当前位置:文档之家› 伏安特性曲线

伏安特性曲线

伏安特性曲线
伏安特性曲线

使用次数:

使用次数:

如图所示,有一根内部中空的金属丝,因内径太小,无法直接测量。已知这种材料的电阻率为,现提供

5k)

,内阻)

40)

10,额定电流

.金属丝(100)

请选择上述器材,设计一个根据电阻定律,通过测量金属丝电阻从而精确测量金属丝内径的实验方案,

使用次数:

使用次数:=

))

使用次数:

2,另外,实验室内还提供了下列器材供重新测定该金属丝的电使用次数:

)若根据伏安法测出电阻丝的电阻为,则这种金属材料的电阻率为多少);

使用次数:

的计算公式:

是电阻箱示数。使用次数:

欧姆定律可知解得

使用次数:

使用次数:

使用次数:

如图所示为测量电阻的电路,为待测电阻,为阻值可读可调的电阻箱,为适当的保护电阻,阻值

测量的步骤为:

的读数,其值为。那么,在本实验中的测量值为:

b.

实验测绘小灯泡的伏安特性曲线

实验:测绘小灯泡的伏安特性曲线 [学习目标] 1.理解电流表的内接法和外接法,并会进行正确选择.2.理解滑动变阻器的两种接法,能进行正确地应用.3.学会描绘小灯泡的伏安特性曲线并掌握分析图线的方法. 一、电流表的内接法和外接法的比较 1.两种接法的比较 2. (1)直接比较法:当R x R A时,采用内接法,当R x R V时,采用外接法,即大电阻用内接法,小电阻用外接法,可记忆为“大内小外”. (2)公式计算法 当R x>R A R V时,用电流表内接法, 当R x<R A R V时,用电流表外接法, 当R x=R A R V时,两种接法效果相同. (3)试触法: 图1 如图1,把电压表的可动接线端分别试接b、c两点,观察两电表的示数变化,若电流表的示数变化明显,说明电压表的分流作用对电路影响大,应选用内接法,若电压表的示数有明显变化,说明电流表的分压作用对电路影响大,所以应选外接法. 二、滑动变阻器两种接法的比较

1.实验原理 用电流表测出流过小灯泡的电流,用电压表测出小灯泡两端的电压,测出多组(U,I)值,在I -U坐标系中描出各对应点,用一条平滑的曲线将这些点连起来,即得小灯泡的伏安特性曲线,电路图如图2所示. 图2 2.实验器材 学生电源(4~6 V直流)或电池组、小灯泡(“4 V0.7 A”或“3.8 V0.3 A”)、滑动变阻器、电压表、电流表、开关、导线若干、铅笔、坐标纸. 3.实验步骤 (1)根据小灯泡上所标的额定值,确定电流表、电压表的量程,按图3所示的电路图连接好实物图.(注意开关应断开,滑动变阻器与小灯泡并联部分电阻为零) (2)闭合开关S,调节滑动变阻器,使电流表、电压表有较小的明显示数,记录一组电压U和电流I. (3)用同样的方法测量并记录几组U和I,填入下表. (4) 4.数据处理 (1)在坐标纸上以U为横轴、I为纵轴建立直角坐标系. (2)在坐标纸中描出各组数据所对应的点. (3)将描出的点用平滑的曲线连接起来,就得到小灯泡的伏安特性曲线. 5.实验结果与数据分析 (1)结果:描绘出的小灯泡灯丝的伏安特性曲线不是直线,而是向横轴弯曲的曲线. (2)分析:灯泡灯丝的电阻随温度变化而变化.曲线向横轴弯曲,即斜率变小,电阻变大,说明小灯泡灯丝的电阻随温度升高而增大.

