当前位置:文档之家› 几何图形中的平移变换

几何图形中的平移变换

几何图形中的平移变换
几何图形中的平移变换

图形的平移

一.平移的性质:

(1)平移前后的图形全等;

(2)对应线段平行(或共线)且相等;

(3)对应点所连的线段平行(或共线)且相等.

例1.如图,Rt△ABC 中,∠ACB =90°,AC =2cm ,60A ∠=?.将△ABC 沿AB 边所在直线向右平移,记平移后它的对应三角形为△DEF .

(1)若将△ABC 沿直线AB 向右平移3 cm ,求此时梯形CAEF 的面积;

【答案】(2)若使平移后得到的△CDF 是直角三角形,

则△ABC 平移的距离应为______cm .【答案】1或4

例2.阅读下面材料:

小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD BC ∥,对角线AC 、BD 相交于点

O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD BC +的长度为三边长的三角形的面积.

小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可,他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线

交BC 的延长线于点E ,得到的BDE △即是以AC 、BD 、AD BC +的长度为三边长的三角形(如图2). 请你回答:图2中BDE △的面积等于________.

参考小伟同学思考问题的方法,解决下列问题: 如图3,ABC △的三条中线分别为AD 、BE 、CF .

⑴ 在图3中利用图形变换画出并指明以AD 、BE 、

CF 的长度为三边长的一个三角形(保留画图痕迹);

⑵ 若ABC △的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积 解:BDE △的面积等于 1 . ⑴ 如图.

图1

图2

A

D

B

C

O

A

D

B

O

E

图3A

F

E

C

B

以AD 、BE 、CF 的长度为三边长的一个三角形是CFP △.

⑵ 以AD 、BE 、CF 的长度为三边长的三角形的面积等于3

4.

例3.在ABC △中,90ABC ∠= ,D 为平面内一动点,AD a =,

AC b =,其中a ,b 为常数,且a b <.将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .

(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;

(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);

(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示)

图1 备用图

(1)

(2)连接BF .

∵将ABD △沿射线BC 方向平移,得到FCE △, ∴AD ∥EF , AD =EF ;AB ∥FC , AB =FC . ∵∠ABC=90°,

∴四边形ABCF 为矩形.

∴AC =BF . ∵AD BE ⊥, ∴EF BE ⊥.

∵AD a =,AC b =, ∴EF a =,BF b =.

∴BE .

(3)180α?-;α.

A

P

E

F

C

D

B

A B

A B

直角坐标系中的平移变换与伸缩变换

1.1 直角坐标系中的平移变换与伸缩变换 目标:平移变换与伸缩变换的应用与理解 一.直角坐标系 1.直线上,取定一个点为原点,规定一个长度为单位长度,规定直线的一个方向为正方向。这样我们就建立了直线上的坐标系 (即数轴)。它使直线上任意一点P 都可以由惟一的实数x 来确定。 2.平面上,取定两条互相垂直的直线作为x 、y 轴,它们的交点作为坐标原点,并规定好长度单位和这两条直线的正方向。这样我们就建立了平面直角坐标系。它使平面上任意一点P 都可以由惟一的二元有序实数对),(y x 来确定。 3.在空间中,选择三条两两垂直且交于一点的直线,以这三条直线分别作为x 、y 、z 轴,它们的交点作为坐标原点,并规定好长度单位和这三条直线的正方向。这样我们就建立了空间直角坐标系。它使空间中任意一点P 都可以由惟一的三元有序实数对),,(z y x 来确定。 事实上,直线上所有点的集合与全体实数的集合一一对应;平面上所有点的集合与全体二元有序数对),(y x 的集合一一对应;空间中所有点的集合与全体三元有序数对),,(z y x 的集合一一对应. 二.平面直角坐标系中图形的平移变换 1.平移变换 在平面内,将图形F 上所有点按照同一个方向,移动同样长度,称为 图形F 的平移。若以向量a 表示移动的方向和长度,我们也称图形F 按向量a 平移. 在平面直角坐标系中,设图形F 上任意一点P 的坐标为),(y x ,向量),(k h a = ,平移后的对应点为),(y x P '''. 则有:),(),(),(y x k h y x ''=+ 即有:?? ?' =+'=+y k y x h x . 因此,我们也可以说,在平面直角坐标系中,由???' =+'=+y k y x h x 所确定的变换 是一个平移变换。

