当前位置:文档之家› 陶瓷膜分离技术在湿法冶金中的应用研究

陶瓷膜分离技术在湿法冶金中的应用研究

陶瓷膜分离技术在湿法冶金中的应用研究
陶瓷膜分离技术在湿法冶金中的应用研究

第31卷第1期膜科学与技术V o l.31N o.1 2011年2月M EM BR AN E SCI EN CE A ND T ECH N OL OG Y F eb.2011

陶瓷膜分离技术在湿法冶金中的应用研究

姚志春1,胡晓东2,段雅峰2

(1.兰州商学院,兰州730020; 2.兰州长城新元膜科技有限公司,兰州730000)

摘要:采用0.2L m的Al2O3膜,精滤工业碳酸钠溶液、含草酸钴水溶液和硫酸镍溶液等,研

究获得这些溶液的技术参数,为陶瓷膜的工业化应用提供基础数据.实验结果表明,经陶瓷膜

精滤后的溶液清晰、透明,有价金属杂质离子含量和含油量降低,精滤后溶液的物理和化学指

标可达到工业生产的标准.采用陶瓷膜精滤工业碳酸钠溶液、含草酸钴水溶液、硫酸镍溶液等

能够保持较高的膜通量,而且受污染的膜经过清洗和再生,通量可以恢复,能满足工业连续生

产的要求.

关键词:陶瓷膜;工业碳酸钠溶液;含草酸钴水溶液;硫酸镍溶液;精滤

中图分类号:T Q028.8文献标识码:A文章编号:1007-8924(2011)01-0097-04

在湿法冶金生产过程中,常会涉及到料液的固液分离、纯化洗涤、除去有机物及有机物的回收等工艺.传统工艺大多采用滤布、陶管、纤维球、活性碳等过滤材料,虽能满足一定的工艺要求,但由于材料特性所限,在生产中常出现跑滤、过滤精度低、分离效果不彻底、产品无法进行更深一层的分级、纯化,直接影响产品的质量等级,加之传统工艺的自动化程度低,劳动强度大,给企业的技改和产品的开发以及产业链的延伸带来了很大困难.

陶瓷膜具有很好的物理化学性能[1-10],很适用于湿法冶金中的各种料液精滤处理.但目前有关在湿法冶金工业生产过程中采用无机陶瓷膜的报道还较少[7].本研究中,考虑到工业碳酸钠溶液、含草酸钴水溶液、硫酸镍溶液等具有碱性大、温度高、浓度高、溶液混浊、不透明,有价金属杂质离子含量较高的特点,选用无机陶瓷膜进行试验研究,以获得这些溶液的技术参数,为大规模的工业化应用提供基础数据和设计依据.

1实验部分

1.1料液情况

(1)N a2CO3溶液:固体N a2CO3由甘肃金昌化工总厂生产.处理料液为混浊的土黄色不透明N a2 CO3溶液,是将固体Na2CO3溶于纯水中所得.其正常浓度10%~14%,比重1.05~ 1.15g/L.料液中含有灰土成份及Fe2+、Cu2+、M g2+、Pb2+等杂质.

(2)含草酸钴的水液及浆液.

(3)硫酸镍溶液:处理料液为P204萃取后的硫酸镍溶液,料液温度45e,料液pH=5,料液含油量:50~100m g/L.

1.2实验设备

T CM-SY-52A型实验设备,由兰州长城新元膜科技有限公司研制生产.其中,陶瓷膜管是新元膜公司的532mm@250mm19通道的0.2L m Al2O3膜,其膜面积0.052m2;CH L4-40供液及循环泵(丹麦格兰福公司);20L不锈钢原料(循环)罐(加工);在线清洗系统;电器控制系统.实验装置图如图1所示.

2试验方法

2.1系统运行过程

实验料液在循环泵的作用下平行流经膜表面,根据错流过滤原理,膜将原料液分离成两路,一路是通过膜的渗透液,由渗透液出口流出,;另一路料液

收稿日期:2009-12-15;修稿收到日期:2010-04-22

基金项目:兰州商学院重点项目(无编号)

作者简介:姚志春(1964-),男,甘肃人,工学硕士,讲师,主要从事膜技术应用、污水资源化方面的研究工作.

#98#膜科学与技术第31卷

1.原液;

2.循环(原液)罐;

3.泵;

4.流量计;

5.膜组件;

6.反冲罐;

7.压缩空气;

8.透过液

图1滤液陶瓷膜实验装置示意图

F ig.1Schematic of an ex per imental

scale cer amic M F co nfigurat ion

则横跨膜表面(含被膜截留的粒子、杂质及部分溶剂)进行循环,同时也以较高的流速冲刷膜表面,控制膜污染及浓差极化现象.当料液浓缩到一定倍数时送后续工艺处理.2.2数据采集分析

(1)对原料液及过滤液进行定时定量的采样,送厂方检测中心分析.碳酸钠、硫酸镍、草酸钴等含量用滴定法分析;Fe、Cu、Ca、Mg、Pb、Co、Ni等离子的含量用WFX-100型瑞利原子吸收分光光度计分析.

(2)观测记录的物理指标有料液温度、陶瓷膜通量等.

3实验结果与讨论

3.1工业Na2CO3溶液实验结果

3.1.1工业Na2CO3溶液经陶瓷膜精滤前后的

变化

为了研究工业Na2CO3溶液经陶瓷膜精滤前后的变化,我们在陶瓷膜每精滤100L Na2CO3溶液取样分析一次,结果见表1.

表1工业Na2CO3溶液精滤前后的结果

T able1Co mpar ison of permeate and o riginal Sodium car bo nate so lutio n g/L 序号溶液状况(观察)N a2CO3Fe2+Cu2+Ca2+M g2+Pb2+

1#滤前混浊214.310000.091000.007900.091000.088000.00690滤后清晰、透明214.520000.007600.000410.011000.032000.00130

2#滤前混浊219.250000.087000.009200.087000.100000.00820滤后清晰、透明217.490000.005500.000520.013000.041000.00170

3#滤前混浊217.430000.085000.004700.067000.075000.00690滤后清晰、透明217.100000.006200.000650.014000.057000.00100

4#

滤前混浊243.770000.091000.006200.071000.085000.00710滤后清晰、透明241.250000.004700.000320.012000.042000.00120

从表1看出,精密过滤前工业碳酸钠溶液混浊、

有价金属杂质离子含量较高,精密过滤后工业碳酸钠溶液清晰、透明有价金属杂质离子含量降低,Na2 CO3溶液的浓度几乎没有变化.这说明Fe、Cu、Ca、Mg等金属离子形成了Fe(OH)3、Cu(OH)2、Ca(OH)2、Mg(OH)2沉淀,而被部分滤除,同时工业Na2CO3溶液中的泥土等污物被多孔陶瓷膜较彻底滤除,从而使精密过滤后的工业Na2CO3溶液变得清晰、透明、杂质离子含量降低.经计算各种杂质离子的去除情况如下:铁滤除率91.65%;铜滤除率94.81%;钙滤除率87.91%;镁滤除率63.64%;铅滤除率81.16%.陶瓷膜精滤后的碳酸钠溶液物理和化学指标接近或达到分析纯要求.

从表1可见,工业Na2CO3滤液的浓度和杂质含量对陶瓷膜通量的影响很小,正常工业Na2CO3滤液的通量和浓度很高并加入了大量不溶杂质Na2CO3滤液的平均通量都为1300L/(m2#h). 3.1.2陶瓷膜通量随时间的变化

实验溶液为工业Na2CO3滤液.实验结果见图

2.

