当前位置:文档之家› 高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)新选.

高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)新选.

高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)新选.
高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)新选.

用放缩法处理数列和不等问题(教师版)

一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:

(1)数列{}n a 的通项公式; (2)设11+=

n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2

1

解:(1)由已知得2

)1(4+=n n a S ,2≥n 时,2

11)1(4+=--n n a S ,作差得:12

12

224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由

1211+=a S ,得11=a ,所以12-=n a n

(2))1

21

121(21)12)(12(111+--=+-==

+n n n n a a b n n n ,所以

2

1)12(2121)1211215131311(21<+-=+---+-=

n n n B n Λ 真题演练1:(06全国1卷理科22题)设数列

{}n a 的前n 项的和,1412

2333

n n n S a +=

-?+,1,2,3,n =g

g g (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n T S =,1,2,3,n =g g g ,证明:1

32n

i i T =<∑.

解: (Ⅰ)由 S n =43a n -13×2n+1+2

3, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23

所以a 1=2

再由①有 S n -1=43a n -1-13×2n +2

3

, n=2,3,4,…

将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13

×(2n+1-2n

),n=2,3, …

整理得: a n +2n

=4(a n -1+2n -1

),n=2,3, … , 因而数列{ a n +2n

}是首项为a1+2=4,公比为4的等比数列,即 : a n +2n

=4×4

n -1

=

4n , n=1,2,3, …, 因而a n =4n -2n

, n=1,2,3, …,

(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1

-2)

= 23

×(2n+1-1)(2n

-1)

T n = 2n

S n = 32×2n

(2n+1-1)(2n

-1) = 32×(12n -1 - 12n+1-1) 所以, 1

n

i i T =∑

=

3

2

1

(

n

i =∑12i

-1 - 12i+1-1) = 32×(121-1 - 1121

n +-) < 3

2

二.先放缩再求和

1.放缩后成等比数列,再求和

例2.等比数列

{}n a 中,1

1

2

a

=-,前n 项的和为n S ,且798,,S S S 成等差数列.

设n

n n a a b -=12

,数列{}n b 前n 项的和为n T ,证明:1

3n T <.

解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比981

2

a q a =

=-. ∴n n

a )2

1

(-=. n

n n n

n n b 231

)2(41)2

1(141?≤

--=

--=

. (利用等比数列前n 项和的模拟公式n

n S Aq A =-猜想)

∴n n b b b B Λ++=2131)211(312

11)

211(213123123123122<-=--?

=?++?+?≤n n Λ. 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈

(I )求数列

{}n a 的通项公式;

(II )若数列{}n b 滿足12111

*444(1)()n n b b b b n a n N ---=+∈L ,证明:数列{}n b 是等差数列;

(Ⅲ)证明:

*122311...()232

n n a a a n n

n N a a a +-<+++<∈. (I )解:*

121(),n n a a n N +=+∈Q

112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列

12.n n a ∴+=即 2*21().n a n N =-∈

(II )证法一:12111

44

...4(1).n n k k k k n a ---=+Q

12(...)42.n n k k k n nk +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-

即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++=

③-④,得 2120,n n n nb nb nb ++-+=

即 2120,n n n b b b ++-+=*

211(),n n n n b b b b n N +++∴-=-∈{}n b ∴

是等差数列

(III )证明:Q

1121211

,1,2,...,,1212

2(2)2k k k k k k a k n a ++--==<=--

12231 (2)

n n a a a n

a a a +∴

+++<

111211111111.,1,2,...,,2122(21)2 3.222232

k k k k k k

k k a k n a +++-==-=-≥-=--+-Q

1222311111111

...(...)(1),2322223223

n n n n a a a n n n a a a +∴

+++≥-+++=-->-

*122311...().232

n n a a a n n

n N a a a +∴-<+++<∈ 2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11

=a ,)3,2,1()21(1Λ=+

=+n a n a n n n .求证:1

12

1

3-++-≥>n n n n a a 证明:因为n n n a n

a )2

1(1

+

=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=

-+n n

n n a n

a a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221

≥=

-+,累加得:1

212

1

2221--+++≥-n n n a a Λ. 令12212221--+++=

n n

n S Λ,所以n n n S 2

1

22212132-+++=Λ,两式相减得: n n n n S 212121212121132--++++=-Λ,所以1212-+-=n n n S ,所以12

13-+-≥n n n a , 故得1

12

1

3-++-

≥>n n n n a a .

3.放缩后成等差数列,再求和

例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且2

2n n n a a S +=.