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验 _______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。分两种情形来讨论。 (1) 从图(a)来看,Uce =0,即c、e间短路。此时Ib 与Ube 间的关系就是两个正向二极 管并联的伏安特性。每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。 专业:___ _________ 姓名:___ _________ 学号: ______ 日期:_____ ______ 地点:_____ ___

2020届高三高考物理复习专题突破:描绘小电珠的伏安特性曲线

描绘小电珠的伏安特性曲线 1.小张和小明测绘标有“3.8 V 0.4 A”小灯泡的伏安特性曲线,提供的实验器材有: A.电源E (4 V,内阻约0.4 Ω) B.电压表V(2 V,内阻为2 kΩ) C.电流表A(0.6 A,内阻约0.3 Ω) D.滑动变阻器R(0~10 Ω) E.三个定值电阻(R1=1 kΩ,R2=2 kΩ,R3=5 kΩ) F.开关及导线若干 (1)小明研究后发现,电压表的量程不能满足实验要求,为了完成测量,他将电压表进行了改装.在给定的定值电阻中选用________(选填“R1”“R2”或“R3”)与电压表________(选填“串联”或“并联”),完成改装. (2)小张选好器材后,按照该实验要求连接电路,如图所示(图中电压表已经过改装).闭合开关前,小明发现电路中存在两处不恰当的地方,分别是:①__________;②__________. (3)正确连接电路后,闭合开关,移动滑动变阻器的滑片P,电压表和电流表的示数改变,但均不能变为零.由此可以推断电路中发生的故障可能是导线________(选填图中表示导线的序号)出现了________(选填“短路”或“断路”).2.(2019·广西柳州高级中学模拟)在描绘小灯泡的伏安特性曲线的实验中,已知待测小灯泡的额定电压6 V, 额定功率约为3 W,提供的器材有: 电流表A:量程为0.6 A,内阻约为0.5 Ω; 电压表V:量程为3 V,内阻为3 kΩ; 滑动变阻器R1(0~10 Ω,2 A); 滑动变阻器R2(0~500 Ω,1 A); 定值电阻R3=1 kΩ; 定值电阻R4=3 kΩ; 电源:电动势为9 V,内阻约为0.1 Ω; 开关一个,导线若干. (1)实验中,应该选用的滑动变阻器是________,定值电阻是________(填仪器的字母代号). (2)根据所给的器材,在虚线框中画出实验电路图.

二极管伏安特性曲线测量方法

二极管伏安特性曲线 测量方法 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三 极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确 的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压一电 流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是 一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件 为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则 称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极 管的伏安特性曲线,了解二极管的单向导电性的实质。 1实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管, 且随正向偏置电压的增大而增大。开始 电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二 极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通 后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电 流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很 慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二 极管PN结被反 向击穿。 2、实验方法 2.1伏安法 IN4007 Re 电流表外接法:如图2.1.1所示(开关K打向2位置)⑴,此时电压表的读数等于二极管两端电压U D ;电流表的读数I是流过二极管和电压表的电流之和(比实际值大),即I = |D +lv。

匸V/Rv+V/ R D(1.1)由欧姆定律可得:

用V、I所作伏安特性曲线电流是电压表和二极管的电流之和,显然不是二极管的伏安特性曲线, 所用此方法测量存在理论误差。在测量低电压时,二极管内阻较大,误差较大,随着测量点电压升高,二极管内阻变小,误差也相对减小;在测量二极管正向伏安曲线时,由于二极管正向内阻相对较小,用此方法误差相对较小。 2.1.1 电流表内接法:如图2.1.1所示(开关K打向1位置),这时电流表的读数I为通过二极管D的电流,电压表读数是电流表和二极管电压之和,U = U D + U A o 由欧姆定律可得:U =I ( R D+ R A) 此方法作曲线所用电压值是二极管和电流表电压之和,存在理论误差,在测量过程中随着电压 U提高,二极管的等效内阻R D减小,电流表作用更大,相对误差增加;小量程电流表内阻R A较大, 引起误差较大。但此方法在测量二极管反向伏安特性曲线时,由于二极管反向内阻特别大,故误差较小。 2.1.2 表2.1.3 此次测量在上图作标纸中绘出伏安曲线 采用伏安法测量时由于电压或电流总有其一不能准确测得,结果总存在理论误差,测量结果较粗略,但此方法电路简单,操作方便。 2.2补偿法 补偿法测量基本原理如图 2.2.1 所示[2]o

伏安特性曲线实验报告

《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。 3。拆除电路,整理桌面,将器材整齐地放回原位。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I—U图像。

六、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,R U应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。 七、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。 2。读数时没有读准确,在估读的时候出现误差。 3。描绘图像时没有描绘准确造成误差。

