当前位置:文档之家› 钢渣处理及资源化综合利用工艺_郭秀键

钢渣处理及资源化综合利用工艺_郭秀键

钢渣处理及资源化综合利用工艺_郭秀键
钢渣处理及资源化综合利用工艺_郭秀键

0概述

钢渣是炼钢产生的副产物,约为钢产量的9%~

12%。

炼钢根据产钢流程,分转炉流程和电炉流程,转炉流程产生的渣有脱硫渣、转炉钢渣、注余渣等;电炉流程产生的钢渣有电炉渣、注余渣等。炼钢不同工序产生的渣量也不同,脱硫渣12~15kg/t(铁水),转炉渣100~110kg/t(钢),电炉渣120~150kg/t(钢),注余渣25~30kg/t(钢)。2010年全球粗钢产量达到14.14亿吨,亚洲粗钢产量为8.11亿吨,其中,中国以6.267亿吨位居全球第一位,占全球钢产量的44.3%。全球粗钢以转炉钢为主,产量约占2/3,中国约有90%为转炉钢,年产生的钢渣量超过0.63亿吨。目前钢渣

利用率较低,研究钢渣的资源化综合利用十分必要。

1影响钢渣利用的因素

炼钢过程中为了脱硫、脱磷、脱碳需要,加入的

造渣材料(石灰等)与酸性氧化物反应生成的矿物形成钢渣。在钢渣产生及处理过程中,有如下因素影响其资源化综合利用。1.1成分

炼钢是一个间断性的生产工艺,每炉钢冶炼工况都有所差异,同一炉冶炼过程不同时段排出渣的成分有所区别,不同炉或不同工序产出的渣混装在一起,也会导致钢渣成分不稳定,增加下游用户的使用难度。钢渣成分的稳定要从冶炼及出渣制度、处置方

钢渣处理及资源化综合利用工艺

郭秀键

(中冶赛迪集团公司,重庆市400013)

〔摘

要〕通过对影响钢渣利用的成分、安定性及活性因素的分析,提出了对应的解决措施;通过对钢渣冷

却工艺和利用途径的对比分析,提出采用余热自解工艺冷却钢渣,充分选铁并回收含铁物料及部分可做熔剂的钢渣;尾渣控制合理的粒度,采用不同的深加工工艺,生产钢渣微粉、砌块等建材产品或直接作筑路、回填料,以实现钢渣的资源化综合利用,达到钢渣的“零排放”的目标。

〔关键词〕钢渣;安定性;活性;改质;余热自解;微粉;综合利用

中图分类号:X757

文献标识码:B

文章编号:1004-4345(2012)06-0017-03

Steel Slag Treatment and Resource Comprehensive Utilization Process

GUO Xiu-jian

(CISDI Group Co.,Ltd.,Chongqing,400013,China)

Abstract

The corresponding solutions are introduced by analyzing composition,stability and activity that is affected by

utilization of steel slag;process of waste heat self-dissolution adopted for steel slag cooling is presented by comparing and analyzing the processes of steel slag cooling and utilization approaches,iron will be selected adequately,materials containing iron and steel slag that may be acted as flux will be recovered;and particle of slag tails will be controlled reasonably.The different deep processing processes will be adopted to produce building materials(such as steel slag fine powder and building blocks),or steel slag may be regarded as materials for paving and filling,resource comprehensive utilization and "zero discharge"purpose of steel slag can be achieved.

Keywords steel slag;stability;activity;property changing;waste heat self-dissolution;fine powder;comprehensive utilization

收稿日期:2012-07-05

作者简介:郭秀键(1978—),男,工程师,主要从事固体废物处理与资源化。

有色冶金设计与研究

第33卷2012年第6期

12月

式等方面予以保证。因此,保持钢渣成分稳定,主要依靠合理的出渣制度和处置方式。

1.2安定性

钢渣含游离氧化钙(f-CaO)、游离氧化镁(MgO)、硅酸三钙(C3S)、硅酸二钙(C2S)等,这些组分在一定条件下都具有不稳定性。在冶炼过程中,一些游离态的CaO和MgO被某些矿物包裹,造成f-CaO数量增加,且其中固溶了一定浓度的FeO,成为死烧石灰块;在钢渣冷却过程中,C3S会在1250℃到1100℃时缓慢分解为C2S和f-CaO,C2S在675℃时β-C2S要相变为γ-C2S,伴随体积膨胀。游离氧化钙(f-CaO)和游离氧化镁(f-MgO)遇水膨胀,尤其f-MgO常温下,在建材制品中完全消解的时间可长达20年之久,因此,含f-CaO、f-MgO的常温钢渣是不稳定的,只有f-CaO、f-MgO消解完或含量很少时,才会稳定。

