当前位置:文档之家› 期中考试模拟试题2-二次函数

期中考试模拟试题2-二次函数

期中考试模拟试题2-二次函数
期中考试模拟试题2-二次函数

期中考试模拟试题2-二次函数

1、已知:二次函数2y ax b =-和2y bx a =-分别有最大值、最小值,则2y bx a =-和2y ax b =-的图像有 个交点.

2、设23y x ax a =++-,

⑴ 当x 取任意实数时,y 恒为非负数,则a 的取值范围为 ; ⑵ 当22x -≤≤时,y 的值恒为非负数,则实数a 的取值范围为 .

3、已知点()15A x ,,()25B x ,是函数223y x x =-+上两点,则当12x x x =+时,函数值y =___________.

4、已知1a <-,点(1a -,1)y ,(a ,2)y ,(1a +,3)y 都在函数2y x =的图象上,则( )

A. 123y y y <<

B. 132y y y <<

C. 321y y y <<

D. 213y y y <<

5、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:

①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a -> 其中所有正确结论的序号是( ) A .①②

B .①③④

C .①②③⑤

D .①②③④⑤

6、对于每个非零自然数n ,抛物线()()

2211

11n y x x n n n n +=-

+++与x 轴交于n n A B 、两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++…的值是( )

A . 2009

2008

B .20082009

C .20102009

D .20092010

7、函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )

8、二次函数2y ax bx c =++的图象如图所示,则一次函数

2

4y bx b ac =+-与反比例函数a b c

y x

++=

在同一坐标系内的图象大致为( )

9、把抛物线2y ax bx c =++向左平移3个单位,向下移2个单位后,所得抛物线为2y ax =,其图象经过点112?

?-- ?

?

?,,则原解析式为 . 10、分别求出在下列条件下,函数2231y x x =-++的最值:

⑴ x 取任意实数;⑵ 当20x -≤≤时;⑶ 当13x ≤≤时;⑷ 当12x -≤≤时.

11、当1,2,2004n =时,求所有二次函数22()(21)1y n n x n x =+-++的图象与x 轴所截得的线段长度

之和.

12、如图,已知抛物线2y x px q =++与x 轴交于点A 、B ,交y 轴负半轴于C 点,

点B 在点A 的右侧,90ACB ∠=?,112

OA OB OC

-=

. ⑴ 求抛物线的解析式; ⑵ 求ABC ?的外接圆的面积;

⑶ 在抛物线2y x px q =++上是否存在点P ,使得PAB ?

的面积为 如果有,这样的点有几个;如果没有,请说明理由.

专题10二次函数比较大小和二次函数的平移(解析版)-2020-2021学年九年级数学上册常考题专练

专题10二次函数比较大小和二次函数的平移 解题步骤: 假设抛物线过三个点:A (x 函数平移解题技巧:二次函数平移的具体方法如下: 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移” 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

1.若点()()121,,2,A y B y 在抛物线()2 1112 y x =-+-上,则12,y y 的大小关系是___________. 【答案】12y y > 【解析】 【分析】 根据函数的解析式得到函数图象的对称轴,根据函数的性质即可得到答案. 【详解】 ∵()2 1112 y x =- +-, ∴函数图象的对称轴是直线x=-1,开口方向向下, ∵点()()121,,2,A y B y 在抛物线()2 1112 y x =- +-上,且1<2, ∴由对称轴右侧y 随着x 的增大而减小得到12y y >, 故答案为:12y y >. 【点睛】 此题考查二次函数的性质,根据顶点式解析式确定图象的开口方向,对称轴得到增减性,由此判定函数值的大小,正确掌握函数图象的性质是解题的关键. 2.已知A (3,y 1)、B (4,y 2)都在抛物线y=x 2+1上,试比较y 1与y 2的大小:__________. 【答案】y 1<y 2 【解析】把A(3(y 1((B(4(y 2(代入抛物线y=x 2+1,可得y 1=10(y 2=17,所以y 1(y 2. 3.点A (2,y 1)、B (3,y 2)在二次函数y =﹣x 2﹣2x+c 的图象上,则y 1与y 2的大小关系为y 1_____y 2(填“>”“<” 或“=”). 【答案】〉 【解析】 【分析】 先根据解析式求出对称轴x=b 2a -=-1,再根据函数开口方向且321>>-,即可比较y 1与y 2的大小. 【详解】 ∵抛物线的对称轴为x=b 2a - =-1,函数开口向下,