曲线A1、A2之间经过化学清洗恢复膜通量图2实验溶液为正常工业N a2CO3滤液的陶瓷膜

通量随时间变化曲线

Fig.2Relation of t ime and membrane f lux o f

norma l Sodium carbonate so lutio n

第1期姚志春等:陶瓷膜分离技术在湿法冶金中的应用研究#99#

3.2含草酸钴水液实验结果

3.2.1含草酸钴水液经陶瓷膜精滤前后的变化

为了考察含草酸钴的各种水液(钴盐提供的一

次沉钴母液、二次沉钴液、洗布水)经陶瓷膜精滤前

后的变化,我们在陶瓷膜每精滤50L含草酸钴的水

液取样分析一次,具体结果见表2.从表2可看出:

精滤前后钴没有太大变化,但过滤前液溶中含固量

较高,经滤后溶液中含固量降到0.01g/L以下.这

样的精滤效果是可以满足钴生产对含草酸钴水液的

精滤要求.

表2含草酸钴的水液经多孔陶瓷膜

精滤前后的结果

T able2Compar ison of permeate and or ig inal

o xa late cobalt so lutio n g/L

序号W Co含固量

1#滤前0.0300.88滤后0.031<0.01

2#滤前0.0300.90滤后0.031<0.01

3#滤前0.0300.88滤后0.032<0.01

4#滤前0.0330.90滤后0.032<0.01

3.2.2陶瓷膜通量随时间的变化

实验溶液为含草酸钴水液,料液为浑浊半透明粉红色,静置后有沉淀物产生.

表3含草酸钴水液陶瓷膜通量随时间的变化T able3Relation of time and membr ane flux

o f ox alate cobalt so lutio n

过滤时间/h1234

过滤压力/M Pa0.310.310.30.3溶液温度/e27454850浓缩液流量/(L#min-1)47414949透过液流量/(L#m-2#h-1)1205133313751436从表2、表3可看出,实验陶瓷膜设备在过滤压力只有0.3M Pa的情况下过滤含草酸钴水液及浆液膜通量都较大,而且通量较稳定;每天对陶瓷膜清洗一次,就可以恢复陶瓷膜的通量;含草酸钴的水液中草酸钴含量高低对多孔陶瓷膜通量等没有明显影响.这说明多孔式陶瓷膜精滤含草酸钴的水液性能稳定,化学清洗效果明显,可以在工业中生产应用.

3.3硫酸镍溶液除油实验结果

3.

3.1硫酸镍溶液陶瓷膜精滤前含油的变化

经一级气浮装置处理后,含油量降为5~10 mg/L.一级气浮加陶瓷膜除油系统投入使用后,已连续运行了15d,经一级气浮加陶瓷膜除油系统处理后的硫酸镍溶液,含油量降到3mg/L以下,达到了厂方提出的使用标准.油及杂质的去除率均在95%以上;油的去除率达到了98%以上.

对试验硫酸镍溶液陶瓷膜过滤装置的反冲周期为6min一次,每次6s.这样可以保证陶瓷膜的渗透通量在一个清洗周期内基本保持不变.

经试验陶瓷膜化学清洗周期约为5d,每次1~ 2h.化学清洗采用3%~5%的氢氧化钠(氢氧化钠溶液需加热到50e左右)和2%的盐酸溶液交替清洗即可恢复膜通量.

试验表明,在实际应用中选择适宜的膜孔径很重要.所选的膜孔径不仅要保证透过液中油和悬浮固体的含量达到设计要求,还要使膜通量较大并且常时间稳定,以延长膜的化学清洗周期.

3.3.2陶瓷膜通量随时间的变化

图3实验溶液为硫酸镍溶液的陶瓷膜

通量随时间变化曲线

F ig.3R elatio n o f time and membrane flux of nor mal

nickel sulphate carbonate solut ion4

4结论

1)工业碳酸钠溶液、含草酸钴水溶液和硫酸镍溶液经陶瓷膜精滤后料液清澈透明,无肉眼可见杂质及沉淀物,杂质含量低,颗粒状杂质去处率95%以上.

2)无机陶瓷膜能耐腐蚀,化学稳定性好;陶瓷膜的渗透通量保持稳定,在实验运行时间内无明显下降,可以在工业中生产中应用.

3)污染后的陶瓷膜经化学清洗后通量可恢复.

4)试验表明,采用无机陶瓷膜对萃取后硫酸镍溶液除油能够保持较高的通量,而且受污染的膜经过清洗和再生,通量可以恢复.

5)对过滤剩余循环料液的处理,建议在工业应

#100#膜科学与技术第31卷

用时配置小型压滤机(或其它方法),将余料液压滤成固渣,压滤液返回膜前再次精滤,以免有价料液的损失.

参考文献

[1]徐南平,邢卫红,赵宜江.无机膜分离技术及应用[M].

北京:化学工业出版社,2002,122-132.

[2]刘茉娥,陈观林,柴红,等编.膜分离技术应用手册

[M].北京:化学工程出版社.2001:453-461.

[3]时均,袁权,高从堦.膜技术手册.北京:化学工程出

版社[M].2001:307-325.

[4]董强,廖翔,季兆全,等.陶瓷微滤膜洗涤碱法制备

A l(O H)3中杂质N a的研究[J].膜科学与技术,2004,

24(5):29-32.[5]孙杰,金珊.无机膜回收硫酸法钛白生产中偏钛酸

的研究[J].石油化工高等学校学报.2001(4):40-

42.

[6]朱晨,王志,何希麟,等.陶瓷微滤膜在回收矿浆工

业废水中的应用与再生性能研究[J].过滤与分离,2005

(1):15-18.

[7]黄丽江,施汗昌,钱易.利用陶瓷微滤膜技术浓草浆黑

液的研究[J].膜科学与技术,2004,24(4):14-16. [8]姚志春,胡晓东.陶瓷膜精滤工业碳酸钠溶液的研究

[J].膜科学与技术,2006,26(1):39-41.

[9]范文元,许煜汾.陶瓷微滤膜过滤亚微米级悬浮液的研

究[J].合肥工业大学学报,2000,23(1):104-107. [10]孟广耀,董强,刘杏芹,等.无机多孔分离膜的若干新

进展[J].膜科学与技术,2003,23(4):261-268.

Application study of ceramic membrane technology i n wet metallurgy i ndustry

YA O Zhichun1,H U X iaodong2,D UA N Yaf eng2

(https://www.doczj.com/doc/e017460329.html,nzhou Co mmercial Collage,Lanzhou730020,China;

https://www.doczj.com/doc/e017460329.html,nzhou Chang cheng M embrane T echno logy Com pany,Lanzhou730000,China)

Abstract:The filtration of industr ial sodium carbo nate solution,ox alate cobalt so lution,Rare-earth solution and nickel sulphate carbonate solution w as carried out using inor ganic Ceramic Membrane.T he ex perimen-tal results show that the permeate w as clear,and the content of metal ion w as lo w er.The membrane flux w as larg er and stable.Ceramic membrane flux can be recovered by chemical clean.The result shows that the ce-ramic membrane used to treatment the industrial Sodium carbonate solution、oxalate cobalt solution and nickel su-l phate carbonate solution was technology reasonable,and can be used in the industry application.

Key words:ceramic membrane;sodium car bo nate solutio n;ox alate cobalt so lution and nickel sulphate car-bonate solution;filtration

(上接第96页)

Treatment of PVC centrifugal mother liquid by reverse osmosis

L I U J iuqi ng,J I A N G Bi n,YA N G Q iuj u

(Schoo l of M etallurg y Science and Eng ineering,Central South U niv ersity,Chang sha410083,China)

Abstract:A pplying reverse o smo sis fo r PVC centrifug al mo ther liquor in the pilot test,the effect of different pressur e on membrane flux and filtrate conductance w as studied.After determining the parameter of pressure,the effect o f runtim e o n m em brane flux,filtrate conductance,COD w as analyzed.The test results show ed the filtrate conductance of the first step separ ation of rever se osm osis w as42.3s;w hen the pressure w as1.0MPa and the membrane appar atus had running for30min,the filtrate conductance of the seco nd separation of reverse osmosis w as7.37s,and its COD w as close to0,the filtr ate reached discharg e standards of w astew ater,and it could also be r eused in pr oduction through advanced treatment.