C21250~1100℃C2S+f-CaO

C2S670℃-C2S+γ-C2S体积膨胀10%

f-CaO+H2O Ca(OH)2体积膨胀98%

f-MgO+H2O Mg(OH)2体积膨胀148%

在上述几种导致钢渣遇水膨胀的物质中,f-CaO 占主导地位,它会导致道路、建材制品或建筑物的开裂而破坏,因此钢渣作建材、道路或工程回填料必须进行稳定化处理。

提高钢渣安定性的措施:1)在熔融状态下加入安定性改质剂,消除f-CaO所造成的不稳定性;2)常压或高压余热自解,降低含f-CaO含量;3)堆场堆存(6个月以上)并定期淋水加速消解;4)与其它材料掺合使用,消除其膨胀带来的影响。

1.3碱度与活性

钢渣主要由CaO、SiO2、Al2O3、F2O3、MgO及少量MnO、FeO、P2O5、金属Fe组成,是一种由多种矿物组成的固熔体,所含的C3S、C2S等为活性矿物,具有水硬胶凝性。钢渣的化学组成与硅酸盐水泥熟料很相似,但硅、钙含量低[1]。

钢渣的碱度[2]表示为:M=W(CaO)

W(SiO2)+w(P2O5)M<1.8称为低碱度钢渣,1.8≤M≤2.5称为中碱度钢渣,M>2.5称为高碱度钢渣。当钢渣中碱度M> 1.8时,含有60%~80%的C3S和C2S,具有一定的胶凝性能[3],并且随碱度M的提高,C3S含量也增加,当碱度M达到2.5以上时,钢渣的主要矿物为C3S。钢渣用作胶凝材料时,要求C3S要尽可能高。

在钢渣的冷却过程中,喷水有助于f-CaO的消解,同时体积膨胀使渣块迅速破裂或粉化,达到粒化和稳定的双重效果。但用作胶凝材料时,喷水会使钢渣预水化,降低钢渣的水硬活性,尤其是早期活性[4]。2钢渣冷却方式

钢渣按形态可分为水淬粒状钢渣、块状钢渣和粉状钢渣,形态的差异是因钢渣冷却处理所采用方式不同所致。钢渣的冷却方式及对比见表1。

有色冶金设计与研究第33卷

表1钢渣冷却方式对比

序号冷却方式原理优点缺点

1热闷法

利用钢渣热能,洒水产生物理力学作用和

f-CaO的水解作用使之碎化,产生的蒸汽深度

消解f-CaO

适合各种热态渣;钢渣活性较高、安定性

较好;蒸汽有组织排放或集中收集

处理周期长,占地面积较大

2热泼法

热态渣泼在池中,洒水使之因温度应力而

碎裂,f-CaO的水解作用使之进一步裂解

排渣速度快,冷却时间短、便于机械化生

产,钢渣活性较高

蒸汽无组织排放;钢渣安定性

较差

5滚筒法

液态钢渣在高速旋转的滚筒内,以水作冷却

介质,急冷固化、破碎

排渣快、占地少,渣粒性能较稳定只能处理液态渣;钢渣活性较差

6风淬法

压缩空气高速切割熔渣,使之急冷、改质、

粒化

排渣快,占地少;粒度均匀(<5mm)且光滑;

可回收余热;活性较高

只能处理液态渣;钢渣安定性

较差

7粒化轮法

熔渣落到高速旋转的粒化轮上破碎粒化,

同时喷水冷却

排渣快,蒸汽有组织排放或收集

只能处理液态渣;设备磨损严重;

钢渣活性较差

3盘泼法

熔渣倒在渣盘中,表面凝固后喷淋大量水

急冷,后翻入水池中继续冷却

快速冷却、处理量大适合处理液态渣;钢渣活性较差

4水淬法

熔渣被压力水分割、击碎而粒化,急冷收缩

产生应力集中而破裂

排渣快、占地少,处理后钢渣粒度小

(~5mm左右)

