当前位置:文档之家› 函数的周期性练习题

函数的周期性练习题

函数的周期性练习题
函数的周期性练习题

函数的周期性练习

班级 姓名

1、函数2cos()35y x π

=-的最小正周期是 ( )

A

5π B 52

π C 2π D 5π 2、下列四个函数中,既是(0,)2

π上的增函数,又是以π为周期的偶函数的是 ( ) A sin y x = B |sin |y x = C cos y x = D |cos |y x =

3、函数2

sin x y =的最小正周期是 ( ) (A) 2

π (B) π (C)π2 (D)π4 4、在函数|sin ||,|sin x y x y ==,)32sin(π+=x y ,)322cos(π+=x y 中,最小正周期为π的函数的个数有

( )

A .1个

B .2个

C .3个

D .4个 5、由函数?

??++∈+∈=)22,12[1)12,2[0)(n n x n n x x f ()Z n ∈的图象,可知此函数的周期为( ) A .2k B .2

3k C .k D .2k (以上k 0,≠∈k Z ) 6、定义在R 上的函数()x f 满足()()2+=x f x f ,当[]5,3∈x 时,()42--=x x f ,则

( )

.A sin cos 66f f ππ??

??< ? ????

?; .B ()()sin1cos1f f >; .C 22cos sin 33f f ππ????< ? ?????

.D ()()cos2sin 2f f > 7、设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ) .A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f << .C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f << 8、设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则( ) .A 2a > .B 2a <- .C 1a > .D 1a <-

9、函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0-上 是减函数,那么()f x 在[]2,3上是 ( )

.A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数

10、已知函数()f x 是以2为周期的周期函数,且当()0,1x ∈时,()21x f x =-,则 2(log 10)f 的值为 ( )

.A 35 .B 85 .C 38- .D 53

11、定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期

是π,且当]2,0[π∈x 时,x x f sin )(=,则)3

5(πf 的值为 ( ) .A 21- .B 21 .C 23- .D 2

3 12、已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为 ( ) .A 1- .B 0 .C 1 .D 2

13、若函数()f x 满足(1)()f x f x -=,则函数()y f x =的一个周期是______________.

14、若函数cos()(0)6y x πωω=->最小正周期为5

π,则ω= . 15、已知函数)3

4sin()(π+=x k x f 的周期不大于2,则正整数k 的最小值是_______. 16、若存在常数0p >,使得函数()f x 满足()()2

p f px f px =-()x R ∈, ()f x 的一个正周期为

17、已知)(x f 是奇函数,)

(1)(1)1(x f x f x f -+=+,,1)1(=-f 则)3(f =____________. 18、函数()f x 对于任意实数x 满足条件()()

12f x f x +=,若()15f =-, 则()()5f f =

19、设()f x 的最小正周期2T =且()f x 为偶函数,它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上, ()f x =

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

几种特殊性质的函数的周期

几种特殊性质的函数的周期: ①y=f(x)对x ∈R 时,f(x +a)=f(x -a) 或f(x -2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a 的周期函数; ②y=f(x)对x ∈R 时,f(x+a)=-f(x)(或f(x+a)= ) (1x f -,则y=f(x)是周期为2a 的周期函数; ③若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2b a -的周期函数; ④y=f(x)的图象关于直线x=a,x=b(a ≠b)对称,则函数 y=f(x)是周期为2b a -的周期函数;如:正弦函数 sin y x = ⑤若y=f(x)是偶函数,其图像又关于直线x=a 对称,则 f(x)是周期为2︱a ︱的周期函数; ⑦正(余)弦型函数定义域为R ,周期为T ,那么,对于任意R m ∈,区间[)T m m +,内有且只有两个量21,x x ,满足()()21x f x f =。正切型函数则只有一个。 ⑧0)()(=+=a x f x f , 或)0)(() (1)(≠= +x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 例1.若函数)(x f 在R 上是奇函数,且在()01, -上是增函数,且)()2(x f x f -=+,则 ①)(x f 关于 对称; ②)(x f 的周期为 ; ③)(x f 在(1,2)是 函数(增、减); ④)时,,(若10∈ x )(x f =x 2,则=)(log 18 21f 。 例2.设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间 [2,3]上 )(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = 。 4.函数(图象)的对称性 1)证明一个函数图象自身的对称问题及证明两个函数图象的对称关系问题

