防护能量冲击,不需要增加差模防护器件。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连。

串行数据一致测试及调试系列之四--以太网信号质量问题

串行数据一致测试及调试系列之四--以太网信号质量问题 一前言对于系统设计人员来说,模数混合电路中最困难的地方在于模拟 部分的设计,其中最具代表性的就是我们经常要面对的物理层收发器(PHY)及 其收发回路和匹配网络的设计。即使对于应用比较成熟的以太网物理层设计而言,DAC 驱动电流的基准偏置,差分信号线对的走线,乃至于匹配电阻的位置,都有可能影响到其物理层的信号质量并通过接口技术指标测试暴露出来。二 以太网口信号质量测试分析1 100Base-TX 接口测试环境及其设置100Base-TX 接口测试原理100Base-TX 接口的测试采用业内比较通用的诱导发包的方法来引导DUT 发出扰码后的IDLE 进行测试,更多细节请参考美国力科公司《Ethernet solution-QualiPHY》专项技术文档, 测试设备: 示波器Lecroy WavePro 7300A 探头SMA 夹具Lecroy TF-ENET-B 电脑主机ThinkPad R5 测试拓扑如图1 Ethernet 接口指标测试连接框图 2 测试中出现的问题本次测试将主要验证产品上4 个以太网100Base-TX 接口的技术指标。对于其中比较直观的100Base-TX 物理层的眼图模板, 《ANSI+X3_263-1995》标准中有着明确的眼图模板定义见图2。 图2 100Base-TX 眼图模板 关于100Base-TX 接口技术指标的测试方法,《IEEE Std 802.3-2000》标准中也有详细的说明,工程师按照诱导发包的测试方法进行了网口眼图的测试, 测试过程中发现测试网口出现了信号波形碰触模板的问题,波形见图3: 图3 以太网口测试眼图_FAIL 3 问题分析解决从眼图初步分析来看,发送信号的幅度应该是满足要求的。

以太网知识讲座物理层器件

以太网知识讲座()——物理层器件 以太网知识讲座(3)——物理层器件 2010-05-2513:24 (天津光电通信产业集团恒光科技有限公司;天津300211) 摘要:系统地介绍了以太网的基本要领介质接入控制和物理层标准规范,以太网信号的帧结构、网络硬件设备、网络组成及主要性能,以及以太网信号在PDH、SDH/SONET中的传输等等。由于以太网中的各种设备必需通物理层接口器件才能与网络传输介质相连,因此本部分主要介绍物理层器件。 关键词:以太网;物理层;接口 1物理层器件 物理层器件(PHY:Physical Layer Interface Devices)是将各网元连接到物理介质上的关键部件。负责完成互连参考模型(OSI)第I层中的功能,即为链路层实体之间进行bit传输提供物理连接所需的机械、电气、光电转换和规程手段。其功能包括建立、维护和拆除物理电路,实现物理层比特(bit)流的透明传输等。 通常物理层的功能均被集成在一个芯片之中,但有的芯片也将部分链路层的功能集成进来,如物理介质接入控制(MAC:Media Access Con-brol)子层的功能等。其MAC/Repeater接口在10Mbit/s、100Mbit/s两种速率下有10/100MII、100M符号、10M串行和链路脉冲几种模式。 1.1PHY的结构 如图1所示,物理层包括四个功能层和两上层接口。两个层接口为物理介质无关层接口(MII)和物理介质相关层接口(MDI),在MII的上层是逻辑数据链路层(DLL),而MDI的下层则直接与传输介质相连。 以下对四个功能层和两个层接口分别进行介绍。 1.2MII MII满足ISO/IEC8802-3和IEEE802.3标准的要求,支持以太网数据传输的速率为10Mbit/s,100Mbit/s、1000Mbit/s和10Gbit/s,有对应的运行时钟。MII接口主要由与链路层之间的端口(MAC-PHY)和与站管理实体(STA:Station Management Entity)之间的端口(STA-PHY)两部分组成。 1.2.1MAC-PHY端口 这是MAC与PHY器件之间的接口,包括同步收发接口和介质状态控制接口。在介质状态控制接口中有载波读出信号(CRS:Carrier Sense Signal)和碰撞检测信号(COL:Collision Detection Signal)等。 1.2.2STA-PHY端口