Key words:PV C centr ifugal m other liquor;membrane flux;conductance;COD

《湿法冶金》课程教学大纲

《湿法冶金》课程教学大纲 一、课程说明 课程编码4301307课程类别专业方向课 修读学期第六学期学分2学时32课程英文名称Hydrometallurgy 适用专业应用化学 先修课程无机化学 二、课程的地位及作用 湿法冶金是应用化学专业学生的一门专业方向课。它一方面在不断发展丰富和完善自身,同时也与其他的相关学科联系,渗透、交融得非常密切,近年来发展迅速,其深度、广度在不断变化。它不仅与化学中的无机化学、物理化学、化工工程与工艺等学科相互关联、渗透,而且与矿物学、金属冶炼以及材料科学等其他学科的关系也越来越密切。新的冶炼技术知识,新的冶炼设备,新的成果不断涌现,同时有色金属冶炼一些原理和知识也是大学本科生培养过程中应掌握的内容。本课程主要介绍有色金属冶炼的基本原理和知识,以及现代有色金属冶炼技术的新知识、新工艺、新设备、新成果、新进展及趋势。 三、课程教学目标 1. 系统地讲授有色金属冶炼的基本原理和知识;使学生能够初步地应用有色金属冶炼基本理论和知识处理一般的有色金属冶炼的问题; 2. 通过系统地向讲授有色金属冶炼的基本原理和知识,使学生能进一步地加深对有色金属冶炼基本原理和知识的理解,并运用有关原理去研究说明、理解、预测相应的冶金过程,从而培养思考问题、提出问题、分析问题、解决问题的能力。应用了解有色金属冶炼的及发展趋势;从而进一步 3. 使学生了解有色金属冶炼领域内最新研究进展及新技术、新成果、新设备、新知

识、新进展、典型案例,培养学生基本科学素养与创新意识; 4. 通过学习使学生对有色金属冶炼的知识具有一定的系统性和覆盖面,掌握事实与理论,普及与提高,基础与实用,以及了解个别与综合,独立与联系,现在和未来的关系; 5. 运用所学有色金属冶炼的基本原理和知识,了解有色金属冶炼与其他学科相互交叉、渗透、融合的特点;结合工业生产实际,拓宽和加深知识的层面和深度,提高综合知识的运用及解决问题的能力,并使学生在科学思维能力上得到更高、更好的训练和培养。 四、课程学时学分、教学要求及主要教学内容 (一) 课程学时分配一览表 章节主要内容总学时 学时分配讲授实践 第1章绪论 2 2 0 第2章矿石学基础 2 2 0 第3章铜冶金 4 4 0 第4章铅冶金 4 4 0 第5章锌冶金 4 4 0 第6章铝冶金 4 4 0 第7章钒冶金 4 4 0 第八章钛冶金 4 4 0 第九章锰冶金 2 2 0 第十章有色冶金中的综合回收与清洁生产 2 2 0 (二) 课程教学要求及主要内容 第一章绪论 教学目的和要求: 1. 了解冶金发展史和金属的基本概念及分类; 2. 理解矿物资源分类及矿物、矿石和精矿;

Q_DLQT 001-2019膜分离制氮设备

Q/DLQT 大连力德气体科技股份有限公司企业标准 Q/DLQT 001-2019 代替:Q/DLQT 001-2016 膜分离制氮设备 2019-12-28发布2019-12-28 实施大连力德气体科技股份有限公司发

目 次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 产品构成和型号标记 (2) 5 技术参数 (2) 6 技术要求 (3) 7 检验员或试验方法论 (4) 8 检验规则 (6) 9 标志、包装、运输和贮存 (7)

Q/DLQT 002—2019 前言 本标准根据GB/T1.1给出的编写规则制定的。 本标准自实施之日起代替Q/DLQT 001-20016。 本标准与Q/DLQT 001-20016标准的主要差异: ——标准结构做了编辑性修改; ——规范性引用文件重新确认。 本标准由大连力德气体科技股份有限公司提出。 本标准由大连力德气体科技股份有限公司负责起草并修订。 本标准主要起草人:石军雄。

膜分离制氮设备 1范围 本标准规定了膜分离制氮设备(以下简称“制氮设备”)的术语和定义、型式及基本参数,要求,试验方法,标志、包装、运输和贮存等。 本标准适用于移动式和固定式膜分离制氮设备,其它膜分离制氮设备亦可参照使用。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 191 包装储运图示标志 GB 150 压力容器 GB/T 3864 工业氮 GB/T 4830 工业自动化仪表 气源压力范围和质量 GB/T 9969 工业产品使用说明书 总则 GB 12348 工业企业厂界环境噪声排放标准 GB/T 13306 标牌 TSG 21 固定式压力容器安全技术监察规程 JB/T 4330 制冷和空调设备噪声的测定 3术语和定义 下列术语和定义适用于本标准。 3.1溶解 dissolve 膜法分离时,空气中各气体组分与膜聚合物材料发生化学作用的现象。 3.2渗透 permeate 膜法分离时,空气中各气体组分从纤维膜的一侧到另一侧的现象。 3.3选择性透过 selective permeation 膜法分离时,空气中各气体组分以不同的速度渗透过纤维膜的现象。 3.4富氮 rich nitrogen 以空气为原料,利用中空纤维膜分离工艺生产的氮气。 3.5中空纤维膜 hollow fiber membrane 聚合物管状薄膜结构,具有梯度致密的微孔分离层及多孔状支撑层,并且能选择地透过不同的气体组分。 3.6膜分离制氮设备 membrane nitrogen device 通过有选择性的透过氮气,分离氧气来提高氮气浓度的设备。

陶瓷膜过滤技术与设备

陶瓷膜过滤技术与设备 南京博滤工业设备有限公司 (膜分离事业部Membrane Separation Dept.) 摘要:本文通过归纳简单介绍了以陶瓷纳滤膜为代表的无机膜技术及其成套设备主要构成,仅用于提供给广大膜分离环保工程技术人员交流学习与探讨之用。膜分离技术由于其具有分离效率高、能耗低、过程温和无相变、生产环境清洁等诸多优点,而越来越多的被应用于现代工业生产中物料富集(enrichment)、浓缩(concentration)、纯化(purification)等核心工艺处理过程。根据膜的材料我们可分为有机膜和无机膜,按膜孔径又可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等。随着工业技术的不断更新迭代,膜分离应用技术近年来也取得巨大进展,极大提升了社会生产力水平。 关键词:陶瓷纳滤技术,陶瓷纳滤膜,陶瓷膜技术,陶瓷膜设备,膜分离技术,无机陶瓷膜,陶瓷膜应用,陶瓷膜过滤,陶瓷膜分离,陶瓷膜过滤设备,陶瓷纳滤膜,陶瓷膜植物提取,陶瓷膜催化剂回收,陶瓷膜分离技术。 1 膜的定义 膜可以被视为两相之间的一个界面、具有选择透过性功能的薄层凝聚物质,它能够以特定的形式来限制和传递两侧流体中各物质的迁移过程。膜本身可以是一种均匀单相或两相以上凝聚物质所构成的复合体,其厚度大都以数微米至0.5mm之间不等。膜必须具有一定的透过性,否则就不能称之为膜。 我们可以认为理想化的膜应当结合了膜层薄、机械强度高、孔径小、耐高温、耐化学腐蚀等诸多优点,但很遗憾,在实际中,材料属性决定,该一系列理想化指标存在相互制约性矛盾,所以世界上并不存在绝对“完美”的膜,而应该结合具体工艺工况,通过对物料反复试验对比,确定采用何种最适合膜孔径,以及采取何种预处理,有时还需结合其它化学或物理辅助工艺等,这样最终优化、设计出一套最适合该工况的膜分离系统。 这对膜厂商的理论专业性、应用经验、工匠精神,以及严谨态度都提出了极高的要求。 0.0001 0.001 0.01 0.1 1 10 100μm 图1.1 膜分离实用范围过滤谱图

