当前位置:文档之家› 高中物理-卫星变轨问题

高中物理-卫星变轨问题

2018_2019学年高中物理第三章万有引力定律及其应用微型专题4卫星变轨问题和双星问题学案粤教版必

微型专题4 卫星变轨问题和双 星问题 知识目标核心素养 1.会分析卫星的变轨问题,知道卫星变轨 的原因和变轨前后卫星速度的变化. 2.掌握双星运动的特点,会分析求解双星 运动的周期和角速度. 1.掌握卫星变轨的实质及蕴含的思想方法. 2.掌握“双星”的特点,建立“双星”问题 模型. 一、人造卫星的发射、变轨与对接 1.发射问题 要发射人造卫星,动力装置在地面处要给卫星一很大的发射初速度,且发射速度v>v1=7.9 km/s,人造卫星做离开地球的运动;当人造卫星进入预定轨道区域后,再调整速度,使F引=F向,即G Mm r2 =m v2 r ,从而使卫星进入预定轨道. 2.卫星的变轨问题 卫星变轨时,先是线速度v发生变化导致需要的向心力发生变化,进而使轨道半径r发生变化. (1)当卫星减速时,卫星所需的向心力F向=m v2 r 减小,万有引力大于所需的向心力,卫星将做

近心运动,向低轨道变迁. (2)当卫星加速时,卫星所需的向心力F 向=m v 2 r 增大,万有引力不足以提供卫星所需的向心力, 卫星将做离心运动,向高轨道变迁. 以上两点是比较椭圆和圆轨道切点速度的依据. 3.飞船对接问题 (1)低轨道飞船与高轨道空间站对接如图1甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接. 图1 (2)同一轨道飞船与空间站对接 如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度. 例1 如图2所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( ) 图2 A .卫星在轨道3上的速率大于在轨道1上的速率 B .卫星在轨道3上的周期大于在轨道2上的周期 C .卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率 D .卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 答案 B 解析 卫星在圆轨道上做匀速圆周运动时有: G Mm r 2=m v 2 r ,v =GM r 因为r 1<r 3,所以v 1>v 3,A 项错误. 由开普勒第三定律知T 3>T 2,B 项正确. 在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.

第七章 卫星变轨问题和双星问题—人教版(2019)高中物理必修第二册检测

卫星变轨问题和双星问题 课后练习题 一、选择题 1. 1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( ) 图1 A.v 1>v 2,v 1=GM r B.v 1>v 2,v 1> GM r C.v 1<v 2,v 1=GM r D.v 1<v 2,v 1> GM r 答案 B 解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,由GMm r 2=m v 2 r 可知,过近地点做 匀速圆周运动的速度为v =GM r ,由于“东方红一号”在椭圆轨道上运动,所以v 1>GM r ,故B 正确. 2.(2019·北京市石景山区一模)两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大

B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等 答案 C 解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律有: G m 1m 2L 2=m 1ω2r 1,Gm 1m 2L 2 =m 2ω2r 2,其中r 1+r 2=L 故r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,故v 1v 2=r 1r 2=m 2m 1 故质量大的天体线速度较小,故A 错误. 3.(2019·定州中学期末)如图2,“嫦娥三号”探测器经轨道 Ⅰ 到达P 点后经过调整速度进入圆轨道 Ⅱ,再经过调整速度变轨进入椭圆轨道Ⅲ,最后降落到月球表面上.下列说法正确的是( ) 图2 A.“嫦娥三号”在地球上的发射速度大于11.2 km/s B.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速 C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度 D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等 答案 D 4. 如图3所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道正常运行时,下列说法中不正确的是( )

2021年卫星变轨问题错解分析(典型例题详细解析)