图形的变换知识点

人教版五年级下册数学第一单元 图形的变换包括:、、。 其中只是改变原图形位置的变换是、。 一、图形的平移 1、平移不改变图形的和。 2、平移的三要素:原图形的位置、平移的方向、平移的距离。 平移的方向一般为:水平方向、垂直方向两种。 平移的距离:一般为几个单位长度(也即几个方格)。 3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。 4、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。 (2)找出原图形的各关键点。 (3)根据题目要求将各个点依次平移。 (4)顺次连接平移后的各点,标明各点名称。 二、轴对称 1、一个图形沿着某一条直线折叠,如果直线的图形能够重合,就说这一个图形是轴对称图形。这条直线叫做图形的。 2、轴对称图形一定有对称轴,而且至少有条对称轴,常见的例如:、、、、、;有两条对称轴的常见图形有、;有三条对称轴的常见图形有;正方形有条对称轴;五角星和正五边形有条对称轴;正六变形有条对称轴。 三、轴对称图形的画法 1、轴对称图形的性质:(1)对称轴两边的图形一定完全相同 (2)对应点也关于对称轴对称 (3)对应点的连线垂直于对称轴 (4)对应点到对称轴的距离相等 2、轴对称图形的画法:(1)根据题意确定已知图形以及对称轴位置 (2)找出已知图形的关键点 (3)一次过每个点作垂直于对称轴的虚线(根据性质3) (4)在对称轴另一侧确定各对应点位置(根据性质4) (5)标明各点对应名称,顺次连接各对应点得到轴对称图形。 四、确定轴对称图形的对称轴 沿某条直线对折之后,两边的图形能够完全重叠,这条直线就是图形的对称轴。

六、图形旋转的特点 1、旋转前后图形形状和大小都不变。 2、每组对应点与旋转中心的连线所成角的度数都等于旋转角度。 3、各对应点之间的距离也相等。 七、图形旋转的三要素 1、旋转中心:可以在已知图形上也可以在已知图形外。 2、旋转方向:顺时针和逆时针。 3、旋转角度:常见的有45°、90°180°等。 八、旋转图形的画法 1、确定旋转中心、旋转方向、旋转角度 2、找去原图形的各关键点 3、依次将各关键点与旋转中心连接(用虚线) 4、将各连线按要求旋转一定角度后,确定各虚线的长度,标出对应点。 5、将个对应点连接并标出名称。

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

平面内曲线平移伸缩变换的技巧

平面内曲线平移伸缩变换的技巧 平移变换是在向量中提出来的,而伸缩变化是在三角函数介绍的,因为有了初中的“左加右减,上加下减”的结论,在教学过程中,很多同学往往会简单的套用这个结论,导致得到和正确答案完全相反的结论,我在近几年教学中,总结了一套简单且容易操作的处理方法,以供参考。 曲线平移和放缩都可以依据以下结论处理:所有的平移和放缩都是x,y在变,且变化的规律与习惯相反。 一、平移 规律中的“习惯”就是在坐标平面内特征,即左右平移是x在变化,且向左变小,向右变大;上下平移是y在变,且向下变小,向上变大。下面举例说明。 例1 将函数的图象向左平移2个单位,向上平移1个单位。求平移后的函数解析式。 解:向左平移2个单位,“习惯”是越左越小,而变化的结果将原来解析式中的x变成;向上平移1个单位,“习惯”是越上越大,而变化的结果是将原来解析式中的y变成。 所以平移后的函数解析式是。 例2 求向右平移个单位,向下平移2个单位后的得到的函数解析式。

解:依据以上规律,就是将原来的解析式中的x变成,y变成, 所以平移后的函数解析式是, 化简后得。 例1也可以用“左加右减,上加下减”来处理,但如果不能从本质上弄清问题,就会出现错误,如例2还是套用“左加右减,上加下减”来处理,得到的结论就可能是。 二、放缩 课本在三角函数这一章中给出了放缩的规律,笔者发现这个规律可以和平移规律整合在一起。 具体的规律是:纵坐标不变横坐标变为原来的ω倍就是将原来解析式中的x 变成;横坐标不变纵坐标变为原来的A倍就是将原来解析式中的y变成。 例3 (2000年理科全国卷)经过怎样的平移和伸缩得到。 解:。 (变化一) (1)y变成了2y,故横坐标不变,纵坐标变为原来的; (2)x变成了2x,故纵坐标不变,横坐标变为原来的; (3)x变成了,故将图象右移个单位,需要将写成;