描绘小灯泡的伏安特性曲线 《测量小灯泡伏安特性曲线》实验课题任务是:电学知识告诉我们当电压一定时电流I与电阻R成反比,但小灯炮的电阻会随温度的改变而变化,小灯泡(6。3V、0。15A)在一定电流范围内其电压 与电流的关系为UKIn,K和n是与灯泡有关的系数。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《测量小灯泡伏安特性曲线》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方 法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出测量小灯泡伏安曲线的电路和实验步骤,要具有可操作性。 ⑶验证公式UKIn; ⑷求系数K和n;(建议用最小二乘法处理数据)

实验七_线性和非线性电学元件伏安特性的测量

实验七线性电阻和非线性电阻的伏安特性曲线 电阻是电学中常用的物理量。利用欧姆定律求导体电阻的方法称为伏安法,它是测量电阻的基本方法之一。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压与电流的关系。伏安特性曲线是直线的元件称为线性元件,伏安特性曲线不是直线的元件称为非线性元件。这两种元件的电阻都可用伏安法测量。但由于测量时电表被引入测量线路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减少系统误差。 【实验目的】 1.通过对线性电阻伏安特性的测量,学习正确选择和使用伏安法测电阻的两种线路。 2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。 3.习按电路图正确地接线,掌握限流电路和分压电路的主要特点。 4.学会用作图法处理实验数据。 【实验仪器】 欧姆定律实验盒直流稳压电源滑线变阻器(2个)单刀开关数字电流表 数字电压表保护电阻 【实验原理】 当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1),从图上看出,直线通过一、三象限。它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数R =V/I。 常用的半导体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。为了了解半导体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。 图1 线性电阻的伏安特性图2 半导体二极管的p-n结和表示符号半导体二极管又叫晶体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体(也叫N型半导体);另一种杂质加到半导体中会产生许多缺少电

小灯泡伏安特性曲线实验报告范文

2020 小灯泡伏安特性曲线实验报告范 文 Contract Template

小灯泡伏安特性曲线实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:《描绘小灯泡的伏安特性曲线》的实验报告 一、实验目的 描绘小灯泡的伏安特性曲线,并对其变化规律进行分析。 二、实验原理 1。金属导体的电阻率随温度的升高而增大,导致金属导体的电阻随温度的升高而增大。以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I―U图像。 2。小灯泡电阻极小,所以电流表应采用外接法连入电路;电压应从0开始变化,所以滑动变阻器采用分压式接法,并且应将滑动变阻器阻值调到最大。 三、实验器材 小灯泡一盏,电源一个,滑动变阻器一个,电压表、电流表

各一台,开关一个,导线若干,直尺一把。 四、实验电路 五、实验步骤 1。按照电路图连接电路,并将滑动变阻器的滑片P移至A 端,如图: 2。闭合开关S,将滑片P逐渐向B端移动,观察电流表和电压表的示数,并且注意电压表示数不能超过小灯泡额定电压,取8组,记录数据,整理分析。3。拆除电路,整理桌面,将器材整齐地放回原位。 以电流I为纵坐标,以电压U为横坐标,描绘出小灯泡的伏安特性曲线I―U图像。 八、实验结论 1。小灯泡的伏安特性曲线不是一条直线 2。曲线原因的分析:根据欧姆定理,RU应该是一条直线,但是那仅仅是理想IU来说,RI电阻,R是恒定不变的但是在现实的试验中,电阻R是会受到温度的影响的,此时随着电阻本身通过电流,温度就会增加,R自然上升,对于R 代表图线中的斜率,当R不变时,图像是直线,当变化时,自然就是曲线。九、误差分析 1。测量时未考虑电压表的分流,造成电流I的实际值大于理论值。2。读数时没有读准确,在估读的时候出现误差。3。描绘图像时没有描绘准确造成误差。 篇二:描绘小灯泡的伏安特性曲线