(1) 求证:22

14

n n n a a S ++<;

(2)

<+???+<

解:(1)在条件中,令1=n ,得1112

122a S a a ==+,1011

=∴>a a Θ ,又由条件n n n

S a a 22

=+有112

12+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得

0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a Θ ∴11n n a a +-=

所以, n n a n =-?+=)1(11,(1)

2

n

n n S +=

所以4

2)1(212)1(2

1

2

22++=++?<+=n n n a a n n n n S (2)因为1)1(+<+<

n n n n ,所以

2

1

2)1(2

+<

+<

n n n n ,所以 2)1(23222121+++?+?=

++n n S S S n ΛΛ2

1

2322++++

12

2312-=

+=+n S n n ;

2

2

2)1(2

2

22

121n n S n n n S S S =

+=

+

++

>

++ΛΛ

练习:

1.(08南京一模22题)设函数213

()44

f x x bx =

+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.

(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;

1,1n n N a +=

∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和1

6

的大小并证明之. 解:(Ⅰ) 1

2

b =

(利用函数值域夹逼性);(II )21n a n =+; (Ⅲ)∵2

1111(22)22123n c n n n ??=<- ?+++??

,∴1231111

+23236n n T c c c c n ??=+++???<-< ?+??…

2.(04全国)已知数列}{n a 的前n 项和n S 满足:n

n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有

8

7

11154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;

⑵由已知得:1

112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)

化简得:1

122(1)

n n n a a --=+-

2)1(2)1(11---=---n n n n a a ,]32

)

1([232)1(1

1+--=+---n n n n a a 故数列{

32)1(+-n n a }是以3

2

1

+-a 为首项, 公比为2-的等比数列. 故

1)2)(31(32)1(---=+-n n

n a ∴22[2(1)]3

n n n a -=-- ∴数列{n a }的通项公式为:22

[2(1)]3

n n n

a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边

=

232451113111[]221212(1)m m

m a a a -+++=+++-+--L L ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

3

2322

1

21121121+>++-, 43432121121121+

<-++,因此,可将121

2-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,

m a a a 11154+++Λ)11()11(11654m

m a a a a a +++++=-Λ )2

1

2121(2321243-++++<

m Λ )2

11(4123214--?+=

m 8321+<

8

7= (2)当m 是奇数)4(>m 时,1+m 为偶数,

8

711111111165454<+++++<++++m m m a a a a a a a a ΛΛ 所以对任意整数4>m ,有

m a a a 11154+++Λ8

7

<。 本题的关键是并项后进行适当的放缩。 3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

求证:(1)对于*

∈N n 恒有n n a a >+1成立; (2)当*

∈>N n n 且2,有11211+=-+a a a a a n n n Λ成立; (3)11112112006

212006

<+++<

-

a a a Λ

分析:(1)用数学归纳法易证。 (2)由12

1

+-=+n n n a a a 得:)1(11-=-+n n n a a a )1(111-=-∴--n n n a a a

… … )1(1112-=-a a a

以上各式两边分别相乘得: )1(111211-=--+a a a a a a n n n Λ,又21=a

11211+=∴-+a a a a a n n n Λ (3)要证不等式11112112006

212006

<+++<

-

a a a Λ, 可先设法求和:

2006

21111a a a +++Λ,再进行适当的放缩。 )1(11-=-+n n n a a a Θn n n a a a 1111

11--=

-∴

+1

1

1111---=∴+n n n a a a

200621111a a a +

++∴

Λ)11

11()1111()1111(200720063221---++---+---=a a a a a a Λ 111120071---=

a a 2006

2111a a a Λ-=1<又20062006

1

2006212=>a a a a Λ 20062006212

1

111->-

∴a a a Λ∴原不等式得证。

本题的关键是根据题设条件裂项求和。

用放缩法处理数列和不等问题(学生版)

一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:

(1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2

1

真题演练1:(06全国1卷理科22题)设数列

{}n a 的前n 项的和,1412

2333

n n n S a +=

-?+,1,2,3,n =g

g g (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n T S =,1,2,3,n =g g g ,证明:1

32n

i i T =<∑.

二.先放缩再求和

1.放缩后成等比数列,再求和

例2.等比数列

{}n a 中,1

1

2

a

=-,前n 项的和为n S ,且798,,S S S 成等差数列.

设n

n n a a b -=12

,数列{}n b 前n 项的和为n T ,证明:1

3n T <.

真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈

(I )求数列

{}n a 的通项公式;

(II )若数列{}n b 滿足12111

*444(1)()n n b b b b n a n N ---=+∈L ,证明:数列{}n b 是等差数列;

(Ⅲ)证明:

*122311...()232

n n a a a n n

n N a a a +-<+++<∈.