三角函数的平移、伸缩变换测试题(人教A版)(含答案)

三角函数的平移、伸缩变换(人教A版) 一、单选题(共14道,每道7分) 1.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象的解析式为( ) A. B. C. D. 答案:B 解题思路: 由题意, 函数经平移,得到, 该函数横坐标再经变换,得到. 故选B 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.由的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,则为( ) A. B. C. D. 答案:D

解题思路: 将变换的过程倒推, 函数横坐标经变换,即横坐标缩短为原来的, 得到; 再将该函数图象向右平移个单位长度,得到 . 故选D. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.将函数的图象向右平移个单位长度,再将所得图象的所有点的横坐标缩短为原来的,纵坐标不变,得到的函数解析式为( ) A. B. C. D. 答案:D 解题思路: 由题意, 函数经平移,得到 ; 再经横坐标变换后,得到, 故选D. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换

4.将函数的图象上每点的横坐标缩短为原来的,再将所得图象向左平移个单位长度,得到的函数解析式为( ) A. B. C. D. 答案:B 解题思路: 由题意, 函数横坐标经变换得到, 该函数再经平移,得到, 故选B. 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.将函数的图象上每点的横坐标伸长到原来的2倍,再将所得图象向右平移个单位长度,纵坐标不变,得到的函数解析式为( ) A. B. C. D. 答案:C 解题思路: 由题意, 函数横坐标经变换,

函数 图像的平移变换与伸缩变换

函数()y f x =图像的平移变换与伸缩变换 在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数 y=Asin(x+)+m(A 0, 0)w j w 构的图像是由sin y x =的图像怎样变换得来的,这要涉及的变换有平移变换与伸缩变换。而我们在后来复习函数时,也要增加函数()y f x =的图像变换的内容。三角函数也属于函数,因此一般函数()y f x =的图像变换法则和方法对三角函数同样适用。所以为了使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。 大家知道,sin y x =的图像向上(下)平移10个单位,可得到 10sin y x -=(10sin y x +=),即s i n 10y x =+(sin 10y x =-)的图像;sin y x =的 图像向右(左)平移 10π,可得到sin()10y x p =-(sin()10 y x p =+)的图像;sin y x =的图像横向伸长至原来的2倍(横向缩至原来的12 ),可得到1sin 2 y x =(sin 2y x =)的图像;sin y x =的图像纵向伸长至原来的3倍(纵向缩短至原来的13),可得到1sin 3y x =(3sin y x =),即3s i n y x =(1sin 3y x =)的图像;我们可用表格把上述小题的变换内容与解析式的相应变化反

初中数学基本几何图形

初中数学基本几何图形 这篇帖子是关于几何基本图形的。每一个几何压轴题,几乎都是由几个基本图形构成的,所以如果能把这些图形 用熟,做几何题应该不成问题。 1、 正方形与等腰直角三角形 正方形 ABCD ,EF 为过正方形点 B 的直线且 AE ⊥EF ,CF ⊥EF ,则有△AEB ≌△BFC 。 将上图进行转换,则该基本图形存在于等腰三角形中,可利用此图证明勾股定理: 1 1 令 AD=BE=a ,DB=CE=b ,AB=BC=c ,S △ABC = 2 c = 2 (a+b ) -ab ;化简得到:c =a +b 2、 梯形中位线 梯形 ABCD 中,AD ∥BC ,E 、F 分别为 AB 、DC 中点,则有 EF= 1 (AD+BC ) 结合 1、2 有一道经典题目,在此奉上。 1 △ABC ,分别以 AB 、AC 为边向外做正方形 ABFG 、ACDE ,连接 FD ,取 FD 中点 H ,作 HI ⊥BC ,证明:HI= BC 2 2 2 2 2 2 2