只能处理液渣;钢渣活性较差

热泼法因投资低、操作简单、生产率高,目前在

钢渣冷却方式中占主要地位。随着钢渣的综合利用对其稳定性及活性等性能指标要求越来越高,以热闷法为代表的余热自解工艺逐步受到关注,发展较快。3钢渣综合利用工艺

钢渣的产生量大,不及时处理会占用大量土地,

18··

也会带来环境污染。钢渣的资源化综合利用,并不能

依靠单一的处理工序、

单一的处理工艺来解决,需要结合钢渣特性,自钢渣产生开始,采取合理的措施,逐

步、

深入地做到钢渣的综合利用,以实现钢渣“零排放”的目标。钢渣深度处理及资源化综合利用流程,见图1。

3.1钢渣改质处理工艺

将以SiO 2为主要成分,包含Al 2O 3、CaO 、MgO 等调节成分的钢渣安定性改质剂加入熔融钢渣中,SiO 2、Fe 2O 3与f-CaO 生成硅酸钙或铁酸钙,消除其不稳定性,增加了耐磨水泥矿物的含量,可以扩大钢渣的安全使用范围[5]。钢渣改质过程中根据需要可能要喷入氧气,但应控制其中金属铁的氧化,否则,会降低金属铁回收率。

3.2钢渣余热自解工艺

钢渣的主要利用途径是建材行业,其中以生产胶凝材料为主,因此,钢渣在预处理即冷却过程中应尽可能消除不稳定因素,提高钢渣后续使用的安定性。钢渣余热自解的原理是:高温钢渣淋水后产生的温度应力使钢渣破碎,后期在蒸汽环境中f-CaO 、f-MgO 继续吸水消解,产生的体积膨胀应力使钢渣在冷却过程中龟裂、粉化,从而减少f-CaO 、f-MgO 残余量,降低钢渣粒度。钢渣余热自解分常压余热自解和高压余热自解,以热闷法为代表的常压余热自解技术是具有发展前景的钢渣冷却工艺。钢渣余热自解工艺要达到理想的指标,要采用合理的喷水制度,控制好渣水比、处理时间等关键参数。3.3钢渣初级分选及回收工艺

钢渣冷却后,粒度不均匀,仍有部分大块渣,且其中含有15%~17%的金属铁。为了充分回收铁资源,也便于钢渣后续利用,需将其进行破碎并磁选回收金属铁。根据不同破碎原理,钢渣初加工可分为机械

破碎和自磨破碎两种工艺。

目前大部分钢厂采用1~3级机械破碎和磁选方式,破碎的粒度越细,金属铁回

收率就越高。将钢渣破碎到100~300mm ,可从中回

收6.4%的金属铁,破碎到80~100mm,可回收7.6%的金属铁,破碎到25~75mm 回收的金属铁量12%

~15%[6]。

磁选得到的>10mm 废钢及渣钢送炼钢用,<10mm 的磁选粉送烧结用,部分含P 、S 等杂质低、

CaO 较高的钢渣,可送烧结、

炼铁或炼钢做熔剂用。钢渣经简单整粒处理后,可用作筑路或工程回填料。3.4钢渣微粉工艺

钢渣微粉工艺是采用磨机将钢渣研磨成细粉,属于机械激发钢渣活性的处理方式,同时还能提高磨细钢渣粉在混凝土中应用的物理作用。钢渣是经过高温熔融的产物,冷却后形成C 2S 、C 3S 等岩相结构,与普通硅酸盐水泥熟料岩相结构相近。钢渣微粉比表面积控制在400~500m 2/kg 较为合理,比表面积低

于400m 2/kg,活性得不到充分激发,当钢渣的比表面

积超过500m 2/kg 时,强度并无明显增长,且继续提高钢渣比表面积的难度增大,所耗费的能量随之增大,经济性不好[7]。钢渣微粉与矿渣微粉、石膏粉及

其他掺合料混合成钢渣胶凝材,具有耐磨、水化热量小、耐盐酸腐蚀、价格低廉的特点,可作为道路用

水泥、

制品用水泥等。3.5废杂钢渣砌块工艺

在钢渣产出及后续处理过程中,会产生一些废杂渣,与常规钢渣在成分和性能上会有所区别,不宜一起处理。这部分杂渣可以单独收集,性能稳定后,与

水泥、

水等按配比进行配料、搅拌,拌合料被送入成型机,根据产品类别设定成型参数,高压振动成型。生坯送晾晒场初步自然养护或经湿热养护窑养护后,再码垛送至堆场继续养护。该工艺可生产多品种多规格的砌块,如彩色地砖、园林挡土块、水工产品、多孔砖等。