卫星变轨问题易错题分析 欧阳光明(2021.03.07) 一、不清楚变轨原因导致错解 分析变轨问题时,首先要让学生弄明白两个问题:一是物体做圆周运动需要的向心力,二是提供的向心力。只有当提供的力能满足它需要的向心力时,即“供”与“需”平衡时,物体才能在稳定的轨道上做圆周运动,否则物体将发生变轨现象——物体远离圆心或靠近圆心。当卫星受到的万有引力不够提供卫星做圆周运动所需的向心力时,卫星将做离心运动,当卫星受到的万有引力大于做圆周运动所需的向心力时卫星将在较低的椭圆轨道上运动,做近心运动。导致变轨的原因是卫星或飞船在引力之外的外力,如阻力、发动机的推力等作用下,使运行速率发生变化,从而导致“供”与“需”不平衡而导致变轨。这是卫星或飞船的不稳定运行阶段,不能用公式分析速度变化和轨道变化的关系。 例一:宇宙飞船和空间站在同一轨道上运动,若飞船想与前面的空间站对接,飞船为了追上轨道空间站,可采取的方法是() A.飞船加速直到追上空间站,完成对接 B.飞船从原轨道减速至一个较低轨道,再加速追上空间站完成对接 C.飞船加速至一个较高轨道再减速追上空间站完成对接 D.无论飞船采取何种措施,均不能与空间站对接

错解:选A 。错误原因分析:不清楚飞船速度变化导致"供"与"需"不平衡而导致出现变轨。 答案:选B 。分析:先开动飞船上的发动机使飞船减速,此时万有引力大于所需要的向心力,飞船做近心运动,到达较低轨 道时,由222()Mm G m r r T π=得2T =小于空间站的周期,飞船运行得要比空间站快。当将要追上空间站时,再开动飞船上的发动机让飞船加速,使万有引力小于所需要的向心力而做离心运动,到达空间站轨道而追上空间站,故B 正确。如果飞船先加速,它受到的万有引力将不足以提供向心力而做离心运动,到达更高的轨道,这使它的周期变长。这样它再减速回到空间站所在的轨道时,会看到它离空间站更远了,因此C 错。 二、不会分析能量转化导致错解 例二:人造地球卫星在轨道半径较小的轨道A 上运行时机械能为E A ,它若进入轨道半径较大的轨道B 运行时机械能为E B ,在轨道变化后这颗卫星() A .动能减小,势能增加,E B >E A B .动能减小,势能增加,E B =E A C .动能减小,势能增加,E B <E A D .动能增加,势能增加, E B >E A

2020高考物理卫星变轨与航天器对接问题(解析版)

2020年高考物理备考微专题精准突破 专题2.8 卫星变轨与航天器对接问题 【专题诠释】 人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论. 1.变轨原理及过程 (1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上. (2)在A点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ. (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ. 2.物理量的定性分析 (1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.因在A点加速,则v A>v1,因在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B. (2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同.同理,从轨道Ⅱ和轨道Ⅲ上经过B点时加速度也相同. (3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由 开普勒第三定律a3 T2=k可知T1<T2<T3. (4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3. 【高考领航】 【2019·江苏高考】1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动。如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G。则()

A .v 1>v 2,v 1= GM r B .v 1>v 2,v 1> GM r C .v 1 GM r 【答案】 B 【解析】 卫星绕地球运动,由开普勒第二定律知,近地点的速度大于远地点的速度,即v 1>v 2。若卫星以近地点时距地心的距离为半径做圆周运动,则有GMm r 2=m v 2近 r ,得运行速度v 近= GM r ,由于卫星沿椭圆轨道运动,在近地点所需向心力大于万有引力,故m v 2 1r >m v 2近 r ,则v 1>v 近,即v 1> GM r ,B 正确。 【2017·高考全国卷Ⅲ】2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行.与天宫二号单独运行时相比,组合体运行的( ) A .周期变大 B .速率变大 C .动能变大 D .向心加速度变大 【答案】C 【解析】组合体比天宫二号质量大,轨道半径R 不变,根据GMm R 2=m v 2 R ,可得v = GM R ,可知与天宫二号单独运行时相比,组合体运行的速率不变,B 项错误;又T =2πR v ,则周期T 不变,A 项错误;质量变大、 速率不变,动能变大,C 项正确;向心加速度a =GM R 2,不变,D 项错误. 【技巧方法】 1.从引力和向心力的关系分析变轨问题 (1)卫星突然加速(通过发动机瞬间喷气实现,喷气时间不计),则万有引力不足以提供向心力,GMm r 2<m v ′2 r , 卫星将做离心运动,变轨到更高的轨道. (2)当卫星突然减速时,卫星所需向心力减小,万有引力大于向心力,卫星变轨到较低的轨道. 2.变轨问题考查的热点 (1)运动参量的比较:两个轨道切点处,加速度由GMm r 2=ma 分析,式中“r ”表示卫星到地心的距离,a 大小 相等;由于变轨时发动机要点火工作,故线速度大小不等. (2)能量的比较:在离心运动过程中(发动机已关闭),卫星克服引力做功,其动能向引力势能转化,机械能保持不变.两个不同的轨道上(圆轨道或椭圆轨道),轨道越高卫星的机械能越大. 【最新考向解码】