提示:先证明BC等于梯形上下底边之和 【变形题 1】 如图1,以△A BC的边AB、AC为边向内作正方形ABFG和正方形ACDE,M是DF的中点,N是BC的中点,连接MN.探究线段MN与BC之间的关系,并加以证 明.说明:如果你经过反复探索没有解决问题,可以从下面①、②中选取一种情况完成你的证明,选取①比原题少得6分,选取②比原题少得8分. ①如图2,将正方形ACDE绕点A旋转,使点C、E分别落在AG、AB上; ②如图3,将正方形ACDE绕点A旋转,使点B、A、C在一条直线. 答案: 解:BC⊥MN. 证明:连接CM,然后延长CM至H,使CM=MH,连接FH、BH、CM、BM,HG、CG,延长CD,与BF相交于I, ∵MF=MD,CM=HM,∠CMD=∠HMF,

小学六年级数学图形的变换试题及答案

2013年图形的变换 一.填空题(共1小题) 1.(1)由①图到②图是向_________平移_________格. (2)由①图到③图是向_________平移_________格. (3)把②图向左平移3格,画出平移后的图形. (4)把③图向上平移2格,画出平移后的图形. 二.解答题(共13小题) 2.(2008?南靖县)(1)0A为对称轴,画出图形另一半,成为图形1. (2)将画好的整个图形向右平移4格,再画出来. (3)将图形1绕O点顺时针旋转90°,并画出来. 3.(2007?惠山区)①画出下面三个图形中轴对称图形的对称轴. ②将梯形围绕A点逆时针旋转90°,画出旋转后的图形. ③将平行四边形先向右平移5格,再向下平移2格,画出平移后的图形.

4.(2009?兴国县模拟)(1)以0A为对称轴,画出图形另一半,成为图形A. (2)将画好的图形A向右平移4格,得到图形B. (3)将图形A绕O点顺时针旋转90°,得到图形C. 5.图形A向右平移5格得到图形B,图形B向下平移2格得到图形C,请在图中画出图形B和图形C. 6.图中,图形A是如何变换得到图形B? 7.请画出先向右平移8格,再向下平移2格后得到的图形.

8.按要求画一画. (1)在方格子中画出图①绕O点顺时针方向旋转90°后的图形.(2)画出将图②向右平移7格,再向上平移3格后的图形.(3)画出图③的另一半,使它成为轴对称图形. 9.按要求画图. (1)将图形A向上平移5格,再向右平移7格,得到图形B.(2)以横虚线为对称轴,画出和图形A对称的图形. (3)以竖虚线为对称轴,画出和图形C对称的图形. 10.先画出图形: (1)向下平移3小格后的图形 (2)再画出图形①绕顶点A逆时针旋转90度后的图形③.

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

初中数学几何基本图形

432 1F E D C B A 432 1F E D C B A F E D C B A H G F E D C B A c b a C B A D C B A F E D C B A C B A 初中数学几何基本图形 1. 平行线的性质: ∵A B ∥CD (已知) ∴∠1=∠2(两直线平行,同位角相等。) ∴∠1=∠3(两直线平行,内错角相等。) ∴∠1+∠4=180° (两直线平行,同旁内角互补。) 2. 平行线的判定: (1)∵∠1=∠2(已知) ∴A B ∥CD (同位角相等,两直线平行。) (2)∵∠1=∠3(已知) ∴A B ∥CD (内错角相等,两直线平行。) (3)∵∠1+∠4=180o (已知) ∴A B ∥CD (同旁内角互补,两直线平行。) 3. 平行线的传递性: ∵A B ∥CD ,A B ∥EF (已知) ∴C D ∥EF (如果两条直线都与第三条直线平行, 那么这两条直线也互相平行。) 4. 两条平行线间距离: ∵A B ∥CD ,EF ⊥CD ,GH ⊥CD (已知) ∴EF=GH (平行线间距离处处相等。) 5. 三角形的性质: (1)∠A+∠B+∠C=180o (三角形内角之和为180o 。) (2)a+b >c ,∣a-b ∣<c (三角形任意两边之和大于第三边, 三角形任意两边之差小于第三边。) (3)∠ACD=∠A+∠B (三角形一个 外角等于与它不相邻的两个外角之和。) 6.三角形中重要线段: (1)∵AD 是△ABC 边BC 上的高(已知) ∴AD ⊥BC 即∠ADC=900(三角形高的意义) (2)∵BF 是△ABC 边AC 上的中线(已知) ∴AF=FC=12 AC (AC=2AF=2FC )(三角形中线的意义) (3)∵CE 是△ABC 的∠ACB 的角平分线(已知) ∴∠ACE=∠BCE= 1 2 ∠ACB (∠ACB=2∠ACE=2∠BCE )(三角形角平分线的意义) 6. 等腰三角形的性质和判定: (1)∵AB=AC (已知)∴∠B=∠C (等边对等角) (2)∵∠B=∠C (已知)∴AB=AC (等角对等边)