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

函数周期性结论总结

精品文档 . 函数周期性结论总结 ① f(x+a)=-f(x) T=2a ② f(x+a)=±) (1x f T=2a ③ f(x+a)=f(x+b) T=|a-b| 证明: 令x=x-b 得 f(x-b+a)=f(x-b+b) f(x-b+a)=f(x) 根据公式f(x)=f(x+T)=f(x+nT) 得 T=-b+a 即a-b ④f(x)为偶函数,且关于直线x=a 对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为 偶函数,所以 f(-x)=f(x) 因为 关于x=a 对称 所以 f(a+x)=f(a-x) (对称性质)设 x=x+a 所以 f(x+2a)=f(x) 所以 周期T=2a) ⑤f(x)为奇函数,且关于直线x=a 对称,T=4a 证明:f(x+2a)=f(-x)=-f(x) 根据①可知T=2·2a=4a 证明:由于图像关于直线x=a 对称、所以f(a+x)=f(a-x) 令x=x+a 得:f(x+2a)=f(-x) 又f(x)= - f(-x)故f(x)= - f(x+2a) 代换x=x+2a 得: f(x+2a)= - f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a) 有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a) 换元:令x-a=t 那么x=a+t f(t+3a)=-f(t) 根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b 对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x) 假设a >b (当然假设a <b 也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 f(x+2a-2b) =f[a+(x+a-2b)] =f[a-(x+a-2b)] =f(2b-x) =f(x) ⑧f(x)的图像关于(a,0) (b,0)对称,T=2a-2b(a >b) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x ) f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)] =-f(2b-x) =f(x) 关于直线x=a 对称 关于直线x=b 对称

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

函数周期性公式大总结

竭诚为您提供优质文档/双击可除函数周期性公式大总结 篇一:函数周期性结论总结 函数周期性结论总结 ①f(x+a)=-f(x)T=2a ②f(x+a)=±1T=2af(x) ③f(x+a)=f(x+b)T=|a-b|证明:令x=x-b得 f(x-b+a)=f(x-b+b)f(x-b+a)=f(x)根据公式 f(x)=f(x+T)=f(x+nT)得T=-b+a即a-b ④f(x)为偶函数,且关于直线x=a对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为偶函数,所以f(-x)=f(x)因为关于x=a对称 所以f(a+x)=f(a-x)(对称性质)设x=x+a所以 f(x+2a)=f(x)所以周期T=2a)⑤f(x)为奇函数,且关于直线x=a对称,T=4a 证明:f(x+2a)=f(-x)=-f(x)根据①可知T=2·2a=4a 证明:由于图像关于直线x=a对称、所以f(a+x)=f(a-x)令x=x+a得:f(x+2a)=f(-x)又f(x)=-f(-x)故f(x)=-f(x+2a)

代换x=x+2a得: f(x+2a)=-f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a)有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a)换元:令x-a=t那么x=a+t f(t+3a)=-f(t)根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x)假设 a>b(当然假设a<b也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 ⑧f(x)的图像关于(a,0)(b,0)对称,T=2a-2b(a> b)f(x+2a-2b)=f[a+(x+a-2b)]关于直线x=a对称 =f[a-(x+a-2b)]关于直线x=b对称=f(2b-x)=f(x) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x)f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)]

2019年高三题库 届高三数学函数综合练习

e C.e 函数综合练习 姓名:评分: 一、选项择题: 1.集合A={y∈R|y=lg x,x>1},B={-2,-1,1,2}则下列结论正确的是()A.A B= {-2,-1}B.(C A)B=(-∞,0) R C.A B=(0,+∞)D.(C A)B={-2,-1} R 2.a<0是方程ax2+2x+1=0至少有一个负数根的() A.必要不充分条件B.充分不必要条件 C.充分必要条件D.既不充分也不必要条件 3.在同一平面直角坐标系中,函数y=g(x)的图象与y=e x的图象关于直线y=x 对称。而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=-1,则m的值是() A.-e B.-1 D. 1 e 4.若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e x,则有() A.f(2)-3B.a<-3C.a>-1 3D.a<- 1 3 7.函数y=x(x-1)+x的定义域为() A.{x|x≥0} C.{x|x≥1}{0}B.{x|x≥1} D.{x|0≤x≤1}