关于湿法冶金的概念

1 关于湿法冶金的概念,阐述正确的是(C)。 A.湿法冶金是指原料含水,或过程需要水的,或者是过程能够产生水的金属生产过程 B.湿法冶金是指以水为反应介质,但水不能参与冶金反应的金属生产过程 C.在常温(或低于100℃)常压或高温(100~300℃)高压下,用溶剂处理矿石、精矿或含金属物料,使所要提取的金属溶解于溶液中,而尽量抑制其他杂质不溶解,然后再从溶液中将金属或其化合物提取和分离出来的过程 D.指在金属生产的所有环节中温度都不超过300℃并且以水为反应介质的过程 2 湿法冶金通常又可称为(BD)。 A. 常温冶金 B. 水法冶金 C. 干法冶金 D. 化工冶金 E. 溶剂冶金 3 湿法冶金的优点包括( B、C、D). A.处理规模大,生产效率高 B.湿法冶金过程有较强的选择性,即在水溶液中控制适当条件使不同元素能有效地进行选择性分离 C.有利于综合回收有价元素 D.劳动条件好、无高温及粉尘危害。一般有毒气体排放较少 E.一般没有大量废气、废渣产生 4 湿法冶金的优势很多,包括(A、B)。 A. 对许多矿物原料的处理而言,湿法冶金的成本较低,这些与其高选择性、宜处理价廉的低品位复杂矿有关 B. 采用湿法冶金的方法制备各种新型材料或其原料更有其突出的优点 C. 能够通过极简单的工艺一步实现脉石及杂质元素的分离 D. 不涉及任何高温、高压过程,完全是在常温和常压下操作,对设备结构、材质、操作要求极低 5 目前,多数的(B)、少数的(D)、全部的(E)都是用湿法冶金的方法生产的。 A. 铅 B. 锌 C. 铁 D. 铜 E. 氧化铝 F. 钢 6 几乎所有(B )矿物原料的处理及其纯化合物的制备、(D)的提取等也都是用湿法冶金的方法完成的。 A. 轻金属 B. 稀有金属 C. 黑色金属 D. 贵金属 E. 重金属 F. 钢铁

膜分离技术

膜分离技术 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半 透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔。 膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。 微滤(MF)通常孔径范围在0.1~1微米,大于1微米不能通过。 又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 超滤(UF),膜两侧需压力差,膜孔径在0.05um至1nm之间,通常截留分子量范围在1000~300000。 是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm 之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,

超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。 纳滤(NF),孔径为几纳米,截留分子量在80~1000的范围内。 是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80~1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广阔的应用前景。 对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。 反渗透(RO),以膜两侧静压为推动力,反渗透仅让水透过膜,能截留所有的离子。 是利用反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透是膜分离技术的一个重要组成部分,因具

膜分离制氮

膜空分制氮系统包含以下主要设备: 1)空压机 为制氮装置提供足够气源,空压机排气压力和排气量以膜组件的工况要求为依据。 2)空气预处理 空气预处理是为了除去压缩空气中的油和水份以及大于0.1μm的尘颗粒,减轻后续膜组件的负担。空气预处理包括除油过滤和空气干燥二个功能。 3)膜分离装置 膜分离装置的功能是将压缩空气精过滤后,经膜装置分离成氮气和富氧。氮气达到品质要求后进入缓冲罐备用。未达标气体从放空口排出。膜分离过程的富氧废气通过富氧排放口排出。 4)氮气缓冲罐 缓冲罐用于氮气的暂时存储和气体缓冲。 5)氮气监控系统 氮气监控系统用于控制膜空分制氮装置,提供膜空分制氮装置人机操作界面、运行数据显示、报警显示等功能。主要功能包括:一键装置启停、空压机启停、温度调节、压力调节、氮气纯度检测、氮气存储/放空转换控制、温度参数调整、压力参数调整、报警显示等。1)、PSA制氮与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点 2)、以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离叫膜分离法。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维护量更少、产气更快(≤3分钟)、增容方便等优点,它特别适宜于氮气纯度≤98%的中、小型氮气用户,有

最佳功能价格比。而氮气纯度在98%以上时,它与相同规格的PSA制氮机相比价格要高出15%以上。 中空纤维制氮机无切换阀门等运动部件,分离过程无相变,所以运行平稳无噪音、故障率低、可靠性好、能耗小。根据GB/T 7392-1998(集装箱的技术要求和实验方法)气密试验,对只开设一个箱门的保温集装箱,其漏气率按标准状态计,不应超过10m3/h,每增设一个箱门(如侧开门)的漏气率允许增加5m3/h。我们假设集装箱开设2个箱门,则其漏气率为15m3/h。因此,我们选择制氮率20Nm3/h的,氮气纯度 99.9%的制氮机即可满足要求。装满货物的集装箱气体空间为原来的40%,即V气=55×40%=22m3。则选定的制氮机充满所需要的时间为 t=22/(20-15)=4.4 h 1、氮气质量标准: 1)标准流量:≥20Nm3/h 2)氮气纯度:≥99.9% 3)氮气露点:≤-40℃ 4)含水量:≤100PPM 4)出口压力:0.1-0.65Mpa(可调)5)氮气含尘颗粒:0.01ppm以下6)外型尺寸:900×900×1400mm dcs控制系统的工作原理 DCS是分布式控制系统的英文缩写(Distributed Control System),在国内自控行业又称之为集散控制系统。 即所谓的分布式控制系统,或在有些资料中称之为集散系统,是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统的基础上发展、演变而来的。它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机,通信、显示和控制等4C技术,其基

膜制氮注气成套设备

膜制氮注气成套设备(注气车、气举) 文字:[大][中][小]2013-11-9浏览次数:3266 膜制氮氮气机组(车) 1.膜制氮注氮车系统介绍 为满足需方应急抢修、装置及管线氮气置换和欠平衡钻井的要求,制氮车技术方案及说明如下:制氮系统设计为撬装式,整个系统分别集成在两个厢体内,可方便的安装固定在移动底盘上,便于汽车拖挂。厢体与移动底盘可根据使用情况拆分。系统设计有一独立的操作区域可将静态工作设备(空气处理系统和膜分离系统)和动态工作设备(空气压缩机,柴油机等)隔离,使得操作人员获得一个良好的操作环境并以此区域作为系统的监控室达到对各台设备的监控作用。 系统的核心空气分离系统选用膜分离制氮工艺,采用美国普里森公司膜分离技术,动力部分配以油田广泛使用的卡特柴油机组,以及先进的美国寿力螺杆空压机和国外其他一流企业的辅助仪器、仪表设备等等。整个系统主要配置为国内外著名品牌,以满足油田恶劣的使用工况,保证系统高的可靠性及稳定性。膜制氮系统是由可编程逻辑控制器控制(PLC),该控制器可以接收输入信号(温度、压力等),并控制某一过程变量以实现操作目标(如温度、纯度等)如果操作条件超出要求,报警系统也会使系统停车。 整个系统分三部分,空气压缩系统、氮气发生系统、氮气增压系统。各组件之间的气路连接采用快速接头软管连接,以方便操作。并避免设备之间的振动传递。整个注氮系统除主要设备具有独立的控制系统之外,还可以根据用户的要求设置整套组件的控制系统,以确保系统稳定安全可靠的工作。 制氮车设备的设计原则就是“高可靠性、移动运输方便、自动化控制程度高、运行经济、操作维修方便,整体性能和制造质量达到国际先进水平。按照人性化的设计原则,方便操作和检查维修,操作者有一个相对操作空间,旋转部位加装防护罩,危险部位(高温、高压)设置有醒目的警示标识,制氮车设备能够在边远地区、无外接电力、外接动力的情况下正常运行,满足耐盐碱、耐油、耐热、耐潮湿、耐寒要求。