4结语

总而言之,钢渣的综合利用有如下几点:1)首先在工厂内充分回收金属,并提高回烧结、炼铁或炼钢工序做熔剂的利用比例,其次是厂外利用。2)影响钢尾渣综合利用的因素有成分、安定性及活性。3)钢渣钙质处理工艺可利用钢渣显热,在钢渣产出的源头解决钢渣安定性问题,尚处于试验阶段;钢渣余热自解工艺适应性强,可在保持钢渣活性基础上,提高其安定性,有利于钢渣的后续综合利用,具有较好的推

(下转第22页)

钢渣处理及资源化综合利用工艺

第6

期19··

广前景。4)钢尾渣综合利用的主要途径是生产建材产品,余热自解后的钢渣,充分选铁后,采用钢渣微粉工艺、砌块工艺等多种工艺组合,生产具有各种特色的建材产品,以达到钢渣充分利用的目的。5)钢渣的资源化综合利用,除采用合理的钢渣处理工艺外,还需与钢渣的产生过程、产品用途相结合。此外,钢渣的资源化综合利用还需要政策的支持,通过政策鼓励、减免税收等,提高钢铁企业或其下游企业钢渣资源化综合利用的动力。

参考文献

[1]王强.钢渣活性激发的研究进展[J].商品混凝土,2010(5):26-28.

[2]Mason B.The constitution of some open -heart Slag [J].Journal of

Iron and steel institute,1994(11):69-80.

[3]W.Xuequan,Z.Hong,H.xinkai,L.Husen.Study on steel slag and fly

ash composite Portland cement [J].Cement and Concrete Research,1999:983-987.

[4]侯新凯,李虎森,房晓虹.钢渣的冷却和处理方式对水硬活性的影

响[J].水泥,2002(7):1-4.

[5]徐国涛,王悦,张洪雷.钢渣安定性处理技术与工艺的探讨[J].钢

铁研究,2009,37(2):54-56.

[6]舒型武.钢渣特性及其综合利用技术[J].有色冶金设计与研究,

2007,28(5):31-34.

[7]李永鑫.含钢渣粉掺合料的水泥混凝土组成结构及性能研究[D].

北京:中国建筑材料科学研究院,2003.

2.3电热蒸馏炉工艺产污节点

电热蒸馏炉工艺生产过程产污节点包括电热蒸馏、吸附、筛分和洗涤等7个工序段,其中废气主要

来源于废汞触媒原料库、

筛分、高锰酸钾洗涤等3个工序段,废水主要来源于碱液洗涤塔和高锰酸钾洗涤池,固体废物主要来源于电热蒸馏炉、活性炭吸附、碱液洗涤、四级活性炭吸附和高锰酸钾洗涤等5个工序段。工艺产污节点具体见表4。

2.4对比分析

燃气、燃煤和电热蒸馏炉工艺产污节点数相差不大,主要集中于蒸馏、冷凝(或冷却)和吸附等工序。但从整个工艺流程对比分析,电热蒸馏工艺未设预处理和干燥工序,在一定程度上影响了蒸馏炉的蒸馏效率,这在实际生产过程中也得到了验证。另外,燃煤和电热蒸馏工艺相对燃气蒸馏炉工艺,出现多处洗涤工序,从而增加了用水量。燃气蒸馏工艺预处理工序

段产生的废碱液和冷凝工序段产生的汞炱均可做到

循环利用,废水处理产生的污泥亦可返回蒸馏炉。

3结论

综上所述,国内再生汞企业采用的冶炼炉型主要为燃气蒸馏炉、电热蒸馏炉和燃煤蒸馏炉等3种,其中采用燃气节能蒸馏炉的企业规模占整个再生汞行业的85%。通过对3种冶炼炉工艺产污节点的分析,对国内再生汞企业冶炼工艺中各工序污染物产生情况有了大致的了解,燃气蒸馏炉相对燃煤和电热蒸馏炉在蒸馏效率和污染控制等方面均有较大优势。实践证明,再生汞冶炼企业生产废水均可实现零排放,主要污染类别为废气与固体废物,企业在日常生产中,应加强含汞废气的监测与治理,对含汞固体废物经鉴别后妥善处置。

参考文献

[1]李艳松,孙明超,郭家秀,等.燃煤电厂汞排放治理技术[C]//中国环

境科学学会学术年会论文集.上海:中国环境科学学会,2010:3794-3796.