+ 0) + - 1) - + 0) , log ( x - 1) 的定义域为 1) 8.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中 汽车的行驶路程 s 看作时间 t 的函数,其图像可能是( ) s s s s O t O t O t O t A . B . C . D . 9.设奇函数 f ( x ) 在 (0, ∞) 上为增函数,且 f (1) = 0 ,则不等式 的解集为( ) A . (-1, (1, ∞) B . (-∞, 1) (0, C . (-∞, 1) (1, ∞) D . (-1, (01) f ( x ) - f (- x ) x < 0 10.“ x -1 < 2 成立”是“ x ( x - 3) < 0 成立”的( ) A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D.既不充分也不必要条件 二、填空题: 11.函数 f ( x ) = x - 2 - 1 2 . 12.设曲线 y = e ax 在点 (0, 处的切线与直线 x + 2 y + 1 = 0 垂直,则 a = . 13.已知函数 f ( x ) = x 2 + 2 x + a , f (bx ) = 9 x 2 - 6 x + 2 其中 x∈R,a ,b 为常数,则 方程 f (ax + b ) =0 的解集为 . 14.设函数 y = f ( x ) 存在反函数 y = f -1 ( x ) ,且函数 y = x - f ( x ) 的图象过点(1,2), 则函数 y = f -1 ( x ) - x 的图象一定过点 . 三、解答题: 15. (本小题满分 14 分)已知集合 A = {x | ( x - 2)[ x - (3a + 1)] < 0},B = (2a , a 2 + 1) (1)当 a = 2 时,求 A B ; (2)求使 B ? A 的实数 a 的取值范围 16.(本小题满分 12 分) 已知 p :方程 x 2 + mx + 1 = 0 有两个不等的负实根, q :方程 4 x 2 + 4(m - 2) x + 1 = 0 无实根. 若 p 或 q 为真,p 且 q 为假. 求实数 m 的取值范围。

用函数的特征式判断函数的周期性及其周期

由函数特征式判断函数的周期性及周期 李圣平 (宜昌市体育运动学校,湖北宜昌 443000) 摘要探讨利用函数的特征式研判函数的周期性和周期,让学生掌握研究和判断的方法很有必要,在此给出了用函数特征式研究和判断函数周期性及周期的一般方法,研究了几种具体情形供师生参考。 关键词函数;特征式;判断;周期函数;周期 函数的周期性是高中数学的一个重要知识点,用函数的特征式判断函数的周期性和周期具有抽象性,可以考察学生的抽象思维能力和想象能力,此类问题在高考题中多年涉及,学生掌握一些类型的研究方法及其结论十分必要,本文做出了一些相关探讨。 1 函数的周期性与周期 1. 1 周期函数及其周期的几何定义 从图象上看,函数的图象能够划分为无数段向左右两边无限重复延伸的全等图象段,分点若为函数图象上的点,则为相邻图象段的公共点,将每一段图象称为重复段,将任一重复段向左右无限重复延伸就得到整个函数的图象,这样的函数称为周期函数。周期函数的任一重复段夹在某两条直线x=a和x=b之间(a <b﹚,在左或右要么与直线相交,要么可以与直线无限趋近,将这个重复段向左平移b-a个单位或者向右平移b-a个单位得到与其左右紧邻的重复段,将b-a 称为该函数的一个正周期,a-b称为该函数的一个负周期,每一个重复段称为该函数的一个周期内的图象。如果重复段不能再划分为可重复的小重复段,则把周期b-a称为该函数的最小正周期。 1. 2 周期函数及其周期的代数定义 对于函数f(x),如果存在非零常数k,使f(x+k)=f(x)成立,称函数f (x)为周期函数,把k称为该函数的一个周期。如果k为正数,该函数不存在比k小的正周期,则把k称为该函数的最小正周期。把等式f(x+k)=f(x)称为函数f(x)的一个特征式。 2 用函数的特征式判断函数的周期性和周期 定理1 若函数f(x)对其定义域内的任何x的值,都有:f(x+a)=f(x+b)或f(a-x)=f(b-x),其中a、b是常数,且a≠b,则函数f(x)是周期函数,且a-b是f(x)的一个周期。 证明:若f(x+a)=f(x+b),(a≠b),则用此关系有:f(x)=f((x-b)+b)=f((x-b)+a)=f(x+(a-b)),根据周期函数的定义,函数f(x)是周期函数,且a-b是f(x)的一个周期。若f(a-x)=f(b-x),(a≠b),则用此关系有:f(x)=f(b-(b-x))=f(a-(b-x))=f(x+(a-b)),表明函数f(x)是周期函数,且a-b是函数f(x)的一个周期。 定理2 若函数f(x)对其定义域内的任何x的值,满足下列条件之一,则函数f(x)是周期函数,且2(a-b)是函数f(x)的一个周期,这里a≠b。 条件1:f(x+a)= -f(x+b)或 f(a-x)= -f(b-x); 条件2:f(x+a)=1/f(x+b)或f(a-x)=1/f(b-x),(f(x)≠0); 条件3:f(x+a)= -1/f(x+b)或 f(a-x)=- 1/f(b-x),(f(x)≠0)。 这里只对满足条件3的函数f(x)是周期为2(b-a)的周期函数作证明,其余的用类似的方法(变形法)证明。