以太网接口和框图详细讲解

实时嵌入式系统 以太网接口及应用

网络层次模型

以太网层次模型

以太网层次功能 物理层:物理层:定义了数据传输与接收所需要的光与电信号光与电信号,,线路状态线路状态,,时钟基准时钟基准,,数据编码电路等编码电路等。。并向数据链路层设备提供标准接口准接口。。 数据链路层数据链路层::提供寻址机制提供寻址机制,,数据帧的构建,数据差错检查数据差错检查,,传输控制传输控制。。向网络层提供标准的数据接口等功能提供标准的数据接口等功能。。

IP 层IP 数据报 以太网的MAC 帧格式在帧的前面插入的8 字节中的第一个字段共7 个字节,是前同步码,用来迅速实现MAC 帧的比特同步。 第二个字段是帧开始定界符,表示后面的信息就是MAC 帧。 MAC 帧物理层 MAC 层以太网V2 MAC 帧 目的地址源地址类型数据FCS 6624字节 46 ~ 150010101010101010 10101010101010101011前同步码帧开始 定界符7 字节 1 字节… 8 字节 插 入 为了达到比特同步,在传输媒体上实际传送的要比MAC 帧还多8 个字节

以太网接口的构成 从硬件的角度看,从硬件的角度看,以太网接口电路主要由MAC MAC控制器和物理层接口控制器和物理层接口控制器和物理层接口((Physical Layer Physical Layer,,PHY PHY))两大部分构成两大部分构成。。 嵌入式网络应用的两种方案 处理器加以太网接口芯片处理器加以太网接口芯片。。芯片如芯片如RTL8019RTL8019RTL8019、、RTL8029RTL8029、、RTL8139RTL8139、、CS8900CS8900、、DM9000DM9000等等,其内部结构也主要包含这两部分部结构也主要包含这两部分。。 自带自带MAC MAC MAC控制器的处理器加物理层接口芯片控制器的处理器加物理层接口芯片控制器的处理器加物理层接口芯片。。如DP83848DP83848、、BCM5221BCM5221、、ICS1893ICS1893等等。

泰克以太网接口物理层一致性测试

以太网接口物理层一致性测试 苏水金 有限公司 司 )有限公 (中国 泰克科技 克科技( 中国)

以太网的起源与发展 1972年Metcalf与他在Xerox PARC的同事们,在研究如何将Xerox Altos工作站与其他Xerox Altos工作站、服务器以及激光打印机相互联网。他们成功的用一个网络实现了2.94Mb/s的数据传输率的互联, 并将此网络命名为Alto Aloha网络。1973年Metcalf 将此延伸至支持其他的计算机类型, 并改名为Ethernet。因为Ether(以太),曾被科学家认为是电磁波在真空中的传输介质。而Ethernet就是以太网的意思,就是数据传输的网络。如此,以太网便诞生了。1976年, Metcalf拿到了专利, 并邀请了Intel 与Digital 成立了DIX group, 并在1989 年, 演变成了IEEE802标准。基本上IEEE 802.3 是OSI第二层的协议,负责链路的接入管理与流量控制。IEEE 802.3物理层可以通过不同的介质来实现,包括3类、4类、5类线(STP屏蔽与UTP非屏蔽双绞线),同轴铜线,多模与单模光纤等等。其传输速率也从最初的10M发展到100M、1000M乃至当今的10G

IEEE 802.3标准的发展 IEEE 802.3定于1985年 –10M速率,采用同轴电缆作为传输载体 IEEE 802.3i定于1990年 –10M速率,采用双绞线(屏蔽/非屏蔽)作为传输载体 IEEE 802.3u定于1995年 –100M速率,采用双绞线(屏蔽/非屏蔽)作为传输载体 –100M速率,采用光纤(单模/多模)作为传输载体 IEEE 802.3z定于1998年 –1000M速率,采用光纤(单模/多模)作为传输载体 IEEE 802.3ab定于1999年 –1000M速率,采用双绞线(单模/多模)作为传输载体 IEEE 802.3ae定于2001年 –10G速率,采用光纤(单模/多模)作为传输载体