三角函数图象的平移和伸缩

3 得 y =A sin( x + )的图象? 向 ?上平 ( ? 移 k k ? 个 )或 单 向? 位 下长 ? (k 度 ?) → 得 y = A sin(x + )+k 的图象. y = sin x 纵坐标不变 横坐标向左平移 π/3 个单位 纵 坐标不变 横坐标缩短 为原来的1/2 y = sin(x + ) y = sin(2 x + ) 横坐标不变 纵坐标伸长为原 来的3倍 先伸缩后平移 纵坐标伸长(A 1)或缩短(0A 1) y =sin x 的图象 ??? ??????→ y = 3sin(2x + 三角函数图象的平移和伸缩 函数y = A sin(x + ) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A , , ,k 来相互转 化. A ,影响图象的形状, ,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 引起的变 换称周期变 换,它们都是伸缩变换;由 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左( >0)或向右( 0) y = sin x 的图象 ??平 ? 移 ? 个单 ? 位长 ? 度 ?→ 得 y = sin(x +)的图象 横坐标伸长(0<<1)或缩短 (>1) 到原来的1(纵坐标不变) 得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0

横坐标伸长(0 1)或缩短(1) ????????→ 到原来的 1 (纵坐标不变) 向左( 0)或向右( 0) 得 y = A sin(x ) 的图象 ???平移 ?个 ? 单位 ??→ 得 y = A sin x ( x + )的图象??平 ?移 k ?个单 ?位长 ?度 ?→得 y = A sin( x +)+k 的图象. 纵坐标不变 y = sin x 横坐标缩短 为原来的1/2 纵坐标不变 横坐标 向左平移 π/6 个单位 横坐标不变 y = 3sin(2x + ) 纵坐标伸长为原 3 来的3倍 例1 将y = sin x 的图象怎样变换得到函数y = 2sin 2x + π +1的图象. 解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π 的图象;②将所得 图象的 横坐标缩小到原来的1,得y =sin 2x +π 的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin 2x + π 的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐 标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2 x + π 的 2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 得 y = A sin x 的图象 y = sin2 x y = sin(2x + )

初中数学平面几何图形

第四课时几何图形初步 LYX 1、几何图形 ①几何图形:我们把从实物中抽象出的各种图形统称为几何图形。 ②平面图形:几何图形(如线段、角、三角形、长方形等)的各部分都在同一平面内。 常见平面图形: ③立体图形:有些几何图形的各部分不都在同一平内,这样的几何图形叫做立体图形。 ⑴常见立体图形:⑵常见立体图形的归类: ★画立体图形时,看得见的棱线画成实线,看不见的棱线画成虚线。 ④展开图:有些立体图形是由平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。 例1、圆锥由_______面组成,其中一个是_______面 ,另一个是_______面. 例2、如图所示,一个三边相等的三角形,三边的中点用虚线连接,如果将三角形沿虚线 向上折叠,得到的立体图形是(). (A)三棱柱(B)三棱锥(C)正方体(D)圆锥 例3、分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()