高三数学函数综合题训练(含详解)

高三函数综合题 1.已知函数f(x)=2x+2-x a(常数a∈R). (1)若a=-1,且f(x)=4,求x的值; (2)若a≤4,求证函数f(x)在[1,+∞)上是增函数; (3)若存在x∈[0,1],使得f(2x)>[f(x)]2成立,求实数a的取值范围. 2.已知函数f(x)=x2+(x-1)|x-a|. (1)若a=-1,解方程f(x)=1; (2)若函数f(x)在R上单调递增,求实数a的取值范围; (3)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立,求a的取值范围.

3.已知函数f(x)=x|x-a|+2x-3. (1)当a=4,2≤x≤5,求函数f(x)的最大值与最小值; (2)若x≥a,试求f(x)+3>0的解集; (3)当x∈[1,2]时,f(x)≤2x-2恒成立,求实数a的取值范围. 4.已知函数f(x)=x2-1,g(x)=a|x-1|. (1)若函数h(x)=|f(x)|-g(x)只有一个零点,求实数a的取值范围; (2)当a≥-3时,求函数h(x)=|f(x)|+g(x)在区间[-2,2]上的最大值.

答案详解 1.已知函数f (x )=2x +2-x a (常数a ∈R ). (1)若a=-1,且f (x )=4,求x 的值; (2)若a≤4,求证函数f (x )在[1,+∞)上是增函数; (3)若存在x ∈[0,1],使得f (2x )>[f (x )]2 成立,求实数a 的取值范围. 解:(1)由a=-1,f (x )=4,可得2x -2-x =4,设2x =t , 则有t-t -1 =4,即t 2 -4t-1=0,解得t=2±5,当t=2+5时,有2x =2+5,可得x=log 2(2+5). 当t=2-5时,有2x =2-5,此方程无解.故所求x 的值为log 2(2+5). (2)设x 1,x 2∈[1,+∞),且x 1>x 2, 则f(x 1)-f(x 2)=(2x 1+2 -x 1 a)-(2x 2+2 -x 2 a)=(2x 1-2x 2)+ 2 11 2 2 2 2 x x x x +-a= 2 12 1 2 2 2 x x x x +-(2 x 1+x 2 -a) 由x 1>x 2,可得2x 1>2x 2,即2x 1-2x 2>0,由x 1,x 2∈[1,+∞),x 1>x 2,得x 1+x 2>2,故2x 1+x 2>4>0, 又a≤4,故2x 1+x 2>a ,即2x 1+x 2-a >0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在[1,+∞)上是增函数. (3)因为函数f (x )=2x +2-x a ,存在x ∈[0,1], f (2x )>[f (x )]2?22x +2-2x a >22x +2a+2-2x a 2?2-2x (a 2 -a )+2a <0 设t=2-2x ,由x ∈[0,1],可得t ∈[ 4 1,1],由存在x ∈[0,1]使得f (2x )>[f (x )]2 , 可得存在t ∈[ 4 1,1],使得(a 2-a )t+2a <0,令g (t )=(a 2 -a )t+2a <0, 故有g( 41)=4 1(a 2-a)+2a <0或g (1)=(a 2 -a )+2a <0, 可得-7<a <0.即所求a 的取值范围是(-7,0). 2.已知函数f (x )=x 2 +(x-1)|x-a|. (1)若a=-1,解方程f (x )=1; (2)若函数f (x )在R 上单调递增,求实数a 的取值范围; (3)若a <1且不等式f (x )≥2x -3对一切实数x ∈R 恒成立,求a 的取值范围. 解析:(1)当a=-1时,f (x )=x 2 +(x-1)|x+1|,故有,f(x)= ???-<-≥-11 1 122x x x , 当x≥-1时,由f (x )=1,有2x 2 -1=1,解得x=1,或x=-1. 当x <-1时,f (x )=1恒成立, ∴方程的解集为{x|x≤-1或x=1}. (2)f(x)= ? ??<-+≥++-a x a x a a x a x a x )1()1(22