[2]张亚雄,邓晓丹,吴斌.我国氯化汞触媒生产和废氯化汞触媒回收

利用技术进展[J].聚氯乙烯,2008,36(10):24-27.

[3]曾华星,胡奔流,张银玲.我国含汞废物的再生利用[J].有色冶金设

计与研究,2012,33(3):36-37.

表4电热蒸馏炉工艺产污节点

节点位置污染源主要污染物洗涤渣Hg

废汞触媒原料库(N1)含尘废气颗粒物、Hg 更换的洗涤废液高锰酸钾

高锰酸钾洗涤池(N7)尾气微量Hg

四级活性炭吸附(N6)废活性炭Hg

洗涤渣Hg

碱液洗涤塔(N5)

更换的洗涤废液OH -、悬浮物、Hg

筛分(N4)含尘废气颗粒物

活性炭吸附(N3)废活性炭Hg

电热蒸馏炉(N2)去汞废渣重金属元素

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(上接第19页)

有色冶金设计与研究第33卷

22··

钢渣综合利用的方法

钢渣的综合利用 钢渣是在转炉、电炉或精炼炉熔炼过程中产生的由炉料杂质、造渣材料等熔化形成的以氧化物为主、有时还含有少量氟化物、硫化物及渣钢渣粒的冶炼废物,发生量约占钢铁企业固废总量的25%。近年来,我国钢铁业发展迅猛,粗钢产量年均增长22.4%,2010年1~9月已达4.75亿t计,由此产生近1亿t的钢渣。钢渣中富含Ca、Si、Fe、Mg、A1等有价元素,蕴含大量热能,是一种宝贵的次生资源,而有效处理和利用钢渣,不仅有利于节能降耗和温室气体减排,还是钢铁企业实现可持续发展和循环经济的必由之路。 1钢渣的种类与来源 冶金企业生产工艺的各异导致渣的种类也不尽相同,特别是化学成分和物理性能存在巨大差异。鞍钢长流程生产工艺所产生的渣,大体上分为脱硫渣、转炉炼钢渣、连铸渣和精炼渣等:①脱硫渣。转炉炼钢前进行铁水预处理,在脱硫站脱硫扒渣,炉渣碱度较高。一般,因脱硫渣的硫过高而须脱硫处理,否则,其冶金用途不大。②转炉钢渣。鞍钢日产5000t左右的转炉钢渣,占钢厂渣总量的60%以上,是一种利用范围较广和使用价值最高的钢渣。③连铸渣。鞍钢采用全流程的连铸生产工艺,连铸过程中的保护渣成分在使用前后变化不大,理论上可循环使用。但现实中因连铸保护渣随二冷水流走并与其它杂质混杂,且含较多难以回收的氟,故大部分堆放在渣场,目前利用率偏低,其应用问题还有待于进一步研究。④精炼渣。鞍钢采用炉外精炼等措施冶炼高纯净度的钢水,精炼过程产生大量副渣,其除含高碱度的碱性氧化物外,还有非常高的三氧化二铝和非常低的金属铁量,适合制造水泥和耐火材料。同时,国外已开展对精炼渣深人利用的研究,如日本己对LF炉的顶渣利用课题立项,开展了热渣循环利用的研究。 2钢渣的基本物性 2.1钢渣的物理性质 钢渣呈黑色,外观像结块的水泥熟料,其中夹带部分铁粒,硬度大,密度为