二极管伏安特性曲线

模拟电子技术课程设计 本文档只需通过world文档繁转简工具,即可以把它 转化成简体字。 二極體伏安特性曲線的研究 一、設計目的 電路中有各種電學元件,如晶體二極管和三極管,光敏和熱敏元件等。人們通常需要瞭解它們的伏安特性,以便正確的選用它們。通常以典雅為橫坐標,電流為縱坐標作出元件的電壓——電流關係曲線,叫做該元件的伏安特性曲線。該設計通過測量二極體的伏安特性曲線,瞭解二極體的導電性的實質,使我們在設計電路時能夠準確的選擇二極體。 二、設計原理 1、二極體的伏安特性 (1)二極體的伏安特性方程為: 式中,Is為反向飽和電流,室溫下為常數;u為加在二極體兩端電壓;UT 為溫度的電壓當量,當溫度為室溫27℃時,UT≈26mV。 當PN結正向偏置時,若u≥UT,則上式可簡化為:IF≈ISeu/UT。 當PN結反向偏置時,若︱u︱≥UT,則上式可簡化為:IR≈-IS。可知- IS 與反向電壓大小基本無關,且IR越小表明二極體的反向性能越好。 對二極體施加正向偏置電壓時,則二極體中就有正向電流通過,隨著正向偏置電壓的增加,開始時,電流隨電壓變化很緩慢,而當正向偏置電壓增至接近其

導通電壓時,電流急劇增加,二極體導通後,電壓少許變化,電流的變化都很大。 對上述二種器件施加反向偏置電壓時,二極體處於截止狀態,其反向電壓增加至該二極體的擊穿電壓時,電流猛增,二極體被擊穿,在二極體使用中應竭力避免出現擊穿觀察,這很容易造成二極體的永久性損壞。所以在做二極體反向特性時,應串入限流電阻,以防因反向電流過大而損壞二極體。 二極體伏安特性示意圖1、2所示。 圖1鍺二極體伏安特性圖2矽二極體伏安特性 2、二極體的伏安特性曲線 下面我們以鍺管為例具體分析,其特性曲線如圖3所示,分為三部分: 圖3 半導體二極體(矽管)伏安特性

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

二极管伏安特性曲线的测定

实验四二极管伏安特性曲线的测定 【一】实验目的 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压—电流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极管的伏安特性曲线,了解二极管的单向导电性的实质。 【二】实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。

二极管一般工作在正向导通或反向截止状态。当正向导通时,注意不要超过其规定的额定电流;当反向截止时,更要注意加在该管的反向偏置电压应小于其反向击穿电压。但是,稳压二极管却利用二极管的反向击穿特性而恰恰工作于反向击穿状态。本实验用伏安法测定二极管的伏安特性,测量电路如图2所示。 测定二极管的电压与电流时,电压表与电流表有两种不同的接法。如图2,电压表接A 、D 两端叫做电流表外接;电压表接A 、D ′端叫做电流表内接。电流表外接时,其读数为流过二极管的电流I D 与流过电压表电流I V 之和,即测得的电流偏大;电流表内接时,电压表读数为二极管电压V D 与电流表电压V A 之和,即测得的电压偏大。因此,这两种接法都有测量误差。这种由于电表接入电路而引起的测量误差叫做接入误差。接入误差是系统误差,只要知道电压表的内阻R V 或电流表的内阻R A ,就可以把接法造成的测量误差算出来,然后选用测量误差较小的那种接法。电流表外接,造成的电流测量误差为: V D D V D D R R I I I I ==? 电流表内接,造成的电压测量误差为: D A D A D D R R V V V V ==? 其中R D 、R V 、R A 、分别是二极管的内阻,电压表的内阻和电流表的内阻。测量时究竟选用哪种接法,要看R D 、R V 、R A 的大小而定。显然,若R D /R V >R A /R D 应选用电流表内接,反之则选用电流表外接。 【三】 实验装置 直流稳压电源、直流电压表2个、直流电流表2个、滑线变阻器、待测二极管、开关、导线等。 注意事项: 1. 为保护直流稳压电源,接通或断开电源前均需先使其输出为零;对输出调节旋钮的调节 必须轻而缓慢。 2. 更换测量内容前,必须使电源输出为零,然后再逐步增加至需要值,以免损坏元件。 3. 测定2AP 型锗二极管的正、反向伏安特性曲线时,注意正向电流不要超过20mA ,反向 电压不要超过25V 。

2020届高考物理 实验专题:描绘小灯泡的伏安特性曲线

2020高考物理实验专题:描绘小灯泡的伏安特性曲线 1.在伏安法测电阻的实验中,待测电阻R x约为200 Ω,电压表 V的内阻约为2 kΩ,电流表A的内阻约为10 Ω,测量电路 中电流表的连接方式如图甲或乙所示,结果由公式R x=U I计 算得出,式中U与I分别为电压表和电流表的读数;若将图甲和图乙中电路测得的电阻值分别记为R x1和R x2,则________(填“R x1”或“R x2”)更接近待测电阻的真实值,且测量值R x1______(填“大于”“等于”或“小于”)真实值,测量值R x2________(填“大于”“等于”或“小于”)真实值。 答案R x1大于小于 2.在“描绘小灯泡的伏安特性曲线”的实验中,某同学测得电 流—电压的数据如下表所示: (1)用上表数据描绘电压随电流的变化曲线。