人教版高中物理必修二人造卫星变轨问题专题

人造卫星变轨问题专题 一、人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是确定的。如果卫星的质量也确定,那么与轨道半径r 对应的卫星的动能E k (由线速度大小决定)、重力势能E p (由卫星高度决定)和总机械能E 机(由能量转换情况决定)也是确定的。一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 在高中物理中,会涉及到人造卫星的两种变轨问题。 二、渐变 由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。 解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。 由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r m v 2 减小了,而万有引力大小2 r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。 由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,该过程有部分机械能转化为内能(摩擦生热),因此卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引力做的正功远大于克服大气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。 根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。 再如:有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。如果这个结论正确,那么恒星、行星将发生离心现象,即恒星到星系中心的距离、行星到恒星间的距离都将逐渐增大,宇宙将膨胀。 三、突变 由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。 如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间 内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行 到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将 速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。 v 2 v 3 v 4 v 1 Q P Ⅰ Ⅲ Ⅱ

人造卫星基本原理

人造卫星的基本原理 参考、摘录自——王冈 曹振国《人造卫星原理》 一、关于椭圆轨道 在地球引力的作用下,要使物体环绕地球作圆周运动,那么必须使得物体的速度达到第一宇宙速度。如果卫星所需的向心力恰好和其所受万有引力相等,则它将作圆周运动。若其所需向心力大于地球引力,这是物体的运动轨迹就变成椭圆轨道了。物体的速度比环绕速度(作圆周运动时的速度)大得越多,椭圆轨道就越“扁长”,直到达到第二宇宙速度,物体便沿抛物线轨道飞出地球引力场之外。 因为发射卫星和飞船时,入轨点的速度控制不可能绝对精确,速度大小的微小偏离,和速度方向与当地的地球水平方向间的微小偏差,都会使航天器的轨道不是圆形二是椭圆形,椭圆扁率取决于入轨点的速度大小和方向。 二、卫星运动轨道的几何描述 尽管开普勒定律阐明的是行星绕太阳的轨道运动,它们可以用于任意二体系统的运动,如地球和月亮,地球和人造卫星等。 假定地球中心O 在椭圆的一个焦点上 a ——椭圆的半长轴 b ——椭圆的半短轴 >11.2km/s-抛物线 >16.7km/s-双曲线

c e ——偏心率 a c e = P e ——近地点 A p ——远地点 P ——半通径)1(2 2 e a a b P -== Y w ——轴与椭圆交点的坐标 f ——真近点角,近地点和远地点之间连线与卫星向径之间的夹角 E ——偏近点角 只要知道了卫星运行的椭圆轨道的几个主要参数:a ,e 等,卫星在椭圆轨道上任一点(r )处的速度就可以计算出来: )12( a r v - = μ 其中2μ=GM (地心万有引力常数) 椭圆轨道上任一点处的向径r 为:)cos 1(E e a r -= 近地点向径:)1(e a r p -= 远地点向径:)1(e a r A += 所以,近地点r 最小,卫星速度最大e e a v -+? = 112 μ 远地点r 最大,卫星速度最小e e a v +-? = 112 μ 卫星或飞船入轨点处的速度,通常就是近地点的速度,这个速度一般要比当地的环绕速度要大;而椭圆轨道上远地点速度则比当地的环绕速度要小。 圆形轨道可以看成椭圆轨道的特殊情况。即a=b=r ,所以 r GM r v = = 2 μ A