钢渣的处理与利用研究

钢渣的处理与利用研究 发表时间:2018-10-10T11:24:05.160Z 来源:《防护工程》2018年第11期作者:王芳[导读] 首先简单介绍了钢渣的矿物、化学组成,对钢渣的处理工艺进行了总结和分析。详细阐述了钢渣在冶金领域、建筑行业以及农业方面的综合利用现状,并对钢渣的资源综合利用进行了展望。王芳 中冶京诚工程技术有限公司 100176摘要:随着我国经济的快速发展,对各种资源的浪费现象也越来越严重。本文研究的目的就是对钢渣再次进行回收使用,从而节约能源,为我国的持续性发展战略提供支持。首先简单介绍了钢渣的矿物、化学组成,对钢渣的处理工艺进行了总结和分析。详细阐述了钢渣在冶金领域、建筑行业以及农业方面的综合利用现状,并对钢渣的资源综合利用进行了展望。关键词:钢渣;处理工艺;利用随着我国经济的发展,钢铁产量也得到了很大的提高,随着产生的钢渣也急速增加。作为钢铁生产过程中所排出的固体废弃物,每生产1吨钢排出约0.12吨钢渣,每年我国产出的钢渣产量接近1亿吨。目前我国钢渣的综合利用率不足30%,没有利用的钢渣形成的一座座渣山,不仅占用大量的土地资源,污染周边环境和地下水,还造成了巨大的浪费。积极开发和应用先进有效的钢渣处理和资源化利用新技术,提高其利用率和附加值,是钢铁企业发展循环经济,实现可持续发展的重要课题之一。 一、钢渣概述 (一)钢渣的产生 钢渣是炼钢过程中排出的由金属原料中的杂质与助溶剂、炉衬形成的渣,以硅酸盐、铁酸盐为主要成分。钢渣的主要成分主要来源于以下几个方面:一是金属炉料中Si、Mn、P被少量铁氧化后生成的氧化物;二是侵蚀的炉衬和补炉材料,主要是CaO、MgO等;三是金属炉料带入的杂质,如泥沙等;四是为调整钢渣性质所加入的造渣材料,如石灰、铁矿石、白云石等辅助材料。(二)钢渣矿物组成钢渣的矿物组成随碱度(碱度=Ca0/ (SiO2十P2O5的质量比)高低也变化。钢渣的矿物组成含有橄榄石(CaO、 FeO、SiO2)、镁蔷薇辉石(3Ca0·Mg0·2Si02)、硅酸二钙(C2F) .硅酸三钙(C3S)、铁酸钙(C2F)、游离氧化钙(f-Ca0)、FeO,其组成随炼钢方式的不同而变化。碱度的高低关系到转炉钢渣的胶凝活性。碱度越高活性越大,但由于炼钢工艺的不同,同碱度的钢渣其胶凝活性还是有较大的差别,所以用碱度去评定胶凝活性不够准确。 二、钢渣处理方法(一)热泼法 从炼钢车间将热态钢渣运至钢渣场,在炉渣高于可淬温度时向其喷洒有限的水,利用钢渣产生的温度大于本身的极限应力使其碎裂,该过程还加速了游离氧化钙的水化消解,反复热泼后的钢渣变为小碎块或者粉化。其优点是排渣速度快、设备投资小、运行成本低;其缺点是占地大、破碎加工粉尘大、对环境污染严重。(二)盘泼法 通过渣灌将热熔渣运至渣盘边,利用吊车将渣罐中的热熔渣均匀的倾倒在渣盘中,向其喷淋大量的冷却水,再倒入渣车中喷水冷却,最后倒入水池中冷却。该方法的优点是冷却速度快、处理量大、粉尘少、占地少、钢渣粒度利于金属料回收;缺点是工艺复杂、投资和运行成本大、对钢渣的流动性有一定的要求。(三)热炯法 将熔融钢渣倾翻在热炯装置内,封盖,喷水。利用高温液态钢渣的显热洒水产生的物理力学作用以及游离氧化钙遇水生成氢氧化钙体积膨胀产生的化学作用使钢渣破裂粉化。该方法的优点是处理工艺简单、钢渣粉化效果好、钢渣安定性好利于尾渣的后期利用;缺点是处理周期长。 (四)水淬法 钢渣水淬法是20世纪70年代为获得粒度小于8mm钢渣返回烧结而研究成功的工艺。高温液态钢渣在流出下降过程中被高压水分割、击碎,热熔渣遇水急冷收缩产生应力集中而破裂使熔渣在水幕中进行粒化。其优点是排渣速度快、工艺流程简单、占地面积少、投资少、钢渣粒度小性能稳定;其缺点是水淬时操作不当易发生爆炸、只能处理液态渣、钢渣水硬胶凝性低影响钢渣的利用。(五)滚筒法 高温液体钢渣在高速旋转的滚筒内,滚筒中放置有钢球,以水作为冷却介质,钢渣在滚筒中热化、粉化、研磨、冷却。其优点是排渣速度快、占地面积少、污染少、钢渣粒度小、钢渣安定性好利于尾渣的后期利用;其缺点是设备较复杂且故障率高、投资大、只能处理液态渣。 (六)粒化轮法 将熔融的钢渣落到高速旋转的粒化轮上,因机械作用将熔渣破碎、粒化,被粒化的熔渣在空间经喷水冷却后,渣水一同落人脱水转鼓。其优点是排渣速度快、污染少;其缺点是处理率低、只能处理流动性好的钢渣、设备磨损严重、钢渣胶凝性能变差影响其利用。 三、钢渣处理之后的应用(一)回收废钢铁 钢渣的主要化学成分中约有平均质量分数为25%的铁,其中金属铁约占10%,钢厂通过破碎、磁选、筛分工艺来回收钢渣中的废钢铁。若需要越大程度的回收的金属Fe,钢渣的破碎粒度则越细。钢渣破碎到300-100mm,可从中回收6.4%的金属Fe,破碎到100-80mm,可从中回收7.6%的金属Fe,破碎到75-25mm,金属Fe的回收量高达15%。从钢渣中分选、回收废钢和钢粒,现在已经成为钢铁企业最基本的利用措施。 (二)建筑方面的应用