二次函数结合定值及等面积问题

二次函数结合定值及等面积问题 2 2 8 1.已知二次函数y =3x-3x+2的图像与x 轴交于A B 两点,A 在B 点的左边,与y 交 于点C ,点P 在第一象限的抛物线上,且在对称轴右边, S A PAC = 4,求点P 的坐标。 2.抛物线 y=-x 2 +bx+c 经过点 A B 、C,已知 A(- 1,0), C (0, 3). (1)求抛物线的解析式; (2)若P 为抛物线上一点,且S PBC =3,请求出此时点P 的坐标。 3.如图,已知直线 AB : y = kx+ 2k + 4与抛物线y= ^x 2 -^-A (1)直线AB 总经过一个定点 C,请直接写出点 C 的坐标 1 (2)当k 二时,在直线AB 下方的抛物线上求点 P ,使S A ABP = 5 2 4. 如图,抛物线y x 2 2x 3与x 轴交A B 两点(A 点在B 点左侧),直线l 与抛物线交 于A C 两点,其中C 点的横坐标为2。 (1 )求A B 两点的坐标及直线 AC 的函数表达式; (2) P 是线段AC 上的一个动点,过 P 点作y 轴的平行线交抛物线于 E 点,求△ EAC 面积的 最大值。 5. 如图,抛物线的顶点为 A (-3,-3 ),此抛物线交X 轴于O, B 两点 (1) 求此抛物线的解析式 (2) 求厶AOB 的面积 P C x O

(3) 若抛物线上另有一点P满足S B阳创,请求出P点的坐标 6.已知二次函数y x2 bx c,其图像抛物线交x轴的于点A (1, 0)、B (3, 0),交y 轴于点C. (1) 求此二次函数关系式; ⑵试问抛物线上是否存在点P(不与点B重合),使得S BCP 2S ABC ?若存在,求出P点 坐标;若不存在,请通过计算说明理由.

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,

而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+ y ax c

的性质:上加下减。 3. ()2 y a x h =- 的性质:左加右减。

【中考数学压轴题专题突破01】二次函数中的定值问题

【中考压轴题专题突破】 二次函数中的定值问题 1.在平面直角坐标系xOy中,已知二次函数y=﹣的图象经过点A(2,0)和点B(1,),直线l经过抛物线的顶点且与y轴垂直,垂足为Q. (1)求该二次函数的表达式; (2)设抛物线上有一动点P从点B处出发沿抛物线向下运动,其纵坐标y1随时间t(t ≤0)的变化规律为y1=﹣2t.设点C是线段OP的中点,作DC⊥l于点D. ①点P运动的过程中,是否为定值,请说明理由; ②若在点P开始运动的同时,直线l也向下平行移动,且垂足Q的纵坐标y2随时间t的 变化规律为y2=1﹣3t,以OP为直径作⊙C,l与⊙C的交点为E、F,若EF=,求t 的值.

2.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B (3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S. (1)求二次函数y=﹣x2+bx+c的表达式; (2)若n=0,求S的最大值,并求此时t的值; (3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.

3.若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组” (1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由. (2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y =ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式; (3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

二次函数——定值问题

专题九:二次函数之定值问题 坐标为定值 例题 1 :抛物线y=x2+bx+c与x轴负半轴交于点A,与x轴正半轴交于点B,与y 轴交于点C. (1)如图1,若OB=2OA=2OC ①求抛物线的解析式; ②若M 是第一象限抛物线上一点,若cos∠MAC=,求M 点坐标. (2)如图2,直线 E F∥x轴与抛物线相交于E、F两点,P为 E F下方抛物线上一点,且P(m,﹣2).若∠EPF=90°,则 E F所在直线的纵坐标是否为定值,请说明理由.

练习1 .如图1,抛物线y=(x﹣m)2的顶点A在x轴正半轴上,交y轴于 B 点,S△OAB=1. 1)求抛物线的解析式; (2)如图2,P 是第一象限内抛物线上对称轴右侧一点,过P 的直线L与抛物线有且只有一个公共点,L交抛物线对称轴于C点,连PB交对称轴于 D 点,若∠ BAO=∠ PCD,求证:AC=2AD; (3)如图3,以 A 为顶点作直角,直角边分别与抛物线交于M、N 两点,当直角∠ MAN绕A点旋转时,求证:MN 始终经过一个定点,并求出该定点的坐标.