陶瓷膜的开发及应用

收稿日期:2009-07-15 作者简介:严立云(1979)),河北唐山人,吉林师范大学物理学院讲师。工学硕士,研究方向:功能材料。 陶瓷膜的开发及应用 严立云 (吉林师范大学,吉林四平 136000) 摘 要:陶瓷膜是以无机陶瓷材料经特殊工艺制备而形成的非对称膜,呈管状及多通道状。陶瓷膜分离技术是近些年来国际上发展迅速的高科技之一,广泛应用在化工、食品、医药、环保等行业的液体中杂质的分离过程中,并显示出独特的优势和广阔的前景。本文首先介绍了陶瓷膜的发展及几种主要制备技术,接着介绍了其应用情况,最后对其前景进行了展望。 关键词:陶瓷膜;制备;应用 中图分类号:T Q174 文献标识码:A 文章编号:1008-7508(2009)05-0047-03 陶瓷膜也称CT 膜,是固态膜的一种,主要是A12O3、ZrO2、T iO2和SiO2等无机材料经特殊工艺制备而成的非对称多孔膜。陶瓷膜呈管状及多通道状,管壁密布微孔,在压力作用下,原料液在膜管内或膜外侧流动,小分子物质(或液体)透过膜,大分子物质(或固体)被膜截留而达到分离、浓缩、纯化和环保等目的。陶瓷膜具有化学稳定性好,能耐酸、耐碱、耐有机溶剂,机械强度大,可反向冲洗,抗微生物能力强,耐高温,孔径分布窄,分离效率高等优点,在化工、冶金、食品、医药、环保等领域得到广泛的应用。 一、陶瓷膜的开发 陶瓷膜的研究始于20世纪40年代,其发展可分为三个阶段。从用于铀的同位素分离的核工业时期进入到以无机微滤膜和超滤膜为主的液体分离时期和以膜催化反应为核心的全面发展时期。20世纪90年代,溶胶)))凝胶技术的出现标志着无机膜的研究与应用进入第三个阶段,即以气体分离应用为主和陶瓷膜分离器)反应器组合构件的研究阶段。 目前已商品化的多孔陶瓷膜的构形主要有平板、管式和多通道三种。规模应用的陶瓷膜通常采用多通道构形,即在一个圆截面上分布着多个通道,一般通道数为7、19和37,[7]分别用来截 留直径在30~50nm 、100~200nm 、800~1000nm 范围的粒子。 无机陶瓷膜的主要制备技术有:溶胶-凝胶法、固态粒子烧结法、分相法、化学气相沉积法、物理气相沉积法等。目前多孔膜主要是超滤和微滤膜,其制备方法以粒子烧结法和溶胶-凝胶法为主。前者主要用于制备微孔滤膜,而后者主要用来制备超滤膜。 从发展趋势来看,膜制备技术的发展主要在两个方面:一是在多孔膜研究方面,进一步完善已商 品化的无机超滤和微滤膜,发展具有分子筛分功能的纳米滤膜、气体分离膜和渗透汽化膜;二是在致密膜研究中,超薄金属及其合金膜和具有离子电子混合传导能力的固体电解质膜是研究的热点。 二、陶瓷膜的主要应用 由于陶瓷膜具有很多优异之处,目前已在多个Journal of Jili n Radio and T V University No.5,2009(T otal No.95) 5吉林广播电视大学学报6 2009年第5期(总第95期) 学术论坛

无机陶瓷膜分离设备性能描述

无机陶瓷膜分离设备性能描述 2020.04.20

无机陶瓷膜分离设备性能描述 无机陶瓷膜设备包括微滤陶瓷膜设备、超滤陶瓷膜设备、纳滤陶瓷膜设备,该设备工业化应用成熟。无机陶瓷膜设备可取代传统的澄清过滤、除菌过滤和分离及部分浓缩工艺,与小型无机陶瓷膜实验设备的区别是处理量的不同,主要应用于工业化大生产中。 无机陶瓷膜元件及组件是以氧化铝、氧化钛、氧化锆等材料经特殊工艺制备而成的多孔非对称膜。陶瓷膜过滤是一种“错流过滤”形式的流体分离过程:在压力作用的驱动下,原料液在膜管内流动,小分子物质透过膜,含大分子组分的浓缩液被膜截留,从而使流体达到分离、浓缩、纯化的目的。 无机陶瓷膜元件的过滤精度涵盖微滤、超滤、纳滤,陶瓷微滤膜的过滤孔径范围在50 - 800 nm之间,超滤膜的截留分子量在2kDa ~ 100kDa之间,而纳滤膜的截留分子量在 200-750Da,可根据物料的粘度、悬浮物含量选择不同孔径的膜,以达到澄清分离或浓缩的目的。 无机陶瓷膜设备性能描述 1、过滤级别

分离精度高,过滤级别可选,处理效果非常稳定,长期运行截留性能无变化,根据客户不同需求,可分别选用不同过滤级别的陶瓷膜管。 2、通量及品质 可维持高通量下的长期稳定运行,所得产品品质优良。一改传统过滤方式过滤的澄明度低、除菌不彻底、无法连续生产、劳动强度大、产品品质低等缺点。 3、抗污染性及截留性能 抗污染能力强,整体为无机材质耐有机物污染以及微生物的侵蚀。截留效果稳定,高温或酸碱介质对其截留效果没有明显影响。 4、耐高温、PH耐受范围宽、抗氧化性能好 陶瓷膜管耐高温性能好,可处理高温液体,并用蒸汽反冲再生和高温原位消毒灭菌。机械强度大,PH适用范围广,耐酸、耐碱、耐有机溶剂及强氧化剂性能好。 5、错流过滤方式,膜污染程度轻、膜性能稳定

陶瓷膜技术的特点

陶瓷膜技术的特点 1 陶瓷膜 陶瓷膜是以无机陶瓷材料经特殊工艺制备而成的非对称膜,呈管状或多通道状,管壁密布微孔,在压力作用下,原料液在膜管内或膜外侧流动,小分子物质(或液体)透过膜,大分子物质(或固体颗粒、液体液滴)被膜截留从而达到分离、浓缩和纯化之目的。 2 陶瓷膜性能指标 支撑体结构:19通道多孔氧化铝陶瓷芯,氧化铝含量大于95% 外形尺寸:膜管外径φ30mm,通道内径φ4mm,管长1015mm 膜材质:氧化锆、氧化铝、氧化钛 膜孔径:0.8μm、0.5μm 、0.2μm、50nm、10 nm 、1nm 爆破压力:60MPa pH适用范围:0~14 膜管烧结温度:大于800度 抗氧化剂性能:优 抗溶剂性能:优 3 陶瓷膜过滤系统的结构优越性 膜孔为刚性且烧结在一起,高压或压力脉冲不会改变微孔尺寸或损坏膜,对于物料的选择筛选具有稳定单一性 · 易于实现全自动化 · 由于是组件设计,易于工业放大 · 操作简单,易于清洗和消毒 · 无需添加溶剂,不会引入其他化学成分,防止二次污染 · 密封件选用硅橡胶或聚四氟乙烯,耐溶剂性好

· 滤孔呈不对称分布,可实现反向冲洗,恢复性能 · 膜材料及辅助设备材料均为无污染材料,可实现GMP规范要求 4 陶瓷膜过滤系统的工艺优越性 · 产品不含固形物,可最大限度的减少离交和吸附工艺中的污染 · 无需助滤剂(如硅藻土等) · 可在低温下操作,保证产品活性 · 可减少后续工艺中有机溶剂的使用量 · 与传统工艺相比,可提高产品收率 · 无相变,低能耗 · 最少的废物排放 · 耐酸耐碱,易于清洗 · 设备系统占地面积小 · 降低投资,劳动力和维修费用 · 仅需消耗水,空气,电和清洁剂 5 无机陶瓷膜与有机膜相比的优越性 · 无机陶瓷膜耐高温性能优于有机膜,在生产过程中可直接用蒸汽或加热灭菌消毒。 · 无机陶瓷膜耐化学腐蚀性好,可使用各种不同的清洗剂进行彻底清洗,膜通量可完全恢复,使用寿命长,可达8年以上 · 无机膜的膜孔分级精细,因而能准确有效地将原液中的某种成分分离,从而达到去除或提取的目的,这是有机膜所做不到的。 6 膜分离技术与萃取技术、离子交换分离技术的比较 · 膜分离技术在常温下操作,无相变,可避免组分受热,不破坏主要成分。 ·膜分离技术在操作过程中不混入其他杂质,避免了萃取过程中有机溶剂的夹带对组分的影响