高中物理卫星变轨问题分析

高中物理卫星变轨问题分析 1.如图1所示,“嫦娥三号”探测器发射到月球上要经过多次变轨,最终降落到月球表面上,其中轨道Ⅰ为圆形轨道,轨道Ⅱ为椭圆轨道.下列说法正确的是( ) 图1 A .探测器在轨道Ⅰ运行时的加速度大于月球表面的重力加速度 B .探测器在轨道Ⅰ经过P 点时的加速度小于在轨道Ⅱ经过P 点时的加速度 C .探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期 D .探测器在P 点由轨道Ⅰ进入轨道Ⅱ必须点火加速 答案 C 解析 探测器在轨道Ⅰ运行时的万有引力小于在月球表面时的万有引力,根据牛顿第二定律,探测器在轨道Ⅰ运行时的加速度小于月球表面的重力加速度,故A 错误;根据万有引力提 供向心力有GMm r 2=ma ,距地心距离相同,则加速度相同,故探测器在轨道Ⅰ经过P 点时的加速度等于在轨道Ⅱ经过P 点时的加速度,故B 错误;轨道Ⅰ的半径大于轨道Ⅱ的半长轴,根据开普勒第三定律,探测器在轨道Ⅰ的运行周期大于在轨道Ⅱ的运行周期,故C 正确;探测器在P 点由轨道Ⅰ进入轨道Ⅱ必须减速,故D 错误. 2.(多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( ) A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间 B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加 C .如不加干预,天宫一号的轨道高度将缓慢降低 D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 答案 BC 解析 地球所有卫星的运行速度都小于第一宇宙速度,故A 错误.轨道处的稀薄大气会对天宫一号产生阻力,如不加干预,其轨道会缓慢降低,天宫一号的重力势能一部分转化为动能,故天宫一号的动能可能会增加,B 、C 正确;航天员受到地球引力作用,此时引力充当

高一物理必修二第六章 专题强化4 卫星变轨问题和双星问题---学生版

专题强化4 卫星变轨问题和双星问题--学生版 [学习目标] 1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度. 一、人造卫星的变轨问题 1.变轨问题概述 (1)稳定运行 卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mm r 2=m v 2r . (2)变轨运行 卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化. ①当卫星减速时,卫星所需的向心力F 向=m v 2 r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁. ②当卫星加速时,卫星所需的向心力F 向=m v 2 r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁. 2.实例分析 (1)飞船对接问题 飞船与在轨空间站对接 先使飞船位于较低轨道上,然后让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道飞船完成对接(如图1甲所示). 注意:若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道. 通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙. 图1

(2)同步卫星的发射、变轨问题 如图2所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心 运动进入椭圆轨道2,在P 点点火加速,使其满足GMm r 2=m v 2r ,进入同步圆轨道3做圆周运动. 图2 例1 (2019·通许县实验中学期末)如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( ) 图3 A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的周期大于在轨道2上的周期 C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率 D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度 针对训练 (多选)(2019·定远育才实验学校期末)航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( ) 图4 A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度 B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨 问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-

人造卫星变轨问题专题 (一) 人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。 轨道半径r 确定后,与之对应的卫星线速度 r GM v = 、周期 GM r T 3 2π =、向心加速度2r GM a =也都是唯一确定的。如果卫星的质 量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。一旦卫星发生了变轨,即轨道半径 r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情 况决定)。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 (二) 常涉及的人造卫星的两种变轨问题 1. 渐变 由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄 大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。这种变轨的起因是阻力。阻力对卫星做负功,使卫星速 度减小,卫星所需要的向心力r mv 2减小了,而万有引力2 r GMm 的 大小没有变,因此卫星将做向心运动,即轨道半径r 将减小。 由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。