(2)为了探究灯丝电阻与温度的关系,已作出电阻随电流的变化曲线如图所示;请指出图线的特征,并解释形成的原因。 答案(1)如图所示

(2)电阻随电流增大存在三个区间,电阻随电流的变化快慢不同。第一区间电流很小时,电阻变化不大;第二区间灯丝温度升高快,电阻增大快;第三区间部分电能转化为光能,灯丝温度升高变慢,电阻增大也变慢。 3.某学习小组欲探究小灯泡(“3 V、1.5 W”)的伏安特性,可提 供的实验器材如下: A.电池组:电动势约4.5 V,内阻可不计; B.双量程的电压表:V1:量程为0~3 V、内阻约为3 kΩ;V2:量程为0~15 V、内阻约为15 kΩ C.双量程的电流表:A1:量程为0~0.6 A、内阻约为1 Ω;A2:量程为0~3 A、内阻约为0.1 Ω D.滑动变阻器R:阻值范围为0~10 Ω、允许通过的最大电流为2 A; E.开关S,导线若干。 在尽量提高测量精度的情况下,请回答下列问题: (1)根据以上器材,用笔画线代替导线将图甲中的实物图连接成完整电路。 (2)闭合开关前,滑动变阻器的滑片应移到________(填“A”或“B”)端。

非线性电阻伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。 关于p-n结的形成和导电性能可作如下解释。

图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。 结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用 九孔插件方板。

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常

数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。 (a)线性电阻(b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源1台 2.直流电压表1块 3.直流电流表1块 4.万用表1块 5.白炽灯泡1只 6.二极管1只 7.稳压二极管1只 8.电阻元件2只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯

伏安特性曲线

(一)线性电阻的伏安特性曲线 由图可知,伏安特性曲线的斜率为0.9944,故实验测得线性电阻阻值为1/994.4=1005.6Ω。 实际电阻的标称值为1000Ω,相对误差为E=(|1000-1005.6|/1000)*100%=0.56%。 误差原因:实验中采用电流表内接法,电压表的读数包括了电流表的压降,因此计算所得电阻为电流表内阻和线性电阻之和,偏大。 (二)半导体二极管伏安特性曲线 1、正向特性 U/V 2.0 4.0 6.0 8.0 10.0 I/mA 1.992 3.976 5.956 7.953 9.947 U/V 0.20 0.40 0.60 0.62 0.64 0.66 0.68 0.70 I/mA 0.004 0.004 0.013 0.023 0.042 0.084 0.173 0.359

2、反向特性 U/V 2.00 4.00 6.00 6.20 6.40 6.60 6.80 I/mA 0.004 0.004 0.004 0.004 0.004 0.004 8.034 (三)理想电压源伏安特性曲线 I/mA 10.0 20.0 30.0 40.0 50.0 U/V 10.032 10.032 10.031 10.030 10.030

(四)实际电压源伏安特性曲线 I/mA 10.0 20.0 30.0 40.0 50.0 U/V 9.406 8.853 8.545 7.842 7.421 由公式U=Us-IRs,伏安特性曲线的斜率为电源内阻,可求得实际电源内阻49.8Ω. 实验中,实际内阻为51.2Ω,相对误差为E=|51.2-51|/51*100%=0.39%。 误差原因:实验中采用电流表外接法,电流表的读数包括了电压表中的电流,因此,根据公式U=Us-IRs计算所得电阻值偏小。

伏安特性实验报告

伏安特性实验报告 篇一:电路元件伏安特性的测量(实验报告答案) 实验一电路元件伏安特性的测量 一、实验目的 1.学习测量电阻元件伏安特性的方法; 2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。 二、实验原理 在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。 (a)线性电阻 (b)白炽灯丝 绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流电压表1 块 3.直流电流表1 块 4.万用表 1 块 5.白炽灯泡 1 只 6. 二极管1 只 7.稳压二极管1 只 8.电阻元件 2 只 四、实验内容 1.测定线性电阻的伏安特性按图1-2接线。调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。 2 将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤, 在表1-2中记下相应的电压表和电流表的读数。 3 按图1-3接线,R为限流电阻,取200Ω,二极管的型号为1N4007。测二极