介绍目前比较流行的几种钢渣处理工艺

介绍目前比较流行的几种钢渣处理工艺 1)热泼工艺。热熔钢渣倒入渣罐后,用车辆运到钢渣热泼车间,利用吊车将渣罐的液态渣分层泼倒在渣床上(或渣坑内)喷淋适量的水,使高温炉渣急冷碎裂并加速冷却,然后用装载机、电铲等设备进行挖掘装车,再运至弃渣场。需要加工利用的,则运至钢渣处理间进行粉碎、筛分、磁选等工艺处理。 (2)盘泼水冷(ISC法)。在钢渣车间设置高架泼渣盘,利用吊车将渣罐内液态钢渣泼在渣盘内.渣层一样为30一120mm厚,然后喷以适量的水促使急冷破裂。再将碎渣翻倒在渣车内,驱车至池边喷水降温,再将渣卸至水池内进一步降温冷却。渣子粒度一样为5—100mm,最后用抓斗抓出装车,送至钢渣处理车间,进行磁选、破裂、筛分、精加工。 (3)钢渣水淬工艺。热熔钢渣在流出、下降过程中,被压力水分割、击碎.再加上熔渣遇水急冷收缩产生应力集中而破裂,使熔渣粒化。由于钢渣比高炉矿渣碱度高、粘度大,其水淬难度也大。为防止爆炸,有的采纳渣罐打孔,在水渣沟水淬的方法并通过渣罐孔径限制最大渣流量。 (4)风淬法。渣罐接渣后,运到风淬装置处,倾翻渣罐,熔渣通过中间罐流出,被一种专门喷嘴喷出的空气吹散,破裂成微粒,在罩式锅炉内回收高温空气和微粒渣中所散发的热量并捕集渣粒。通过风淬而成微粒的转炉渣,可做建筑材料;由锅炉产生的中温蒸汽可用于干燥氧化铁皮。 (5)钢渣粉化处理。由于钢渣中含有未化台的游离CaO,用压力0.2一0.3 MPa,l00℃的蒸汽处理转炉钢渣时,其体积增加23%一87%,小于0.3m m的钢渣粉化率达50%一80%。在渣中要紧矿相组成差不多不变的情形下,排除了未化合CaO,提高了钢渣的稳固性。此种处理工艺可显著减少钢渣破裂加工量并减少粉碎设备磨损。