高考物理专题复习:人造卫星变轨问题专题

高考物理专题复习: 人造卫星变轨问题专题 随着我国航天事业的蓬勃发展,高考对天体运动及宇宙航行的考查也逐渐成热点,然而在复习中许多同学对于万有引力在天体运动中的运动仍有许多困惑,其中有不少同学对于人造卫星的变轨问题模糊不清,在此针对上述问题,将个人在卫星变轨问题上的处理与同行共享,希望能够对二轮复习有所帮助,不妥之处,还望指正。 一、人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是确定的。如果卫星的质量也确定,一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。同理,只要上述物理量之一发生变化,另外几个也必将随之变化。 二、在高中物理中,会涉及到人造卫星的两种变轨问题。 1、渐变 由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。 解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。 如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。 由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r m v 2 减小了,而万有引力大小2r GMm 没有变,因此卫星将做向心运动,即半径r 将减

2015年高考物理拉分题专项训练 专题13 卫星变轨问题分析(含解析)

2015年高考物理拉分题专项训练 专题13 卫星变轨问题分析(含解析) 一、人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是确定的。如果卫星的质量也确定,那么与轨道半径r 对应的卫星的动能E k (由线速度大小决定)、重力势能E p (由卫星高度决定)和总机械能E 机(由能量转换情况决定)也是确定的。一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 在高中物理中,会涉及到人造卫星的两种变轨问题。 二、渐变 由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢, 卫星每一周的运动仍可以看做是匀速圆周运动。 解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星 的其他相关物理量如何变化。 如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。如果不及时进 行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。 由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r m v 2 减小了,而万有引力大小2 r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。 由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能 E p 将减小,该过程有部分机械能转化为内能(摩擦生热),因此卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引力做的正功远大于克服大气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。 根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。 再如:有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。如果这个结论 正确,那么恒星、行星将发生离心现象,即恒星到星系中心的距离、行星到恒星间的距离都将逐渐增大,宇宙将膨胀。

3.《人造卫星 宇宙速度》教案

4.人造卫星宇宙速度 【教学目标】 1.知识与技能 (1)简单了解航天发展史,了解人造卫星的有关知识 (2)分析人造卫星的运动规律,能用所学知识求解卫星基本问题。 (3)掌握三个宇宙速度的物理意义,会推导第一宇宙速度 2.过程与方法 (1)培养学生在处理实际问题时,如何构建物理模型的能力 (42)学习科学的思维方法,培养学生归纳、分析和推导及合理表达能力。 3.情感态度与价值观 介绍世界及我国航天事业的发展现状,激发学习科学,热爱科学的激情,增强民族自信心和自豪感。 【教学重点】 1、对宇宙速度的理解,第一宇宙速度的推导。 2、根据万有引力提供人造卫星做圆周运动的向心力的进行相关计算 【教学难点】 对运行速度及发射速度的理解与区分。学习本节要注意抓住人造卫星运动特点,结合圆周运动知识及万有引力定律进行综合分析。 【教学方法】 把握几个典型问题,掌握解决问题的一般方法 【教学过程】 第一课时 一、引入课题 仰望星空,浩瀚的宇宙苍穹给人以无限遐想,千百年来,人类一直向往能插上翅膀飞出地球,去探索宇宙的奥秘,李白的“俱怀逸兴壮思飞,欲上青天揽明月”是怎样的一种豪情?到今天这一梦想实现了吗? 世界上第一颗人造卫星的发射,揭开了人类探索宇宙的新篇章。 二、新课 1.简介人造卫星的发展史 世界上第一颗人造卫星是哪一年由哪一国家发射的?我国哪一年发射了自己的人造卫星?迄今我国共发射了多少颗人造卫星?(从1970年4月24日东方红一号的成功发射,到2007年10月24日嫦娥一号发射,我国发射人造卫星和其他探测器60多个,他们分别在通信,气象,探测,导航等多个领域发挥着重要作用) 通过展示图片介绍我国发射人造卫星的基本情况,包括数量,种类,用途。 2.人造卫星的规律 (1)定性分析人造卫星的运行规律 问:现在我们地球上空有这么多卫星,他们运行的速度一样吗?他们是怎样被发射升空的? 观察:我国目前发射的部分卫星的运行规律的数据(见下表): 思考:(1)不同卫星的其运行轨道相同吗? (2)不同的卫星运行时有什么规律? (3)你能试着用你学过的知识解释为什么有这样的规律吗? 教师引导学生讨论发现规律:

高一物理力学专题提升专题17卫星变轨问题

专题17 卫星变轨问题 【专题概述】 当我们要从地球向天空发射不同的卫星时,就牵扯到卫星的变轨问题,要想让卫星向高轨道运动,那么我们就要让卫星加速做离心运动,使得卫星的运动轨道达到我们的要求,对于卫星的运动,我们首先需要了解卫星在不同轨道上运动的规律: 卫星的向心加速度、线速度、角速度、周期与轨道半径的关系,根据万有引力提供卫星绕地球运动的向心力,即有: GMm r 2=ma n =m v 2r =m ω2 r =m 4π2 T 2r (1)a n =GM r 2,r 越大,a n 越小. (2)v = GM r ,r 越大,v 越小. (3)ω= GM r 3 ,r 越大,ω越小. (4)T =2π r 3 GM ,r 越大,T 越大. 卫星变轨: 这是卫星变轨图:卫星先在较低的圆轨道1上做圆周运动,当运动到近地点A 时,经过点火加速,会使得卫星做离心运动,运动轨道变成了椭圆轨道2,在远地点在再次点火加速,上到预定轨道3,然后卫星绕地球再次做匀速圆周运动,这样就达到了发射卫星的目的,对于此类问题,A 和B 的速度和加速度之间的关系: 卫星在轨道1上经过A 点到达轨道2上的B 点时,引力做负功,所以动能减小,所以卫星在轨道1上运行的速率大于在轨道2上经过B 点时的速率;因为G =ma 即a = 卫星在轨道2上经过A 点时的向 心加速度大于在轨道2上经过B 点时的向心加速度,卫星在B 点时,距离地球的距离相同,万有引力相同,根据牛顿第二定律,加速度相同

关于地球的同步 1.定义:相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.2.“七个一定”的特点 (1)轨道平面一定:轨道平面与赤道平面共面. (2)周期一定:与地球自转周期相同,即T=24 h. (3)角速度一定:与地球自转的角速度相同. (4)高度一定:由G Mm R +h2 =m 4π2 T2 (R+h)得地球同步卫星离地面的高度h=3.6×107 m. (5)速率一定:v= GM R+h =3.1×103 m/s. (6)向心加速度一定:由G Mm R +h2 =ma得a= GM R+h2 =g h=0.23 m/s2,即同步卫星的向心加速度等 于轨道处的重力加速度. (7)绕行方向一定:运行方向与地球自转方向相同. 【典例精析】 关于同步卫星 典例1利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A.1 h B.4 h C.8 h D.16 h 【答案】B 卫星的轨道半径为r=R sin 30° =2R 由r31 T21= r32 T22 得

高中物理人造卫星变轨问题专题

人造卫星变轨问题专题 (一) 人造卫星基本原理 绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是唯一确定的。如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。一旦卫星发生了变轨,即轨道半径r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情况决定) 。同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。 (二) 常涉及的人造卫星的两种变轨问题 1. 渐变 由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化 (逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。 解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是

减小,然后再判断卫星的其他相关物理量如何变化。 1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。 如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能, 保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各 个物理量的变化。这种变轨的起因是阻力。阻力对卫星做负功,使卫星速度减小,卫星所需要的向心力r mv 2减小了,而万有引力2r GMm 的大小没有变,因此卫星将 做向心运动,即轨道半径r 将减小。 由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速 度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦 生热),卫星机械能E 机将减小。 为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小, 在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。而且万有引 力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星 动能增加。根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。 2) 有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。 如果这个结论正确,那么环绕星球将发生离心现象,即环绕星球到中心星球间的