以太网接口防雷电路

以太网接口防雷电路: R701 R /75/1%/0402 R702R /75/1%/0402 RD-R703 R /75/1%/0402 RD+ TD-TD+ U701 SR05-SOT143REF14I/O12I/O2 3 REF21 U702SR05-SOT143REF14I/O12I/O2 3 REF2 1 RD-网络变压器初级浪涌防护 网络变压器初级浪涌防护 C708 C/474M/16V/X7R/0402C709 C/106M/6.3V/X5R/0805D704 TVS/90V/5KA/BF091M/SMD D705 TVS/90V/5KA/BF091M/SMD J700RJ45 10PiN (Plastic) Black P8 A8 P2A7RX-A6P4A4RX+A3TX-A2TX+A1P5A5S2S2 S1S1S3 S3S4S4 D706 TVS/90V/5KA/BF091M/SMD R E F 2 R E F 3 C702 C/102M/2KV D709 TVS/90V/5KA/BF091M/SMD D708 TVS/90V/5KA/BF091M/SMD T D + T C T D - R D - R D + R X -R C R X +R C M T X -T C M T X +T700 T/MT10232ANL/DIP12 1 3 2 1516148 6 7 1011 9RD+ RegOUT1 REF0 TD+ TD-C703 C/102M/2KV R700 R /75/1%/0402 C700 C/102M/2KV C701 C/102M/2KV R714R /49.9/0402/1% C704 C/104K/16V/X7R/0402 网络变压器次级浪涌防护 R715R /49.9/0402/1% C707 C /104K/16V/X7R /0402 R704 R /49.9/0402/1% C705 C/104K/16V/X7R/0402 C706 C /104K/16V/X7R /0402 R705R /49.9/0402/1% REF1 D703 TVS/90V/5KA/BF091M/SMD +3V3 +3V3 说明: 1、 此电路为以太网接口的标准防雷电路,包括了初级和次级防雷保护电路。应用于以太网 口可能接到室外的产品。 2、 此电路要求产品有接大地的接口,如果没有,初级防雷保护电路的共模防护将不起作用。 3、 此电路采用的POE 以太网接口作为例子,C700 – C703使用4个电容为POE 电路考虑, 如果没有POE 电路,可共用为一个电容,请参见普通的以太网接口电路。 4、 防护器件: D703 – D706,D708,D709组成初级防护,接的地为大地,U701、U702构成次级 防护,接的地为数字地。 D703 – D706,D708,D709防护器件典型型号:摈城BF091F 。 防护器件的选择要根据对以太网口的雷击测试要求来定。 电路的简化: 由于在很多认证中,不做以太网接口的差模雷击测试,而在实际使用中,共模雷击 为主要的雷击失效原因,对电路可做简化,去掉D708、D709。 进一步的电路简化:只考虑共模雷击测试和实际使用中的共模雷击防护,最小电路 为:去掉D703、D705、D708、D709、U701、U702,防护器件只保留D704、D706。 在做电路的简化前,需要明确测试和使用的要求,在成本和性能之间取得平衡。

以太网物理层器件

以太网知识讲座(3)——物理层器件 王廷尧,马克城 (天津光电通信产业集团恒光科技有限公司;天津 300211) 摘 要:系统地介绍了以太网的基本要领介质接入控制和物理层标准规范,以太网信号的帧结构、网络硬件设备、网络组成及主要性能,以及以太网信号在PDH、SDH/SONET中的传输等等。由于以太网中的各种设备必需通物理层接口器件才能与网络传输介质相连,因此本部分主要介绍物理层器件。 关键词:以太网;物理层;接口 1 物理层器件 物理层器件(PHY:Physical Layer Interface Devices)是将各网元连接到物理介质上的关键部件。负责完成互连参考模型(OSI)第I层中的功能,即为链路层实体之间进行bit传输提供物理连接所需的机械、电气、光电转换和规程手段。其功能包括建立、维护和拆除物理电路,实现物理层比特(bit)流的透明传输等。 通常物理层的功能均被集成在一个芯片之中,但有的芯片也将部分链路层的功能集成进来,如物理介质接入控制(MAC:Media Access Con-brol)子层的功能等。其MAC/Repeater接口在10Mbit/s、100Mbit/s两种速率下有10/100MII、100M符号、10M串行和链路脉冲几种模式。 1.1 PHY的结构 如图1所示,物理层包括四个功能层和两上层接口。两个层接口为物理介质无关层接口(MII)和物理介质相关层接口(MDI),在MII的上层是逻辑数据链路层(DLL),而MDI的下层则直接与传输介质相连。 以下对四个功能层和两个层接口分别进行介绍。 1.2 MII MII满足ISO/IEC 8802-3和IEEE 802.3标准的要求,支持以太网数据传输的速率为10Mbit/s,100Mbit/s、1000Mbit/s和10Gbit/s,有对应的运行时钟。MII接口主要由与链路层之间的端口(MAC-PHY)和与站管理