高一数学教案[苏教版]三角函数的周期性2

1.3.1 三角函数的周期性 一、课题:三角函数的周期性 二、教学目标:1.理解周期函数、最小正周期的定义; 2.会求正、余弦函数的最小正周期。 三、教学重、难点:函数的周期性、最小正周期的定义。 四、教学过程: (一)引入: 1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?…… (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢? 2.观察正(余)弦函数的图象总结规律: 自变量x 2π- 32π- π - 2 π- 2π π 32 π 2π 函数值sin x 1 0 1- 0 1 1- 正弦函数()sin f x x =性质如下: 文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。 余弦函数也具有同样的性质,这种性质我们就称之为周期性。 (二)新课讲解: 1.周期函数的定义 对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值....时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。 说明:(1)T 必须是常数,且不为零; (2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。 【思考】 (1)对于函数sin y x =,x R ∈有2sin( )sin 636π ππ+ =,能否说 23 π 是它的周期? (2)正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠) (3)若函数()f x 的周期为T ,则kT ,* k Z ∈也是()f x 的周期吗?为什么? (是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+) 2.最小正周期的定义 对于一个周期函数()f x ,如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做()f x 的最小正周期。 说明:(1)我们现在谈到三角函数周期时,如果不加特别说明,一般都是指的最小正周期; (2)从图象上可以看出sin y x =,x R ∈;cos y x =,x R ∈的最小正周期为2π; (3)【判断】:是不是所有的周期函数都有最小正周期? (()f x c =没有最小正周期) 3.例题分析: – –

周期函数注意点以及常见抽象函数周期性的证明

周期函数的定义 1、对于函数f(x),如果存在一个非零常数.T ,使得当x 取定义域内的每一个值.时,都有 f(x T) f(x),那么函数f(x)就叫做周期函数,非零常数 T 叫做这个函数的周期。 ① 定义域:对于任何函数,都需要明确其定义域,对于周期函数来说,其 定义域必为至少一端无界的集合。 理由:设周期为T,由周期函数的定义知f(x+T)=f(x),易得f(x+nT)=f(x) (其中n 是整数),即x+nT 也在定义域内,故周期函数定义域必是无界集。 例题:y sin x(0 x 10 )是周期函数吗? ② 变的只能是x T 的变化只能发生在 x 上。例如f(x) sin(3x 8)是周期函数,则 f (x T) sin[3( x T) 8],不能写成 f (x T) sin(3x T 8)。 ③ 图像为周期波动的函数不一定是周期函数,要观察定义域。 例如:f (x) x [x] ( 3 x 3 ) ([x]是取整函数,表示不超过 x 的 最大整数),该函数的图像如下所示,该图像重复出现,但是因为其定义域 两端都有界,所以其必不为周期函数。 周期函数问题的相关题型及解答。 核心:所有周期函数的问题,核心在求出周期 T ,即将题目里各种f(x)的等 式往f(x T) f (x)方向化简。 化简过程中需要注意的相关函数概念:化简过程中要注意f(x)本身的对称 性和奇偶性。 抽象函数的周期总结 周期函数 例题:sin - 2 3 sin -,那么2 3 是sin (为的周期吗? 3

1. f(x) f(x T)型:f(x)的周期为 T o 证明:对x 取定义域内的每一个值时,都有 f (x T) f (x),贝y f (x)为周期函数,T 叫 函数f (x)的周期。 2. f (x a) f (x b)型:f(x)的周期为 |b a|。 证明:f (x a) f (x b) f (x) f (x b a)。 3. f (x a) f (x)型:f (x)的周期为 2a o 1 4. f (x a) 型:f (x)的周期为2a o f(x) 1 —f(x)。 f(x) 1 5. f (x a) —型:f (x)的周期为 2a 。 f(x) 6. f (x a) 1一型 型:f (x)的周期为4a 。 1 f(x) f(x) 证明:f (x 2a) f [(x a) a] f (x a) [f(x)] f(x) 证明:f (x 2a) f [(x a) a] 1 f(x a) 证明:f (x 2a) f [(x a) a] 1 f (x a) 1 1 f(x) f (x) o 证明:f (x 2a) 1 1 f (x a) 1 f (x) 1 1 f (x a) 1 1 f(x) 1 f (x) f(x)' f (x 4a) f [(x 2a) 2a] 1 f(x 2a) f (x) o 7. f (x a) 1 f (x) 1 f (x) y f(x)的周期为T 2a f [(x a) a] 1 1 f(x)