线段之和为定值 例题 1 :如图,抛物线 y = x 2 + bx + c 交 x 轴于 A 、 B 两点,其中点 A 坐 在抛物线上且满足 ∠PAB= 2∠ACO.求点 P 的 坐标; 3)如图②,点 Q 为 x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ 、BQ 分别交抛物线的对称轴于点 M 、N .请问 DM+ DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由 . 2)如图①,连接 AC ,点 P 1)求抛物线的函数表达 式; C(0,-3) .

关于比较一次函数的函数值与二次函数的函数值大小之我见

关于比较一次函数的函数值与二次函数的函数值大小之我见 多力昆·阿布都热西提 2014.6.3

关于比较一次函数的函数值与二次函数的 函数值大小之我见 多力昆·阿布都热西提 在初中数学中,一次函数的图像和二次函数的图像的复杂的和潜在的概念现象大部分的师生分析问题陷入困惑。数学教师对这一点的忽略引起了学生对这个容的探究精神的欠缺。 数学没有明确概念,解决问题一定会受阻,如果概念里模糊,问题与学过知识之间的技术处理一定会失败。我认为,一次函数的图像与二次函数的图像之间的函数值的大小问题应该分层次分析。 下面,我来分析二次函数的图像与一次函数的图像之间存在的模糊问题的看法。 1、在同一个平面直角坐标中,二次函数y 1 = ax2+bx+c和一次函 数y 2 =ax+b的函数值的大小问题 (1)判断二次函数的图像与一次函数的图像的关系,如果二次函 数y 1 = ax2+bx+c的图像与一次函数的图像相交,则函数值相等,即 y 1= y 2 。 由上可得:ax2+bx+c=ax+b。 整理得:ax2+(b-a)x+c-b=0。 检验:Δ=b2—4ac=(b—a)2—4a(c—b) 第一:当Δ>0时,二次函数的图像与一次函数相交于不同的两个点。

设交点的坐标为(x 1,y 1 ),(x 2 ,y 2 ), 在y= ax2+bx+c中,当a>0(x 1< x 2 )时,x 1 y 1 , 当x> x 2或x< x 1 时,y 2 < y 1 (图1)在y= ax2+bx+c中,当a<0(x 1 < x 2)时,x 1 y 2 。当x> x 2 或x< x 1 时,y 2 > y 1 。(图2) 图1 图2 在图1中,在直线x= x 1与直线x= x 2 之间,一次函数的图像在 二次函数的上方,即,y 1> y 2 在直线x= x 1 的右边与直线x= x 2 的右 边,一次函数的图像在二次函数的下方,即y 1> y 2 。 在图2,在直线x= x 2 之间,二次函数的图像在一次函数的图像, 即:y 1> y 2 。在直线x= x1的左边与直线x= x2的右边,一次函数的 图像在二次函数的图像上方,即y2> y1。 第二,当Δ=0时,一次函数的图像与二次函数的图像有一个交 点,此时,设交点的坐标为(x 0,y ),在y 1 =ax2+bx+c,当a>0时, 在x= x 0的条件下,y 1 > y 2 ,(图3)。在x≠ x 的条件下,y 1 > y 2 ,(图 4)。

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

函数值的大小比较

二次函数、反比例函数比较大小 一、二次函数的大小比较方法: 1、特殊值代入法: 直接根据题目要求,分别代入具体的数值,再比较大小。 2、利用函数的增减性: 当各点都在对称轴的一侧时,利用函数的增减性进行比较。 3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。) (1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。 当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2- )>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2- )<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。 当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法: 结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。(第一、二象限的函数值总是大于第三、四象限的函数值) 5、移点法: 利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。

二次函数结合定值及等面积问题

二次函数结合定值及等面积问题 1. 已知二次函数23 8 -322+= x x y 的图像与x 轴交于A 、B 两点,A 在B 点的左边,与y 交于点C ,点P 在第一象限的抛物线上,且在对称轴右边,4=ΔPAC S ,求点P 的坐标。 y x

2.抛物线y=-x 2 +bx+c 经过点A 、B 、C ,已知A (-1,0),C (0,3). (1)求抛物线的解析式; (2)若P 为抛物线上一点,且PBC S =3,请求出此时点P 的坐标。

3.如图,已知直线AB :42++=k kx y 与抛物线2 2 1x y = 交于A 、B 两点. (1)直线AB 总经过一个定点C ,请直接写出点C 的坐标 (2)当2 1 -=k 时,在直线AB 下方的抛物线上求点P ,使5=ΔABP S