例4、下列各图形,都是柱体的是() 例5、下列四个图形中,经过折叠能围成如图所示的几何图形的是() 2、点、线、面、体 ①点动成线,分为直线和曲线; ②线动成面线运动生成的有平面、曲面; ③面运动成体;(直角三角板绕它的一边旋转,形成了什么图形?长方形绕着它的一边旋转,形成了什么图形?) 总结: ⑴几何图形是由点、线、面、体组成。点是构成图形的基本元素。 ⑵点无大小,线有直线和曲线,面有平的面和曲的面。 ⑶点动成线,线动成面,面动成体。 ⑷体由面围成,面与面相交成线,线与线相交成点。 3、直线、射线、线段 ①两点确定一条直线:经过两点有一条直线,并且只有一条直线。 ⑴因为两点确定一条直线,所以除了用一个小写字母表示直线(直线)外,还经常用一条直线上的两点来表示这个直线; ⑵一个点在直线上,也可以说这条直线经过这个点;一个点在直线外,也可以说直线不经过这个点; ⑶当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 ②线段的表示方法 ③射线的表示方法 ★用数学符号表示直线、线段、射线?

三角函数的平移与伸缩变换

三角函数的平移与伸缩变换 1、为了得到函数)3 2sin(π-=x y 的图象,只需把函数)6 2sin(π +=x y 的图 象向____平移_____个单位长度. 2、设,0>ω函数2)3 sin(++=π ωx y 的图象向右平移 3 4π 个单位后与原图象重合则ω的最小值是__________. 3、将函数x y sin =的图象上所有的点向右平行移动 10 π 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式是_____________. 4、将函数x x x f cos sin 3)(-=的图象向左平移m 个单位(m>0),若得到图象对应的函数为偶函数,则m 的最小值是_____________. 5、把函数)2 ||,0)(sin(π ?ω?ω<>+=x y 的图象向左平移3 π 个单位长度, 所得曲线的一部分图象如图所示,则( ) A. 6 ,1π?ω== B. 6 ,1π ?ω-== C. 6 ,2π?ω== D. 6 ,2π ?ω-== 6、已知函数)0,0(2cos )(2>>+=?ωA x A x f 的最大值为6,其相邻两条对称轴间的距离为4,求.________)20()6()4()2(=+???+++f f f f 7、右图是函数))(sin(R x x A y ∈+=?ω在区间 )6 5,6(ππ- 上的图象,只要将 (1)x y sin =的图象经过怎样的变换? (2)x y 2cos =的图象经过怎样的变换? 8、把x y sin =作何变换可得.1)6 3sin(8-+=π x y 17π12 π3 x y o 1-1 5π6 -π6y x o

初中数学几何基本图形+初中数学图形与几何

初中数学几何基本图形初中数学图形与几何导读:就爱阅读网友为您分享以下“初中数学图形与几何”资讯,希望对您有所帮助,感谢您对https://www.doczj.com/doc/e05041750.html,的支持! 课程简介 初中数学图形与几何 【课程简介】 本模块主要研讨数学课程标准修订稿中“初中数学空间与图形”部分的内容要求,目的是通过研讨,使教师们明确本模块内容的具体要求,并提出教学实施过程中的一些建议。总体分为六个部分: 1. 图形与几何内容结构分析——主要探讨图形与几何部分的整体结构框架和三条主要线索; 2. 图形的性质内容与教学分析——主要探讨图形的性质部分的内容要求、与实验稿的变化以及教学实施中注意的问 1 题; 3. 图形的变化内容与教学分析——主要探讨图形的变化部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 4. 图形与坐标内容与教学分析——主要探讨图形与坐标部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 5. 空间观念与几何直观——主要探讨核心概念空间观念与几何直观的含义,以及在图形与几何的教学中如何培养学生的空间观念与几何直观能力; 6. 推理能力——主要探讨核心概念推理能力的含义,以及在图形与几何的教学中如何培养学生的推理能力。

课程既有理论指导,又有大量的教学实例,同时还有主讲教师间的相互交流,给教师们提供了较为广阔的思考空间。 【学习要求】 1(对“初中数学空间与图形”模块的内容结构和主线有清楚 2 的认识,能够说出这些线索之间的区别与联系; 2(了解图形的性质部分的研究的图形有哪些,认识图形的哪些方面,以及在这部分中是如何认识这些图形的; 3(体会图形的变化是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 4(体会图形与坐标是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 5(能够结合自己的教学实践,举出相应的实例,说明图形的性质、图形的变化和图形与坐标的教学经验和方法; 6(理解核心概念——空间观念、几何直观和推理能力的具体含义,体会它们与知识技能的区别和联系,能够借助具体实例说出培养学生上述能力的途径和方法。 专题讲座 初中数学图形与几何 刘晓玫(首师大数学,教授) 史炳星(北京教育学院,副教授 ) 章巍(河北保定三中分校,高级教师 ) 3 一、图形与几何内容结构分析