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高中数学——函数的周期性

高中数学——函数的周期性 一、知识回顾 1.周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.关于函数周期性常用的结论 (1)若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以2a 是函数的一个周期(0a ≠); (2)若满足1()()f x a f x +=,则(2)[()]f x a f x a a +=++= 1() f x a +=()f x ,所以2a 是函数的一个周期(0a ≠); (3)若函数满足1()() f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). (4)如果)(x f y =是R 上的周期函数,且一个周期为T ,那么))(()(Z n x f nT x f ∈=±. (5)函数图像关于b x a x ==,轴对称)(2b a T -=?. (6)函数图像关于()()0,,0,b a 中心对称)(2b a T -=?. (7)函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=?. 二、方法规律技巧 1.求函数周期的方法求一般函数周期常用递推法和换元法,形如y =Asin(ωx +φ),用公式T =2π|ω| 计算.递推法:若f(x +a)=-f(x),则f(x +2a)=f[(x +a)+a]=-f(x +a)=f(x),所以周期T =2a.换元法:若f(x +a)=f(x -a),令x -a =t ,x =t +a ,则f(t)=f(t +2a),所以周期T =2a . 2.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题. 3.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.

(完整版)专题函数的周期性

专题函数的周期性 一知识点精讲 1 .周期函数的定义:对于f (x)定义域内的每一个x ,都存在非零常数T ,使得f(x T) f (x)恒成立,则称函数f (x)具有周期性,T叫做f (x)的一个周期,则kT (k Z,k 0 )也是f (x)的周期,所有周期中的最小正数叫 f (x)的最小正周期.周期函数的定义域一定是无限集 2性质 ①若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期; 3?几种特殊的具有周期性的抽象函数: 函数y f x满足对定义域内任一实数x (其中a0为常数) (1) f x f:X a,则y f x的周期T a . (2) f x a f x,贝U f x的周期T2a . (3) f x a的周期T2a . ,贝U T x f x (4) f x a f x a,贝U f x的周期T2a . (5) f(x a)1 f (x),则f x 1 f(x)的周期 T2a . (6) f(x a) 1 f(x),则f 1 f (x) x的周期T4a数. (7) f(x a) 1 f (x),则f x 1 f(x) 的周期T4a . (8)函数y f (x)满足f (a x) f (a x)(a 0), 若f (x)为奇函数,则其周期为 T 4a,若f (x)为偶函数,则其周期为T 2a . (9)函数y f (x) x R的图象关于直线x a和x b a b都对称,则函数f (x)是 以2 b a为周期的周期函数. (10) 函数y f (x) x R的图象关于两点A a, y o > B b, y o a b都对称,则函数 f (x)是2 b a为周期的周期函数. (11) 函数y f (x) x R的图象关于A a, y0和直线x b a b都对称,则函数 f (x)是以4 b a为周期的周期函数. (12) f(x a) f(x) f (x-a),则f (x)的周期T 6a. 二典例解析 1. 设f(x)是(—a , +s)上的奇函数,f(x+2)= —f(x),当0W x w 1 时,f(x)=x ,则f(7.5)=( ) A.0.5 B. —0.5 C.1.5 D. —1.5 2. 若y=f(2x)的图像关于直线x a和x b(b a)对称,则f(x)的一个周期为( ) ②若周期函数f(x)的周期为T,则f( x)(0)是周期函数,且周期为 2 2

高中数学复合函数练习题

第一篇、复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (一)例题剖析: (1)、已知 f x ()的定义域,求[]f g x ()的定义域 思路:设函数 f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范 围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数 f u ()的定义域为(0,1) ,则函数f x (ln )的定义域为_____________。 解析:函数 f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<f x ()的定义域为

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

相关主题
文本预览
相关文档 最新文档