陶瓷膜知识

陶瓷膜 超滤膜技术与超滤膜设备 1. 综述 超滤膜是利用筛分原理进行分离,它对有机物截留分子量从10000~100000 Dalton可选,适用于大分子物质与小分子物质的分离、浓缩和纯化过程。 从膜分离装置发展过程来看,超滤装置是伴随着反渗透装置的开发而发展起来的。超滤装置可代替传统的板框式、中空纤维式等超滤形式,从而高效、节能、环保的实现物料的过滤分离、纯化、浓缩。 2.超滤技术的应用 早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、乳品工业、饮料工业、医药工业、医疗、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。 3.超滤膜系统的优点 $超滤膜元件用知名公司产品,确保了客户得到目前世界上最优质的有机膜元件,从而确保高截留性能和高膜通量。 $系统回收率高,所得产品品质优良,可实现物料的高效分离、纯化及高倍数浓缩。 $处理过程无相变,对物料中组成成分无任何不良影响,且分离、纯化、浓缩过程中通过冷却系统始终使物料处于常温状态,特别适用于热敏性物质的处理,完全避免了高温对生物活性物质破坏这一弊端,有效保留原物料体系中的生物活性物质及营养成分。 $系统能耗低,生产周期短,与传统工艺设备相比,设备运行费用低,能有效降低生产成本,提高企业经济效益。 $系统工艺设计先进,集成化程度高,结构紧凑,占地面积少,操作与维护简便,工人劳动强度低。$系统制作材质采用卫生级不锈钢,全封闭管道式运行,现场清洁卫生,满足GMP或FDA生产规范要求。$控制系统可根据用户具体使用要求进行个性化设计,结合PLC先进的控制软件,现场在线集中监控重要工艺操作参数,避免人工误操作,多方位确保系统长期稳定运行。 陶瓷膜过滤:超滤膜的孔径范围在:0.01μm—0.05μm;微滤膜的孔径范围在0.05μm——1.4μm 陶瓷膜有点:机械强度大,耐磨性好 孔径分布窄,分离精度高 耐高温,适用于高温过滤过程 使用寿命长,综合成本低,性价比高 浓缩倍数高,降低水使用量,减少浓缩废水排放 PH耐受范围宽,耐酸,耐碱,耐有机溶剂及强氧化剂性能好 易清洗,可高温消毒,反向清洗 GT膜其一是制造过程复杂,成本高,价格昂贵;其二是膜通量问题,只有克服膜污染并提高膜的过滤通量。

陶瓷膜过滤器工作原理

陶瓷膜过滤器工作原理 南京博滤工业设备有限公司 (膜分离事业部Membrane Separation Dept.) 摘要:随着工业技术的不断更新迭代,膜分离应用技术近年来也取得巨大进展,极大提升了社会生产力水平。膜分离技术由于其具有分离效率高、能耗低、过程温和无相变、生产环境清洁等诸多优点,而越来越多的被应用于现代工业生产中物料富集(enrichment)、浓缩(concentration)、纯化(purification)等核心工艺处理过程。根据膜的材料我们可分为有机膜和无机膜,按膜孔径又可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等。本文简单介绍下以陶瓷膜为代表的无机膜材料及其分离器构成与工作原理。 关键词:膜分离技术,无机陶瓷膜,陶瓷膜应用,陶瓷膜过滤,陶瓷膜分离,陶瓷膜过滤设备,陶瓷纳滤膜,陶瓷膜植物提取,陶瓷膜催化剂回收,陶瓷膜分离技术。 1 膜的定义 什么是膜?膜可以被视为两相之间的一个界面、具有选择透过性功能的薄层凝聚物质,它能够以特定的形式来限制和传递两侧流体中各物质的迁移过程。膜本身可以是一种均匀单相或两相以上凝聚物质所构成的复合体,其厚度大都以数微米至0.5mm之间不等。膜必须具有一定的透过性,否则就不能称之为膜。 我们可以认为理想化的膜应当结合了膜层薄、机械强度高、孔径小、耐高温、耐化学腐蚀等诸多优点,但很遗憾,在实际中,材料属性决定,该一系列理想化指标存在相互制约性矛盾,所以世界上并不存在绝对“完美”的膜,而应该结合具体工艺工况,通过对物料反复试验对比,确定采用何种最适合膜孔径,以及采取何种预处理,有时还需结合其它化学或物理辅助工艺等,这样最终优化、设计出一套最适合该工况的膜分离系统。 这对膜厂商的理论专业性、应用经验、工匠精神,以及严谨态度都提出了极高的要求。 0.0001 0.001 0.01 0.1 1 10 100μm 图1.1 膜分离实用范围过滤谱图 2 什么是陶瓷膜 2.1陶瓷膜是采用高纯度α-Al2O3在高温条件下烧制而成,具有筛分过滤作用的多孔固体连续介质。南京博滤工业无机陶瓷膜呈不对称结构,由三层组成:支撑层、过渡层和分离层。

湿法冶金工艺中的除油技术

湿法冶金工艺中的除油技术 摘要:湿法冶金生产过程中,通常都会使用混合澄清槽、离心萃取器、萃取塔 等设备来实施大规模连续萃取及两相的混合与分离。这种生产工艺通过设备分离 后的水相溶液会含有一定量的油相,因为普通的萃取剂有着一定的亲水性,所以 不仅会导致大颗粒油无法及时澄清,而且也会有少量油以稳定的乳化态或者是溶 解态留在料液中。如果不能及时有效的清除水相中夹杂的油,就会增加萃取剂的 浪费,甚至也会影响到后续工艺的正常生产,从而影响冶金产品的质量。另外残 留在水相中的油也会在废水中积累,最终会给污水处理工作带来不利影响,鉴于此,笔者从油相组成及形成原因出发,针对湿法冶金工艺中的出油技术进行研究 分析,以供参考。 关键词:湿法冶金;溶剂萃取;除油技术 1油相组成及形成原因 溶剂萃取水相中的油相组分更加复杂,水相夹带的油不是单纯的萃取剂油相 残留,而是含有多种萃合物的复杂有机成分,所以萃取体系除油需要从油相的组 成着手进行研究。 湿法冶金中常用的萃取剂按酸碱性可分为酸性、碱性及中性萃取剂。在酸性 萃取体系中,酸性磷类萃取剂、螯合类萃取剂和羧酸型萃取剂的萃取都是通过萃 取剂中活性基团上的阳离子与料液中的金属阳离子发生交换实现的,萃合物为含 金属阳离子的萃取剂大分子。萃取体系水相中夹带的油相的主要成分是未萃取的 萃取剂分子、稀释剂、极性改性剂及萃合物。萃取剂在长期使用后会存在一定程 度的降解,所以水相夹带的油相组分中还有微量的长碳链有机物分子。其中,酸 性磷类萃取剂的功能基团是以P为中心原子的基团,按路易斯酸碱理论属于硬酸,而H?0属于硬碱,二者具有一定亲和力,容易形成配合物,所以萃取剂具有一定 的亲水性。该体系中的溶解油含量不容忽视。 中性萃取剂的萃合物都以中性分子形式与萃取剂结合。萃取过程是金属阳离 子与配体阴离子生成配合物大分子,再与萃取剂分子结合生成萃合物。该萃取体 系中夹带的油相中所含的是配合物大分子、萃取剂、少量稀释剂及改性剂。 碱性萃取剂的萃取是以离子缔合形式实现。萃取时金属以配阴离子形式存在 于溶液中,萃取剂与质子或水合成质子形成大阳离子,两者构成疏水性离子缔合体。常用的该类萃取剂以N263、N235为代表,其功能基团是以N为中心原子的 基团,属于硬酸,也会与属于硬碱的H?O形成配合物。同样会有相当一部分萃取 剂以溶解油形式存在于水相中。 2常用除油方法 2.1生化处理法 生化处理法是一种新兴的末端除油方法,是利用微生物的代谢作用分解有机 污染物使油相降解实现除油。 目前比较成熟的生物处理法有活性污泥法和生物膜法。活性污泥法是利用活 性污泥中的微生物对有机物的富集作用实现深度除油,但生物处理法对进水水质 要求较高,要求水质、水量稳定,波动小。生物膜法是利用膜反应器比表面积较 大的原理将微生物附着于填充料表面,在废水流经填充物时,利用微生物富集水 中的有机物并使其降解而实现除油。生物膜法处理效率较高、基建费用稍低,但