2.放缩后为“差比”数列,再求和 例3.已知数列{}n a 满足:11=a ,)3,2,1()21(1Λ=+

=+n a n a n n n .求证:1

12

1

3-++-≥>n n n n a a

3.放缩后成等差数列,再求和

例4.已知各项均为正数的数列{}n a 的前n 项和为n S ,且2

2n n n a a S +=.

(1) 求证:22

14

n n n a a S ++<;

(2)

<+???+< 练习:

1.(08南京一模22题)设函数213

()44

f x x bx =

+-,已知不论,αβ为何实数,恒有(cos )0f α≤且(2sin )0f β-≥.对于正数列{}n a ,其前n 项和()n n S f a =,*()n N ∈.

(Ⅰ) 求实数b 的值;(II )求数列{}n a 的通项公式;

1,1n n N a +=∈+,且数列{}n c 的前n 项和为n T ,试比较n T 和1

6

的大小并证明之.

2.(04全国)已知数列}{n a 的前n 项和n S 满足:n

n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ;(2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有

8

7

11154<+++m a a a Λ

3.(07武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22

11

求证:(1)对于*

∈N n 恒有n n a a >+1成立; (2)当*

∈>N n n 且2,有11211+=-+a a a a a n n n Λ成立; (3)11112112006

212006

<+++<

-

a a a Λ

最新文件 仅供参考 已改成word 文本 。 方便更改

2017届高三复习:数列大题训练50题及答案

2017届高三复习:数列大题训练50题 1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+. (1)求{n a }的通项公式; (2)求和T n = 12111 23(1)n a a n a +++ + . 2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线012 1 =+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1 111)(321≥∈++++++++=n N n a n a n a n a n n f n 且 ,求函数)(n f 最小值. 3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,8 1)和Q (4,8) (1) 求函数)(x f 的解析式; (2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15. 求n S =f (1)+f (2)+…+f (n )的表达式. 5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数. (1)求证: {}n a 为等比数列; (2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111 ,,23 n n b b f b n N n -==∈≥,试写出1n b ?? ? ??? 的通项公式,并求12231n n b b b b b b -+++ 的结果. 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N*),满足向 量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N*)都在斜率为6的同一条直线上. (1)试用a 1,b 1与n 来表示a n ; (2)设a 1=a ,b 1=-a ,且12

不动点法求数列通项公式

不动点法求数列通项公 式 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

不动点法求数列通项公式 通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的. 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如: a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点. 下面结合不动点法求通项的各种方法看几个具体的例子吧. ◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项. 【说明:这题是“相异不动点”的例子.】 先求不动点 ∵a[n+1]=2/(a[n]+1) ∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】 ∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2) ∵a[1]=2 ∴(a[1]-1)/(a[1]+2)=1/4 ∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

求递推数列通项的特征根法与不动点法

求递推数列通项的特征根法与不动点法 一、形如21(,n n n a pa qa p q ++=+是常数)的数列 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…① 若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a . 例1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?, 由1122122243a c c a c c =+=??=+=?,得121 12 c c =???= ??, 112n n a -∴=+. 例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为2 441x x =-,解得121 2x x ==,令()1212n n a c nc ?? =+ ??? , 由1122121()121(2)2 4 a c c a c c ? =+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=. 二、形如2n n n Aa B a C a D ++= +的数列 对于数列2n n n Aa B a C a D ++= +,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为A x B x C x D += +,变形为2()0C x D A x B +--=…②

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

【高考数学】高考数列不动点法解题方法整理版

利用“不动点”法巧解高考题 由递推公式求其数列通项历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此我们可以利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探究。笔者在长期的教学实践中,不断总结探究反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探究的规律性总结,以期对同学们解题有所帮助. 1 不动点的定义 一般的,设()f x 的定义域为D ,若存在0x D ∈,使f x x ()00=成立,则称x 0为f x ()的 不动点,或称00(,)x x 为f x ()图像的不动点。 2 求线性递推数列的通项 定理 1 设()(01)f x ax b a =+≠,,且x 0为f x ()的不动点,{}a n 满足递推关系1()n n a f a -=,2,3, n =,证明{}a x n -0是公比为a 的等比数列。证:∵x 0是f x ()的不动点,所以ax b x 00+=, 所以,所以a n -=+-=-=----x a a b x a a ax a a x n n n 0101010()()··,∴数列{}a x n -0是公比为a 的等比数列。 例1(2010上海文数21题)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n . 证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即 15166n n a a -= +(2)n ≥,记51 ()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:15 1(1)(2)6 n n a a n --=-≥,又a 1-1= -15 ≠0,所以数列{a n -1}是等比数列。(2)解略。 3求非线性递推数列的通项 定理2 设()(00)ax b f x c ad bc cx d +=≠-≠+,,且x x 12、是f x ()的不动点,数列{}a n 满足递推关系a f a n n =-()1,2,3,n =,(ⅰ)若12x x ≠,则数列{ }a x a x n n --12是公比为a x c a x c --12的等比数列;(ⅱ)