三角函数的平移与伸缩变换_整理

函数)sin(A ?ω+=x y 的图像 (1)物理意义:sin()y A x ω?=+(A >0,ω>0),x ∈[0,+ ∞)表示一个振动量时,A 称为振幅,T = ωπ 2, 1 f T = 称为频率,x ω?+称为相位,?称为初相。 (2)函数sin()y A x k ω?=++的图像与sin y x =图像间的关系: ① 函数sin y x =的图像纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图像; ② 函数()sin y x ?=+图像的纵坐标不变,横坐标变为原来的 1 ω ,得到函数 ()sin y x ω?=+的图像; ③ 函数()sin y x ω?=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数 sin()y A x ω?=+的图像; ④ 函数sin()y A x ω?=+图像的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ω?=++的图像。 要特别注意,若由()sin y x ω=得到()sin y x ω?=+的图像,则向左或向右平移应平移| |? ω 个单位。 ?对)sin(?+=x y 图像的影响 一般地,函数)sin(?+=x y 的图像可以看做是把正弦函数曲线上所有的点向____(当?>0时)或向______(当?<0时)平移?个单位长度得到的 注意:左右平移时可以简述成“______________” ω对x y ωsin =图像的影响 函数x y ωsin =)10(≠>∈ωω且R x ,的图像可以看成是把正弦函数上所有的点的横坐标______)1(>ω或_______)10(<<ω到原来的ω 1 倍(纵坐标不变)。 A 对x y sin A =的影响

《图形的平移与旋转》专题专练

《图形的平移与旋转》专题专练 专题一:确定图形变换后的坐标 把图形放在平面直角坐标系中,利用点的坐标,可进行图形的变换或确定图形的位置与形状,解答这类问题,是数与形结合的体现,有利于提高综合运用知识的能力.现以坐标系中的平移与旋转的图形变换为例加以说明.例1 如图1,在△AOB中,AO=AB.在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′、B′在x轴上.则点B′的坐标是. 析解:因为△AOB是等腰三角形,容易得到B点坐标为(4,0),将△AOB 平移得到 △A′O′B′,使得点A′在y轴上,是将图形向左平移2个单位长度.根据平移特点,平移后对应线段相等,因此点B也向左平移2个单位长度,所以点B′的坐标为(2,0). 例2 已知平面直角坐标系上的三个点O(0,0),A(-1,1),B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A,B的对应点坐标为A1(,),B1(,). 析解:建立如图2所示的直角坐标系,则OA=2,所以OA1=OA=2,所以点A1的坐标是(2,0).因为∠AOB=45°,所以△AOB是等腰直角三角 形,所以△A1OB1是等腰直角三角形,且OA1边上的高为 2 2 ,所以B1 22 22 ?? ? ? ?? ,. 练习一:1.如图3,若将△ABC绕点C顺时针旋转90°后得到△A′B′C′,则A点的对应点A′的坐标是(). (A)(-3,-2)(B)(2,2)(C)(3,0)(D)(2,1)

2.如图4,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图案中左眼的坐标是(3,4),则右图案中右眼的坐标是. 3.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O 按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.4.如图5,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1). (1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形,并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C 的图形,并写出点B2的坐标. 专题二:图形的变换分析 分析图形的变换一般选择合适的“基本图形”,然后由平移、旋转的定义考查这一基本图形变换到另一个基本图形的运动方式是平移还是旋转,以及运动的距

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩 函数s i n ()y A x k ω ?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象()ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象() A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><

得sin y A x =的图象(01)(1) 1 () ωωω <<>?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0) ???ω >