4.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。 (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求△EAC 面积的最大值。

5.如图,抛物线的顶点为A(-3,-3),此抛物线交X轴于O,B两点 (1)求此抛物线的解析式 (2)求△AOB的面积 (3)若抛物线上另有一点P满足S?POB=S?AOB,请求出P点的坐标

6.已知二次函数c bx x y ++=2,其图像抛物线交x 轴的于点A (1,0)、B (3,0),交y 轴于点C. (1)求此二次函数关系式; (2)试问抛物线上是否存在点P(不与点B 重合),使得2BCP ABC S S ??=?若存在,求出P 点坐标;若不存在,请通过计算说明理由. (第26题图)

二次函数典型题解题技巧

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就 清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就 确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大 小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全 等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快 速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD∥x 轴且点C (0,3), ∴设点D 的坐标为(x ,3) . ∵直线y= x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) .

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

二次函数中考压轴题(定值问题)解析精选

二次函数中考压轴题(定值问题)解析精选 【例1】(2013?南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2) 两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0. (1)求b的值; (2)求证:点(y1,y2)在反比例函数的图象上; (3)求证:x1?OB+y2?OA=0. 考点:二次函数综合题 专题:压轴题. 分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值; (2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1?y2=64,即点(y1,y2)在反比例函数的图象上; (3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2) 得y1?y2=64,又易得x1?x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明 △AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1?OB+y2?OA=0. 解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣, ∴△OCD的面积S=(﹣)?b=﹣. ∵kS+32=0, ∴k(﹣)+32=0,

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232--∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32 R a ax x y ∈++=在]1,1[-上的最大值。

二次函数综合(定值)问题与解析

成都市中考压轴题(二次函数)精选 【例一】.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式; (2)求证:AO=AM; (3)探究: ①当k=0时,直线y=kx与x轴重合,求出此时的值; ②试说明无论k取何值,的值都等于同一个常数. 的长,然后代入计算即可得解; ,x+,再联立抛物线与直线解析式, , x ,

=AM==+==1x ,+==,+ = 取何值,++ 【例二】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限 内,且AB ,sin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ,△QNR

的面积QNR S ?,求QMN S ?∶QNR S ?的值. 解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中, AB = sin OAB ∠= sin 3BD AB OAB ∴=∠==. 又由勾股定理, 得6AD = ==. 1064OD OA AD ∴=-=-=. 点B 在第一象限内, ∴点B 的坐标为(43),. ∴点B 关于x 轴对称的点C 的坐标为(43)-,. · ·················································· 2分 设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为 2(0)y ax bx a =+≠. 由11643810010054 a a b a b b ? =?+=-?????+=??=-??,. ∴经过O C A ,,三点的抛物线的函数表达式为215 84 y x x = -. ····························· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -, 不是抛物线215 84 y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题

————————————————————————————————作者: ————————————————————————————————日期:

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232 --∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32R a ax x y ∈++=在]1,1[-上的最大值。

2018年秋季压轴题班第二讲(二次函数中的定值问题、线段角度问题)

如何破解二次函数 破解压轴题,是个系统工程,不是一蹴而就的,需要一个积累和磨砺的过程。 你要有广博的知识根基,要有强大的运算能力,还必须掌握一定的数学思想方法和解题技巧,数学思想方法不是光记住两个名称,而是要掌握其本质核心的东西。比如转化思想,转化谁?怎么转化?没有谁告诉你,你得自己完成;再如分类讨论思想,在什么情况下分类讨论,分类的标准是什么?为什么要这样分而不是那样分呢?有时候还涉及二次分类,即分类之后再分类,你看得出吗?你要会画草图,能从繁杂的信息里面提取有效的信息,能从复杂的图形里面抽出基本图形,能准备理解语句的含义建立问题模型,形成简洁思路,并规范正确地表述解题过程。 类型三 定值问题 例一: 如图,直线1y x =+与抛物线222y x mx m m =-++交于A,B 两点(点A 在点B 的左边)。求证:无论m 为何值,AB 的长总为定值。 典例精练 知识纵横 第二讲 二次函数中的定值问题、线段角度问题