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

不动点(特征方程)法求数列通项

特征方程法求解递推关系中的数列通项 考虑一个简单的线性递推问题. 设已知数列}{n a 的项满足 其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 111=∈--=+a n a a n n 求.n a 解:作方程.2 3,23 10-=--=x x x 则 当41=a 时,.2112 3 ,1101= +=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是.N ,)3 1 (2112323,)31(211)3 1 (111 1∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5 360i x +-= a 1= b a n+1=ca n +d

高考新课标数学数列大题精选50题(含答案、知识卡片)

高考新课标数学数列大题精选50题(含答案、知识卡片) 一.解答题(共50题) 1.(2019?全国)数列{a n}中,a1=,2a n+1a n+a n+1﹣a n=0. (1)求{a n}的通项公式; (2)求满足a1a2+a2a3+…+a n﹣1a n<的n的最大值. 2.(2019?新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S9=﹣a5. (1)若a3=4,求{a n}的通项公式; (2)若a1>0,求使得S n≥a n的n的取值范围. 3.(2019?新课标Ⅱ)已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)证明:{a n+b n}是等比数列,{a n﹣b n}是等差数列; (2)求{a n}和{b n}的通项公式.

4.(2019?新课标Ⅱ)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式; (2)设b n=log2a n,求数列{b n}的前n项和. 5.(2018?新课标Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式; (2)求S n,并求S n的最小值. 6.(2018?新课标Ⅰ)已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3; (2)判断数列{b n}是否为等比数列,并说明理由; (3)求{a n}的通项公式.

7.(2018?新课标Ⅲ)等比数列{a n}中,a1=1,a5=4a3. (1)求{a n}的通项公式; (2)记S n为{a n}的前n项和.若S m=63,求m. 8.(2017?全国)设数列{b n}的各项都为正数,且. (1)证明数列为等差数列; (2)设b1=1,求数列{b n b n+1}的前n项和S n. 9.(2017?新课标Ⅱ)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2. (1)若a3+b3=5,求{b n}的通项公式; (2)若T3=21,求S3.

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

不动点法求数列通项公式

不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020

不动点法求数列通项公式 通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的. 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点. 下面结合不动点法求通项的各种方法看几个具体的例子吧. ◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项. 【说明:这题是“相异不动点”的例子.】 先求不动点 ∵a[n+1]=2/(a[n]+1) ∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】 ∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2) ∵a[1]=2 ∴(a[1]-1)/(a[1]+2)=1/4 ∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列

高中数学放缩法技巧全总结

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 11 1) 11)((112 2 2 22 222<++ ++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++

数列之特征方程法+不动点法

递推数列特征方程的来源与应用 浙江省奉化二中 周 衡(315506) 浙江省奉化中学 杨亢尔(315500) 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1 -= c d t ,当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列? ?? ? ??-+ 1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+ ∴n n c c d a c d a 将 b a =1代入并整理,得 ()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2 =--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+= 其中1c 、2c 可由初始条件确定。

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

用不动点法求数列通项

定义:方程的根称为函数的不动点. 利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法. 定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列. 证明:因为是的不动点 由得 所以是公比为的等比数列. 定理2:设,满足递推关系,初值条件 (1):若有两个相异的不动点,则(这里) (2):若只有唯一不动点,则(这里) 证明:由得,所以 (1)因为是不动点,所以,所以 令,则 (2)因为是方程的唯一解,所以 所以,所以 所以 令,则 例1:设满足,求数列的通项公式 例2:数列满足下列关系:,求数列的通项公式 定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时, 证明:是的两个不动点 即 于是, 方程组有唯一解

例3:已知数列中,,求数列的通项. 其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知且,求数列的通项. 解: 作函数为,解方程得的不动点为 .取,作如下代换: 逐次迭代后,得: 已知曲线22:20(1,2,)n C x nx y n -+==K .从点(1,0)P -向曲线n C 引斜率为(0) n n k k >的切线n l ,切点为(,)n n n P x y . (1)求数列{}{}n n x y 与的通项公式; (2)证明:13521n n n x x x x x y -????<),()f x '是()f x 的 导数,设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,. (1)求αβ,的值; (2)证明:对任意的正整数n ,都有n a α>; (3)记ln (12)n n n a b n a βα -==-L ,,,求数列{}n b 的前n 项和n S 13陕西文21.(本小题满分12分)已知数列{}n a 满足, *11212,,2 n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。 山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对任意的n N + ∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)

相关主题
文本预览
相关文档 最新文档