伏安特性曲线

对“测绘小灯泡伏安特性曲线”实验的再认识 湖北省十堰市郧县第一中学魏自成 442500 本实验主要是让学生掌握如何根据测量对象确定器材规格和量程,如何设计实验电路;怎样描绘曲线,分析实验误差,总结物理规律等一些目的,达到一石多鸟的效果。实验设计理念阐述地自然流畅,在实验方案中,对电表量程,电流表内外接法的确定,滑动变阻器的连接方式,滑片起始位置及滑动方向,都了做了详尽的解释说明,误差分析也很全面,非常完美,是一个理想的样板实验,示范作用强,对培养学生的实验能力大有帮助,然而本人觉得还可以再做一点儿补充说明和改变。 第一部分补充释疑 1、为什么不用电池组而选用学生电源? 学生电源是稳压电源,电路接入确定的电压档位后,路端电压不随外电路发生改变。若选定“3A”直流输出,总电流不会超3A,而电池组受电源内阻的影响,路端电压不稳定,波动幅度大,电池个数少,灯泡不能正常发光,个数较多,若操作不慎或失误,存在烧毁灯泡的可能,一旦出现短路,极易损坏电源,安全性不够。另外,该实验记录数据多,耗时长,电池组电动势下降显著,电路稳定性不足。 2、为什么不谈通电时间长短和电流的大小的影响? 该实验不同于金属电阻率的测定,电阻率测定对象是某一温度下的定值电阻,若电路中电流大,时间长,测量对象因发热而温度升高,电阻变大,不符合实验要求,为了使其电阻不变或变化微弱,就要通过控制电流来实现。灯泡伏安特性曲线实验的探究对象正是不同温度下的灯丝电阻,而电流大小,通电

时间长短就决定着灯丝的温度,所以在额定电流范围内,对电流没有限制。 3、为什么灯泡发光前和接近正常发光时,曲线近似呈线性? 当灯泡处于低电压,弱电流状态时,灯丝发热功率小,散热快,温度基本不变,电阻变化微弱;当灯泡在接近额定工作状态时,灯丝热功率大,产生的热量多,与环境温差加大,散热更快,达到动态的产、出平衡,温度也基本不变,电阻不变,故两个状态下,曲线均近似呈线性。 第二部分更换部分器材,借助计算机绘图进一步减小误差。 1、为减小指针式电表灵敏度低引起的误差和读数时的偶然误差,可以用电 压、电流传感器代替并与计算机相连。这样具有三个优点,首先提高了测量精度,其次避免了读数误差,再次还可以解决一个常被人们忽视的问题——在测量过程中,电压、电流的读数和记录总是有先后的,而灯丝处于持续通电状态,不同时刻,温度往往不同,故电阻也不同,先测量的电流(电压)值与后测量的电压值(电流)不对应同一电阻,实验中却把它们一起做为一组(U,I)值强加于同一电阻,利用计算机方便快捷的特点,可同时读取数据,真正实现(U,V)同步,进一步减小误差。 2、用Excel图表功能描绘伏安特性曲线,减小人工绘图不准造成的偶然误 差。 依下列数据为例说明如何用Excel图表功能描绘伏安特性曲线。

电路元件特性曲线的伏安测量法 实验报告

课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________实验名称:电路元件特性曲线的伏安测量法实验类型:电路实验同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉电路元件的特性曲线; 2.学习非线性电阻元件特性曲线的伏安测量方法; 3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。 二、实验内容和原理 1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。电流越大、温度越高,对应的灯丝电阻也越大。一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。 线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。非线性电阻的伏安特性在u-i平面上是一条曲线。 普通晶体二极管的特点是正向电阻和反向电阻区别很大。正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。 上述两种二极管的伏安特性均具属于单调型。电压与电流之间是单调函数。二极管的特性参数主要有开启电压V th,导通电压V on,反向电流I R,反向击穿电压V BR以及最大整流电流I F。 2、非线性电阻元件特性曲线的逐点伏安测量法 元件的伏安特性可以用直流电压表、电流表测定,称为逐点伏安测量法。伏安法原理简单,测量方便,但由于仪表内阻会影响测量的结果,因此必须注意仪表的合理接法。 采用伏安法测量二极管特性时,限流电阻以及直流稳压源的变化范围与特性曲线的测量范围是有关系的,要根据实验室设备的具体要求来确定。在综合考虑测量效率和获得良好曲线效果的前提下,测量点的选择十分关键,由于二极管的特性曲线在不同的电压的区间具有不同的性状,因此测量时需要合理采用调电压或调电阻的方式来有效控制测量样点。 3、元件特性曲线的示波器观测法 正弦波信号发生器提供的输出电压,R是被测电阻元件,r为电流取样电阻。示波器置于X—Y 工