三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题 1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5 y x π =- (C )1sin()210y x π=- (D )1sin()220y x π=- 5y Asin x x R 66ππω???=∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个 函数的图象,只要将y sin x x R =∈()的图象上所有的( ) (A)向左平移 3π个单位长度,再把所得各点的横坐标缩短到原来的12 倍,纵坐标不变 (B) 向左平移3 π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移 6 π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω? ?=+> ???的图像向右平移6 π个单位长度后,与函数tan 6y x πω??=+ ?? ?的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12 5、已知函数()sin()(,0)4f x x x R π ??=+∈>的最小正周期为π,为了得到函数 ()cos g x x ?=的图象,只要将()y f x =的图象( )

图形的变换教案

2009—2010第一学期 图形的变换 教学内容: 北师大版小学数学六年级上册第三单元第一课时 教学目标: 1、通过观察、想象、操作,经历一个简单图形经过平移或 旋转制作复杂图形的过程。 2、借助方格纸上的操作和分析,有条理地表达图形的平移 或旋转的变换过程。 3、通过观察和操作,体验图形的变换过程,发展空间观念, 进一步提高学生的想象能力。 教学重点:通过观察、操作活动,说出图形的平移或旋转的变换过程。 教学难点:有条理地表达出图形的变换过程。 教具、学具准备: 每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)。 教学过程: 一、创设情境、激发兴趣、复习旧知。 1、课件出示情景图片,让学生说说窗户、风扇等在生活中是怎样运动的?(课件出示什么是平移,什么是旋转。)

2、课件出示生活中的轴对称图片,学生回忆什么是轴对称图形。(课件出示什么是轴对称图形。) 3、课件出示三角形在平面内发生了什么变化?学生答 (板书平移两要素:方向,距离。旋转三要素:旋转的方向、角度和旋转中心) 4、课件出示完成轴对称图形的设计制作:学生答(板书轴对 称一要素:对称轴) 二、自主探究、合作交流、获取新知。 今天我们一起利用所学的内容进一步探索图形的变换。 (揭示课题:图形的变换) 活动一: 1、图形变换(1),请同学们观察下图,边观察边思考:四个三角形A、B、C、D如何变换得到“风车”图形? 让学生利用手中的方格纸上把图形摆一摆,移一移,转一转自主探究图形的变换方法,可小组讨论,交流自己的想法,。注意学生方法策略的多样化和表达的条理性。 方法:可以直接平移。 生:图形A向右平移2格,图形B向下平移2格,图形C向上平移2格,图形D向左平移2格,得到风车图形。(教师小结评价:我们在分析图形变换时,不仅要说出它是平移或旋转的变化,还要

函数图象的三种变换

函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 例1 设f(x)=x2,在同一坐标系中画出: (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系. 解(1)如图 (2)如图 点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到; y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结: 二、对称变换 例2设f(x)=x+1,在同一坐标系中画出y=f(x)和y=f(-x)的图象,并观察两个函数图象的关系. 解画出y=f(x)=x+1与y=f(-x)=-x+1的图象如图所示. 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称.

三、翻折变换 例3 设f (x )=x +1,在不同的坐标系中画出y =f (x )和y =|f (x )|的图象,并观察两个函数图象的关系. 解 y =f (x )的图象如图1所示,y =|f (x )|的图象如图2所示. 点评 要得到y =|f (x )|的图象,把y =f (x )的图象中x 轴下方图象翻折到x 轴上方,其余部分不变. 例4 设f (x )=x +1,在不同的坐标系中画出y =f (x )和y =f (|x |)的图象,并观察两个函数图象的关系. 解 如下图所示. 点评 要得到y =f (|x |)的图象,先把y =f (x )图象在y 轴左方的部分去掉,然后把y 轴右边的对称图象补到左方即可. 小结: ()x x y f x =???????→保留轴上方图象 将轴下方图象翻折上去y =|f (x )|. ()y y y f x =????????→保留轴右侧图象 并作其关于轴对称的图象 y =f (|x |). 如图: 四 函数图象自身的对称性 1.函数()y f x =的图象关于直2 a b x += 对称()()f a x f b x ?+=-()()f a b x f x ?+-= 2.函数()y f x =的图象关于点(,)a b 对称2()(2)b f x f a x ?-=- ()2(2)f x b f a x ?=--?b x a f x a f 2)()(=-++ 3.若()()f x f x =-- ,则()f x 的图象关于原点对称,若()()f x f x =- ,则()f x 的图象关于y 轴对称。

相关主题
文本预览
相关文档 最新文档