微专题22 人造卫星运行规律分析

[方法点拨] (1)由v = GM r 得出的速度是卫星在圆形轨道上运行时的速度,而发射航天器的发射速度要符合三个宇宙速度.(2)做圆周运动的卫星的向心力由地球对它的万有引力提供,并指向它们轨道的圆心——地心.(3)在赤道上随地球自转的物体不是卫星,它随地球自转所需向心力由万有引力和地面支持力的合力提供. 1.(运行基本规律)人造地球卫星在绕地球做圆周运动的过程中,下列说法中正确的是( ) A .卫星离地球越远,角速度越大 B .同一圆轨道上运行的两颗卫星,线速度大小一定相同 C .一切地球卫星运行的瞬时速度都大于7.9 km/s D .地球同步卫星可以在以地心为圆心、离地高度为固定值的一切圆轨道上运动 2.(同步卫星运行规律)某卫星绕地球做匀速圆周运动的周期为12 h .该卫星与地球同步卫星比较,下列说法正确的是( ) A .线速度之比为3 4∶1 B .向心加速度之比为4∶1 C .轨道半径之比为1∶3 4 D .角速度之比为1∶2 3.(卫星运行参量分析)暗物质是二十一世纪物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在2015年12月17日成功发射了一颗被命名为“悟空”的暗物质探测卫星.已知“悟空”在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为s ,与地球中心连线扫过的角度为β(弧度),引力常量为G ,则下列说法中正确的是( ) A .“悟空”的线速度大于第一宇宙速度 B .“悟空”的向心加速度小于地球同步卫星的向心加速度 C .“悟空”的环绕周期为2πt β

D .“悟空”的质量为s 3 Gt 2β 4.(卫星与地面物体比较)“静止”在赤道上空的地球同步气象卫星把广阔视野内的气象数据发回地面,为天气预报提供准确、全面和及时的气象资料.设地球同步卫星的轨道半径是地球半径的n 倍,下列说法中正确的是( ) A .同步卫星的向心加速度是地球表面重力加速度的1 n 倍 B .同步卫星的向心加速度是地球表面重力加速度的1 n 倍 C .同步卫星运行速度是近地卫星运行速度的1 n 倍 D .同步卫星运行速度是近地卫星运行速度的 1n 倍 5.一颗人造卫星在如图1所示的轨道上绕地球做匀速圆周运动,其运行周期为4.8小时.某时刻卫星正好经过赤道上A 点正上方,则下列说法正确的是( ) A .该卫星和同步卫星的轨道半径之比为1∶5 图1 B .该卫星和同步卫星的运行速度之比为1∶35 C .由题中条件和引力常量可求出该卫星的轨道半径 D .该时刻后的一昼夜时间内,卫星经过A 点正上方2次 6.(多选)假设地球同步卫星绕地球运行的轨道半径是地球半径的6.6倍,地球赤道平面与地球公转平面共面.站在地球赤道某地的人,日落后4小时的时候,在自己头顶正上方观察到一颗恰好由阳光照亮的人造地球卫星,若该卫星在赤道所在平面内做匀速圆周运动.则此人造卫星( ) A .距地面高度等于地球半径 B .绕地球运行的周期约为4小时 C .绕地球运行的角速度与同步卫星绕地球运行的角速度相同 D .绕地球运行的速率约为同步卫星绕地球运行速率的1.8倍 7.(多选)欧洲航天局(ESA)计划于2022年发射一颗专门用来研究光合作用的卫星“荧光探测器”.已知地球的半径为R ,引力常量为G ,假设这颗卫星在距地球表面高度为h (h <R )的轨道上做匀速圆周运动,运行的周期为T ,则下列说法中正确的是( )