2018届高考物理二轮复习描绘小灯泡伏安特性曲线实验专题卷

100考点最新模拟题千题精练13- 3 1.(2017全国理综I)某同学研究小灯泡的伏安特性,所使用的器材有:小灯泡L(额定电压3.8V,额定电流0.32A):电压表V(量程3V,内阻3kΩ);电流表A(量程0.5A,内阻R(阻值1000Ω);滑动变阻器R(阻值0~9.0Ω);电源E(电动势5V,0.5Ω);固定电阻 内阻不计);开关S;导线若干。 (1)实验要求能够实现在0~3V的范围内对小灯泡的电压进行测量,画出实验电路原理图。(2)实验测得小灯泡伏安特性曲线如图(a)所示。 (1)由实验曲线可知,随着电流的增加小灯泡的电阻________(填“增大”“不变”或“减小”),灯丝的电阻率______(填“增大”“不变”或“减小”)。 E(电动势4V,内阻1.00Ω)和题给器材连接成图(b)所示的电路。(2)用另一电源 调节滑动变阻器R的阻值,可以改变小灯泡的实际功率。闭合开关S,在R的变化范围内,小灯泡的最小功率为_____W,最大功率为_______W.(结果均保留两位小数) 【参考答案】(1)电路如图。(4分)

(2)增大(1分)增大(1分) (3)0.39W,(2分)1.17W(2分) E(电动势4V,内阻1.00 )当滑动变阻器接入电路中的电阻为零时,在图(a)中画出电源 的伏安特性曲线,如图中曲线II所示,与小灯泡伏安特性曲线的交点即为电路工作点,该点纵横坐标值的乘积等于小灯泡的最大功率,最大功率为P max=UI=3.62×0.318=1.17W。 2.(2017广西五市考前联考)在“描绘小灯泡的伏安特性曲线”的实验中,需测量一个标

非线性元件伏安特性的测量实验报告

非线性元件伏安特性的 测量实验报告 Document number:BGCG-0857-BTDO-0089-2022

实验报告 姓名:汤博班级:F0703028 学号:28 实验成绩: 同组姓名:无实验日期:2008-3-4 指导老师:助教19 批阅日期: 非线性元件伏安特性的测量 【实验目的】 1.学习测量非线性元件的伏安特性,针对所给各种非线性元件的特点,选择一定的实验方法,援用配套的实验仪器,测绘出它们的伏安特性曲线。 2. 学习从实验曲线获取有关信息的方法。 【实验原理】 1、非线性元件的阻值用微分电阻表示,定义为 R = dU/dI。 2、如下图所示,为一般二极管伏安特性曲线 3、测量检波和整流二极管,稳压二极管,发光二极管的伏安特性曲线,电路示意图如下

(1)检波和整流二极管 检波二极管和整流二极管都具有单向导电作用,他们的差别在于允许 通过电流的大小和使用频率范围的高低。 (2)稳压二极管 稳压二极管的特点是反向击穿具有可逆性,反向击穿后,稳压二极管 两端的电压保持恒定,这个电压叫稳压二极管的工作电压。 (3)发光二极管 发光二极管当两端的电压小于开启电压时不会发光,也没有电流流 过。电压一旦超过开启电压,电流急剧上升,二极管发光,电流与电压 呈线性关系,直线与电压坐标的交点可以认为是开启电压. 计算光的波长。 使用公式eU=hc λ 【实验数据记录、实验结果计算】 1、检波二极管 正向: 表一测量检波二极管的正向伏安特性数据 编号12345678910 U(V) I(mA) 编号11121314151617181920 U(V) I(mA)

相关主题
文本预览
相关文档 最新文档