关于陶瓷膜过滤器在××化工应用情况的考察报告

关于陶瓷膜过滤器在××化工应用情况的考察报告 公司领导: 200×年2月到山东××化工考察陶瓷膜过滤器的实际应用情况,具体如下: ××化工于200×年10月份开始正式将陶瓷膜过滤器应用于一次盐水工序,用来过滤盐水精制过程中产生的氢氧化镁、碳酸钙及其他不溶杂物。这是一个新的盐水制备工艺,可以取代传统盐水工艺的道尔桶、砂滤器,或者取代浮上澄清桶、戈尔膜过滤器。 该工艺简单流程为:从化盐桶出来的饱和盐水添加碳酸钠、氢氧化钠后进入反应桶,经过充分反应进入粗盐水循环槽,然后用泵(流量为盐水应用量的2.5倍)输送到陶瓷膜过滤器,过滤压力大于0.4MPa,粗盐水经三级过滤逐步被浓缩到原流量的60%,而后送到厢式压滤机滤掉盐泥,滤液返回粗盐水循环槽。陶瓷膜过滤器滤出的盐水即为精制盐水,质量指标固型物含量可以达到0.5ppm,化学分析法不能测定其含量,完全满足离子膜盐水的要求。过滤装置另外配备有定时反冲管路和酸洗系统,以便除去陶瓷膜表面的内部积存的钙镁沉淀。 与传统的道尔桶工艺和新型的浮上桶加戈尔膜过滤器工艺相比,陶瓷膜过滤器有占地少、设备数量少、安装简单的有点。按其盐水质量来讲,只有浮上桶加戈尔膜过滤器工艺可以互相对比,戈尔膜过滤器工艺设备庞大、操作复杂。陶瓷膜过滤器操作相对简单一点。 ××化工应用陶瓷膜过滤器是与南京JW公司合作的,陶瓷膜过滤器原本是用于医药行业的成熟的过滤器,用于氯碱盐水精制方面特别是海盐条件下,在××还是第一家应用。据××化工负责陶瓷膜过滤器的王工程师介绍,JW公司最初只是提供了一个简单的工艺流程图,由××公司进行的工艺设计和安装。投入使用后相继发现了一些重大问题,并逐步解决,目前已经接近于成功应用。主要问题和解决方法是: 1过滤通量严重下降:初始状态下,滤后盐水指标非常优秀,过滤通量也能达到要求,但是随后几天内,盐水通量快速下降,最低仅达到设计值的一半。经分析认为是有机物封堵陶瓷膜过滤微孔的原因。因此,××公司在盐水精致反应过程中加入了次氯酸钠,以便消除有机物的影响。添加次氯酸钠后,过滤通量得到了恢复。 2陶瓷管与管板花盘密封问题:开车后不久,就出现了花盘与陶瓷管之间密封不好,容易使粗盐水与精盐水相混合。原花盘采用的是不锈钢衬氟塑料材质,更换为钛花盘后解决了密封问题。 3封头与桶体材质问题:陶瓷膜过滤器原本是用于医药行业的,大量使用不锈钢材料做桶体与封头,但是久吾公司没有氯碱行业经验,不知道盐水不宜采用不锈钢,特别是添加次氯酸钠后,对初始采用的不锈钢材料有较大的腐蚀,后来采用了钢衬PO塑料的材料解决了这个问题。 4控制系统问题:JW公司提供了反冲和酸洗的自动控制系统,采用了PLC系统,但是盐水工序毕竟是一个系统工序,涉及到前面化盐、粗盐水输送的变频控制等要素,所以最初的P LC系统不能满足要求,××公司自己做了一套DC S系统,用于控制整个盐水装置。久吾公司也改进了P LC系统,并预留了接口用于离子膜控制系统。 5工艺管路多次改进,在整个实验过程中,××公司对工艺管路做了多次改进,并添加了不少自动控制阀门,以防止人为操作对过滤器造成的破坏。 6陶瓷膜管折断:在运行三个月后,发现盐水混浊,可以断定有膜管破碎现象。经查在第一级和第三季过滤器中,各有一个过滤器膜管折断,其中一个竟有8支膜管折断。经分析认为,这是酸洗操作完成后,进水阀门(手动)开的过急造成的气锤效应而使膜管折断,并且这两个阶段均为盐水上行阶段,因此这个工艺有必要进行改进,以防止类似情况再次发生。 7陶瓷膜管端面被严重冲刷:在检查膜管折断过程中发现端面向下的膜管端面被盐水严重冲刷,端面凹凸不平,有个别地方冲刷很深,在下端面管箱中发现大量铁锈片。分析认为是盐水管路被腐蚀,表面的锈片脱落进入过滤器,对端面造成的冲击是主要原因,另外盐水中的大量机械杂质也会对端面造成冲刷。为此,JW公司在膜管端面加装了钛防护片,以期解决这个问题。目前××公司正在对设备进行检修,更换冲刷严重的膜管和折断的膜管,安装钛防护片,其效果还要等到运行后才能知道。 上述问题是遇到的比较大的问题,现在基本已经解决。 与戈尔膜过滤器相比,陶瓷膜过滤器明显的缺点有:一是过滤通量小,仅有40%,也就意味着粗盐水泵需要以正常流量的2.5倍流量来选型,相应的动力消耗也会因此而增加;二是工艺上虽然可行,但是技术上还有一些具体问题需要解决,在实际应用过程中还会遇到许多意想不到的问题,就是说,这个工艺还不是一个成熟的工艺;三是膜管寿命还没有得到验证,毕竟现在还是处于实验阶段。 与戈尔膜过滤器相比,陶瓷膜过滤器明显的优点有:一是占地面积小,施工周期短;二是工艺流程简单、操作简便,没有戈尔膜过滤器分步处理那么复杂,同时取代了浮上桶和戈尔膜过滤器,而浮上桶和戈尔膜过滤器操作也都很复杂;三是投资相对较省,按照目前钢材价格来看,一套10万吨盐水过滤装置需要300万左右,可节约投资30万元左右,比去年节约量大幅度减小,这是因为钢材价格下降、