以太网信号质量问题之收发器驱动偏置电阻的处理

以太网信号质量问题之收发器驱动偏 置电阻的处理 一前言 关于系统设计人员来讲,模数混合电路中最困难的地点在于模拟部分的设计,其中最具代表性的确实是我们经常要面对的物理层收发器(PHY)及其收发回路和匹配网络的设计。即使关于应用比较成熟的以太网物理层设计而言,DAC驱动电流的基准偏置,差分信号线对的走线,乃至于匹配电阻的位置,都有可能阻碍到其物理层的信号质量并通过接口技术指标测试暴露出来。 二以太网口信号质量测试分析 1 100Base-TX接口测试环境及其设置 100Base-TX接口测试原理 100Base-TX接口的测试采纳业内比较通用的诱导发包的方法来引导DUT发出扰码后的IDLE进行测试,更多细节请参考美国力科公司《Ethernet solution-QualiPHY》专项技术文档, 测试设备: 测试拓扑如图1:

图1 Ethernet接口指标测试连接框图 2 测试中显现的咨询题 此次测试将要紧验证产品上4个以太网100Base-TX接口的技术指标。关于其中比较直观的100Base-TX物理层的眼图模板,《ANSI+X3_263-1995》标准中有着明确的眼图模板定义见图2。 图2 100Base-TX 眼图模板 关于100Base-TX接口技术指标的测试方法,《IEEE Std 802.3-2000》标准中也有详细的讲明,工程师按照诱导发包的测试方法进行了网口眼图的测试,测试过程中发觉测试网口显现了信号波形碰触模板的咨询题,波形见图3: 图3 以太网口测试眼图_FAIL 3 咨询题分析解决 从眼图初步分析来看,发送信号的幅度应该是满足要求的。然而能够明显的发觉信号边沿依旧比较缓,而且从单个波形来看边沿有不单调的咨询题。方案的原厂是一家通讯业内用心于I P宽带解决方案的国际型大公司,其以太网模块部分应该通过详细验证过。最大的可能是二次开发过程中板级系统设计时的一些关键技术参数的配合咨询题。工程师在进行了信号幅度以及上升下降时刻等细节指标的测试之后证明了之前的判定,信号的幅度是满足要求的,但信号的上升下降时刻与其他的方案

以太网电接口EMC设计指导书

以太网电接口采用UTP的EMC设计指导书

目录 前言 (4) 1范围和简介 (5) 1.1范围 (5) 1.2简介 (5) 1.3关键词 (5) 2规范性引用文件 (5) 3术语和定义 (6) 4UTP(非屏蔽网线)的介绍 (6) 510/100BASE-T、1000BASE-T以太网电接口的共模噪声 (7) 610/100/1000BASE-T以太网电接口电路设计 (7) 6.110/100/1000BASE-T以太网电接口原理图设计 (7) 6.1.1网口变压器集成在连接器里的网口电路原理图 (8) 6.1.2网口变压器集成在连接器里的网口电路原理图 (8) 6.1.3网口指示灯电路原理图 (9) 6.1.4带滤波的10/100BaseT以太网口电路原理图 (10) 6.1.5带滤波的1000BaseT以太网口电路原理图 (11) 6.210/100/1000BASE-T以太网电接口PCB布局、布线 (12) 6.2.1网口变压器没有集成在连接器里的网口电路PCB布局、布线规则 12 6.2.2采用一体化连接器的网口电路PCB布局、布线规则 (15) 6.2.3其它的布局、布线建议 (16) 7实际测试案例: (19)

8结论: (22) 9附录: (24) 10参考文献 (26)

前言 本规范的其他系列规范:无 与对应的国际标准或其他文件的一致性程度:无 规范代替或作废的全部或部分其他文件:无 与其他规范或文件的关系:无 与规范前一版本相比的升级更改的内容: 如果是升级规范,则一定要在此处详细描述本版本相对于上一版本更改的内容,如果是第一次制定,则填写“第一版,无升级更改信息”。 本规范由XX部门提出。 本规范主要起草和解释部门: 本规范主要起草专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......) 本规范主要评审专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......) 本规范批准部门:XX部门 本规范所替代的历次修订情况和修订专家为: 规范号主要起草专家主要评审专家 姓名(工号)、姓名(工号)姓名(工号)、姓名(工号) 姓名(工号)、姓名(工号)姓名(工号)、姓名(工号)

相关主题
文本预览
相关文档 最新文档