人造卫星问题专题

人造卫星问题专题 一. 教学容: 人造卫星问题专题 二. 学习目标: 1、掌握人造卫星的力学及运动特点。 2、掌握地球同步卫星的特点及相关的题目类型。 3、强化对于人造卫星问题中典型题型的相关解法。 考点地位: 人造卫星问题是万有引力定律应用部分的难点问题,是近几年高考命题的热点,这部分容综合性很强,从高考出题形式上分析,突出了对于卫星的发射、运转、回收等多方面的考查,人造卫星问题中涉及到的同步卫星的定位,人造卫星问题中的超重失重问题,人造卫星与地理知识与现代科技知识的综合问题,都是近几年高考考查的热点问题,2007年全国各地的高考题目中,2007年单科卷第16题是以大型计算题目形式出现的,2007年天津理综卷的第17题理综卷的第17题均以绕月探测工程为物理背景以选择题形式出现。 三. 重难点解析: 1. 人造地球卫星的发射速度 对于人造地球卫星,由,得,这一速度是人造地球卫星在轨道上的运行速度,其大小随轨道半径的增大而减小,但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,所以将卫星发射到距地球越远的轨道,在地面上所需的发射速度就越大。 2. 人造卫星的运行速度、角速度、周期与半径的关系 根据万有引力提供向心力,则有 (1)由,得,即人造卫星的运行速度与轨道半径的平方根成反比,所以半径越大(即卫星离地面越高),线速度越小。 (2)由,得,即,故半径越大,角速度越小。 (3)由,得,即,所以半径越大,周期越长,发射人造地球卫星的最小周期约为85分钟。 3. 人造卫星的发射速度和运行速度(环绕速度) (1)发射速度是指被发射物在地面附近离开发射装置时的速度,并且一旦发射后就再也没有补充能量,被发射物仅依靠自身的初动能克服地球引力做功上升一定高度,进入运动轨道(注意:发射速度不是应用多级运载火箭发射时,被发射物离开地面发射装置的初速度)。

飞船及卫星的变轨问题

飞船、卫星的变轨问题 有关宇宙飞船及卫星的运行及变轨问题再次成为全社会关注的焦点,同时也成为高中物理教学的亮点。对于卫星在运行中的变轨有两种情况,即离心运动和向心运动。当有万有引力恰好提供卫星所需向心力时,即GMm/r^2=mv^2/r时,卫星做匀速圆周运动,当某时刻速度发生突变时,轨道半径将发生变化。 (1)速度突然增大时,GMm/r^2 (2)速度突然减小时,GMm/r^2>mv^2/r,万有引力大于向心力,做向心运动,卫星轨道半径r减小,线速度v增大。 当飞船、卫星等天体做变轨运动时,轨道半径r发生变化,从而引起v、T及ω的变化。 例1.人造地球卫星在轨道半径较小的轨道A上运行时机械能为EA,它若进入轨道半径较大的轨道B运行时机械能为EB,在轨道变化后这颗卫星( ) A.动能减小,势能增加,EB>EA B.动能减小,势能增加,EB=EA C.动能减小,势能增加,EBEA 解析:选A。要使卫星由较低轨道进入较高轨道,必须开动发动机使卫星加速,卫星做离心运动。在离心运动过程中万有引力对卫星做负功,卫星运行速度的大小不断减小,动能不断减小而势能增大。由于推力对卫星做了正功,因此卫星机械能变大。卫星由低轨道运动到高轨道,要加速,加速后作离心运动,势能增大,动能减少,但是

到高轨道作圆周运动时速度小于低轨道上的速度。 例2.如果人造飞船首先进入的是距地面高度近地点为200km,远地点为340km的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,试处理下面几个问题(地球的半径R=6370km,g=9.8m/s^2): (1)飞船在椭圆轨道1上运行,Q为近地点,P为远地点,当飞 船运动到P点时点火,使飞船沿圆轨道2运行,以下说法正确 的是( ) A.飞船在Q点的万有引力大于该点所需的向心力 B.飞船在P点的万有引力大于该点所需的向心力 C.飞船在轨道1上P的速度小于在轨道2上P的速度 D.飞船在轨道1上P的加速度大于在轨道2上P的加速度 解析:飞船在轨道1上运行,在近地点Q处飞船速度较大,相对于以近地点到地球球心的距离为半径的轨道做离心运动,说明飞船在该点所受的万有引力小于在该点所需的向心力;在远地点P处飞船的速度较小,相对于以远地点到地球球心为半径的轨道飞船做向心运动,说明飞船在该点所受的万有引力大于在该点所需的向心力;当飞船在轨道1上运动到P点时,飞船向后喷气使飞船加速,万有引力提供飞船绕地球做圆周运动的向心力不足,飞船将沿椭圆轨道做离心运动,

相关主题
文本预览
相关文档 最新文档