陶瓷膜分离技术在中药口服液中的应用

陶瓷膜分离技术在中药口服液中的应用 中药现代化的重要内容之一就是生产过程中的提取浓缩、分离纯化等关键单元技术的现代化,以下是为大家搜集的一篇探究陶瓷膜分离技术在中药口服液中应用的,供阅读参考。 清脑复神液收载于卫生部颁布的药品标准中药成方制剂第九册(WS3-B-1838-94),是 由人参、黄芪、鹿茸、菊花、黄柏、山楂等药材组成的纯中药口服液,具有清心安神、化痰醒脑、活血通络的功效,临床用于治疗神经衰弱、失眠、顽固性头痛,脑震荡后遗症所致头痛、眩晕、健忘、失眠等症[1].目前,其精制工艺为静置15d,该工艺存在生产工时长,生产成本高,生产效率低等缺点。 膜分离技术是以选择性透过膜为分离介质,以外界能量或化学位差为推动力,对混合物中特定组分实现分离、提纯和浓缩的分离技术,具有操作过程简单、节能、无相变、无污染等优点,已广泛用于食品、化工、生物、制药等领域[2-4].近年来,膜分离技术也广 泛应用于中药口服液的研究与生产中[5-7].然而在实际操作过程中,由于中药提取液组分 复杂,往往含有较多的杂质成分,直接运用膜分离技术会造成膜污染加剧,从而引起的膜通量显着下降[8-11]. 清脑复神液的溶剂为10%~20%乙醇,对有机膜材质有一定的溶蚀性能,故本实验采用陶瓷膜分离技术,对其精制工艺进行再评价研究。并用活性炭吸附的方法对滤过前药液进行预处理,以减少对陶瓷膜的污染,同时对滤过压力、温度、药液收集量等进行考察,优化滤过工艺参数。以解决清脑复神液目前生产工时长、生产成本高、生产效率低等问题,为陶瓷膜分离技术在中药口服液中的应用提供示范性研究。 1仪器与试药 FA2004分析电子天平,上海良平仪器仪表有限公司;DZF-6050A真空烘干箱,北京 中兴伟业仪器有限公司;HH-S6电热恒温水浴锅,北京科伟永兴仪器有限公司;APLD-90液 体搅拌机90D,广州市安培力机械制造有限公司;UV230II高效液相色谱仪,大连依利特分 析仪器有限公司;YT600-1J蠕动泵,保定兰格恒流泵有限公司;UV2300紫外可见分光光度计,上海美谱达仪器有限公司;陶瓷膜,50、100、200nm,江苏久吾高科技股份有限公司; 耐震压力表,成都天威仪表厂。 活性炭(批号20120927)、十二烷基苯磺酸钠(批号2014093001)、次氯酸钠(批号2014122301)、氢氧化钠(批号2014090201),成都市科龙化工试剂厂;盐酸小檗碱对照品(质量分数>98%,批号110713-201212)、芦丁对照品(批号100080-200707,质量分 数>98%),均购自中国食品药品检定研究院;清脑复神液浸渍提取液,由实验室依据清脑

湿法冶金技术复习思考题与习题

电解工艺学湿法冶金复习思考题和习题 1、湿法冶金与火法冶金的主要区别是_前者先溶矿石后提取(单质或化合物),后者在高温下干法提取,一般是还原得金属单质,部分是通过升华等方法得到化合物。 2、湿法冶金又叫化学冶金,是从矿物溶解液中提取金属或化合物的冶金技术。 3、中国最早的冶金应用是胆矾法,即用铁从_铜矿的坑道积水中置换_铜。 4、拜尔法从铝土矿生产Al2O3,主要的浸取反应是_Al2O3+2NaOH=2NaAlO2+H2O_。含铁较高的铝土矿采用_高温焙烧_(方法)作预处理,可以抑制氧化铁的分解,减小沉淀量。 (三)选择题 1、拜尔法溶解铝土矿的反应是利用了铝的下列哪一性质: A.配位性B.两性C.难溶性D.氧化还原性 (四)计算题 1、某铜矿含可浸性铜3.0%,工业硫酸浓度为98%,若工艺要求为: 摩尔比n(H2SO4):n(Cu)=3:1 固液比(质量) 固体:稀硫酸=1:2.5 求:处理1吨毛矿要加多少kg浓硫酸和多少kg水。 解:设1000kg原矿需浓硫酸x kg x=1000*0.03/63.55*3*98/0.98=141.6(kg) 加水:1000*2.5-141.6=2358.4(kg) (浸矿硫酸浓度约为1000*0.03/63.55*3*98/2500*100%=5.55%) 第二章化学基础理论 (一)思考题 1、化学反应的方向如何判断(自发反应的方向是△G<0的方向),为什么说化学热力学可以判断反应方向和限度(当反应的△G<0时,反应可以自发进行,反之则不能进行或逆向进行,当反应达平衡时,反应的平衡浓度商等于平衡常数,自由能变化和平衡常数都是可以根据热力学数据计算得到的,因此,可以说。。。。。。),化学动力学可以判断反应的可能性(热力学是根据反应的始末状态数据来判断反应的方向和限度的,但在热力学上证明可以发生的反应,实际中并不一定会发生,因为反应实际能否进行不仅取决于始末态数据,主要还由反应历程决定,反应的活化能的大小决定,而这些问题的研究是由反应动力学来解决的)。 2、哪些因素影响水的稳定性?(水的稳定性由水溶液的电位决定,如果电位太高,水就可能被氧化出氧气,如果电位太低,水就可能被还原出氢气,当然温度也影响着电极电位的大小,也影响水的稳定性)哪些因素影响溶液的电位?(半反应中各成分的浓度,与反应有关的沉淀剂浓度、酸碱度、络合剂浓度,温度等) 3、pH-电位图中的垂线、斜线、水平线各表示什么意思?(见书的介绍) 4、在酸性、碱性、中性溶液中,最容易析出氧气的溶液环境是哪种?(电位较高的溶液环境,尤其是溶液pH值较高的环境,当溶液状态在氧线以上时可能析出氧气)最容易析出氢气的溶液环境是哪种?(电位较低的溶液环境,尤其是酸度较高的环境,当溶液状态在氢线以下时可能析出氢气) 5、试述溶度积规则的内容。(在沉淀溶解平衡中,当构成沉淀的构晶离子的浓度幂的乘积大于Ksp时,将有沉淀析出,平衡向生成沉淀的方向移动;当乘积小于Ksp时,将有沉淀溶解,平衡向沉淀溶解方向移动,如果体系中没有沉淀,则溶液始终不会达到平衡;当乘积等于Ksp时,体系中沉淀和构晶离子浓度达成平衡,不会有沉淀的析出,也不会有沉淀的

陶瓷膜反应分离技术在精细化工领域中的应用

陶瓷膜反应分离技术在精细化工领域中的应用 邢卫红陈日志张利雄徐南平 (南京工业大学化工学院、江苏省材料化学工程重点实验室、南京工业大学) 一、膜反应器发展概况 早在上个世纪60 年代末,Michaels 就提出:若将具有分离功能的膜应用于化学工程,即把膜与反应器合于一体,同时兼有反应与分离功能的膜反应技术,可节省投资,降低能耗,提高收率,必将会产生新的化工过程。 膜反应器技术首先在研究开发相对成熟的有机膜领域得到实施,有机膜固有的一些特性决定了这一应用仅局限于条件较为温和的均相催化和生物体系。自上世纪80 年代中期,随 着无机膜特别是具有性质稳定的无机膜的开发,为膜在苛刻条件下的应用开辟了途径。因无机膜具有高温下的长期稳定性、对酸碱的优良化学稳定性、高压下的机械稳定性以及寿命长等一些优点,无机膜反应器的开发引起了众人的关注。 目前,无机膜反应器的大多数研究主要针对气相反应,而针对液相反应过程的研究还比 较少。液相无机膜反应器中,无机膜主要为多孔性膜,如丫-Al 2Q、a -Al 2Q、TQ2、ZrO2等 或以多孔性膜为支撑层的致密金属膜,如Pd/ a -Al 203复合膜。膜在系统中的作用主要可归 纳为:分离产物、催化剂的载体、分离回收催化剂、气液分布器、液体微量分布器等。所使用的催化剂可以悬浮在液相中,也可以通过离子交换、表面浸渍、有机金属化学蒸汽沉积等方法负载在膜的表面上8 催化剂或以颗粒形式均匀分布在膜上或以薄膜的形式附在多孔膜支撑体上9 或浸入膜孔内。催化剂负载在膜上可以避免催化剂分离回收的难题,但这不利于催化剂的高效使用。催化剂处于悬浮态的无机膜反应器中,反应器与膜组件的耦合有两种方式:分置式、一体式,如图1、图 2 所示。

相关主题
文本预览
相关文档 最新文档