变式一 如图,已知直线()90y kx k k =-<与抛物线223y x x =--交于A,B 两点,与x 轴交于点P ,过点A 作AC ⊥x 轴于点C,过点B 作BD ⊥x 于点D ,求证:PD PC ?为定值。 变式二 如图,抛物线243y x x =-+与x 轴交于A,B 两点,与y 轴交于点C,将直线BC 沿y 轴向上平移交抛物线于点M,N ,交y 轴于点P ,求PM PN -的值。

例二:(2016·天河一模)如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C y 的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),间的一个动点(含端点),过点P作直线8 连接PD,PE,DE。 (1)求抛物线的解析式; (2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值,如果是,请求出此定值,如果不是,请说明理由; (3)求:①当三角形PDE的周长最小时的点P坐标;②使三角形PDE的面积为整数的点P的个数。

一次函数和二次函数相交的问题

类型一:已知一次函数和二次函数解析式求交点坐标并比较大小 类型二:已知相关点的坐标求解一次函数和二次函数的解析式并比较大小 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求一次函数与二次函数的解析式; (2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围. 练习1:如图所示,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点的坐标和一次函数、二次函数的解析式;(2 )根据图象写出使一次函数值大于二次函数值的x的取值范围. 练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A(-1,0),B(3,0),C (0,-3),一次函数图象与二次函数图象交于B、C两点.

(1)求一次函数和二次函数的解析式. (2)当自变量x 为何值时,两函数的函数值都随x 的增大而增大? (3)当自变量x 为何值时,一次函数值大于二次函数值. (4)当自变量x 为何值时,两函数的函数值的积小于0. 类型三:与一次函数和二次函数的交点有关的面积类问题。 练习1:如图,A (-1,0)、B (2,-3)两点在一次函数y 1=-x+m 与二次函数y 2=ax 2 +bx-3的图象上. (1)求m 的值和二次函数的解析式.(2)二次函数交y 轴于C ,求△ABC 的面积. 变式:已知一次函数y 1=-x+m 与二次函数y 2=ax 2+bx-3的图象交于两点A (-1,0)、B (2,-3),且二次函数与y 轴交于点C ,P 为抛物线顶点.求△ABP 的面积.

二次函数与定点定值问题(学生版)

二次函数与定点、定值问题 【方法归纳】 已知抛物线和满足一定条件的直线在平面直角坐标系中,直线上的线段满足一定几何条件,图中可能产生一些定点,定量关系.通常要运用几何量的关系转换成线段关系和坐标关系求解. 思路:结合二次函数,将几何向代数转化,构建方程或方程组,并归纳解题一致性. 例1.已知抛物线:y=ax2+bx+c,顶点坐标为原点,且过(4,8),如图,若A、B两点在抛物线上,且OA⊥OB,AB交y轴于H点,求H点的坐标. y A H B O x

【练1】抛物线y =2 1 (x -1)2,顶点为M ,直线AB 交抛物线于A 、B 两点,且MA ⊥MB ,求证:直线AB 过定点. y C B A x O M 例2.已知抛物线y = 4 1x 2 ,以M (-2,1)为直角顶点作该抛物线的内接直角三角形MAB (即M ,A ,B 均在抛物线上),求证:直线AB 过定点,并求出该定点坐标. y x O M B A

【练2】(2014武汉中考)如图,已知直线AB :y =kx +2k +4于抛物线y = 2 1x 2 交于A 、B 两点. (1)直线AB 总经过一个定点C ,请直接写出点C 坐标; (2)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离. y O x B A 例3.如图,抛物线y =x 2+3顶点为P ,直线l 交抛物线于A 、B 两点,交y 轴于C 点,∠AOC =∠BOC ,求证:直线AB 过定点. P C A B O x y

【练3】抛物线y =x 2-4x +5,对称轴交x 轴于P 点,直线EF 交抛物线于E 、F ,交对称轴于H ,且∠EPH =∠FPH ,求证:EF 恒过定点. P H F E y x O 例4.如图,抛物线y =x 2-1交x 轴于A 、B 两点,直线y =a (a >0)交抛物线于M 、N ,点C 在抛物线上,且∠MCN =90°,点C 到MN 的距离是否为定值?若是,求出这个定值. y x B O A C N M

二次函数的最值问题总结

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时, 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1.当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 例2.当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 例3.当0x ≥时,求函数(2)y x x =--的取值范围.

解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-. 例4.当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t = --; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y = ?--=-; (3) 当对称轴在所给范围右侧.即110t t +? 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.

相关主题
文本预览
相关文档 最新文档