固体废弃物资源化利用

固体废物 定义:固体废物,一般来说,是指在生产建设、日常生活和其他活动中产生的污染环境的固态、半固态废弃物质。我国《固体废物污染环境防治法》第 88条也对固体废物作了比较详细的定义:“在生产、生活和其他活动中产生的丧失原有利用价值或虽未丧失利用价值但被抛弃或者放弃的固态、半固态和置于容器中的气态的物品、物质以及法律、行政法规纳入固废管理的物品、物质。” 来源:固体废弃物按照来源区分,一般区分为三类:①生活垃圾;② 工业固体废弃物;③危险固体废弃物。 1生活垃圾生活垃圾主要指日常生活中人们产生的固体废弃物,此类固体废弃物按照地域区分又可以区分为城市生活垃圾和农村生活垃圾两种,主要包括厨余垃圾、金属属性垃圾、包装废弃物以及废旧电池等等,其数量受生活习惯、生活水平以及气候影响较大。 2工业固体废弃物主要特指工业部门在生产活动中产生的固体废弃物,比较典型的有煤炭行业产生的煤矸石;冶金行业产生的高炉渣、钢渣、赤泥等废弃物;化学工业行业产生的石膏、电石渣、石膏、碱渣等矿渣;金属矿石行业产生的废石以及尾矿等等。由于其对人体危害大,所以对环境污染较为严重,其主要特点是体积大、成分较为复杂且含有有毒成分,主要以废渣、粉尘和其他废弃物为主。 3 危险固体废物危险固体废弃物就是指被国家鉴定为具有危害性的废弃物,比如某些工业废弃物、医疗垃圾、农药残余等等,这些有毒废弃物如果得不到及时处理,将会威胁人的安全并对环境产生重大影响,其主要特点:①具有放射性;②具有有毒性;③具有传染性。 危害: 1 土壤污染,土壤是农业生产的生命,如果在农业生产中持续使用其中含有瓦砾等垃圾肥容易造成土壤渣化,没有进行处理的废弃物会在土壤内逐渐风化,慢慢溶解于土壤中,对土壤内微生物的生存造成很大的影响,降低土壤的分解能力,最终造成肥力与土质的降低。如果将带有病菌或者寄生虫卵的粪便用于农业生产,这类病菌很有可能进入到农作物的果实中,当人们食用时进入体内,危害人体健康和生命安全。 2 水体污染相关数据表明,近年来固体废弃物对水体所造成的污染问题日益严重,甚至影响到整个生态环境。如果固体废弃物不进行科学处理直接倒入水体之内,导致水体遭到非常严重的污染,造成大量水生物的生存受到影响甚至水生物死亡,各种水生植物也受到影响。在人们食用这些受到污染的水生动植物后也会影响到其健康。 3 大气污染很多固体废弃物中都含有毒性,如果不及时处理任其堆积,因为受到长时间的日晒雨淋,必然会在这一过程中产生很多废气或毒气,这些气体随风进入大气,导致空气受到污染,从而对人类和其他动植物的健康带来危害。 4 对城市环境和市容市貌造成影响城市生活和工业生产可以说是固体废弃物的重要来源,很多生活垃圾、建筑垃圾、工业垃圾不进行有效处理必然会带来非常恶劣的后果。特别是生活垃圾非常容易发酵腐化,招来很多的蚊虫鼠蚁,导致各种疾病的传播。随着我国城市化建设进程的不断加快,各种建筑垃圾也越来越多,且在建筑施工中造成的粉尘污染也相对严重,各种固体垃圾不但占用了城市用地,同时影响到整个城市的市容市貌。

钢渣处理技术介绍

新兴钢渣处理技术介绍 关键字:钢渣处理热焖法钢渣热焖干式磁选钢渣回收 摘要:为克服传统干法工艺和水洗球磨机处理工艺的缺陷,新兴河北工程技术有限公司借鉴日本、韩国先进钢渣处理工艺,消化吸收,开发出全新的钢渣处理新工艺。“钢渣热焖—干式磁选”处理技术可实现整个钢渣处理过程的机械化和连续化,从各方面最大程度地降低了投产运行后的经营成本,因此,采用该方案进行钢渣处理在经济方面可实现其效益的最大化。 一、新兴干法钢渣回收利用技术介绍 目前国内钢渣二次处理工艺有: 1、传统干法加工工艺:目前国内大部分钢铁厂所采用的钢渣处理方式多为简单的破碎磁选工艺,所采用的设备为颚式破碎机1~2台或圆锥破碎机1台+带式除铁器若干或干式磁选机1~2台。工序繁多,渣、铁分离不彻底,回收废钢品位低(TFe含量约40%),不利于炼钢使用;尾渣MFe含量高(约6%),造成资源大量浪费,经济效益差。 低品位渣钢对炼钢生产的影响如下: a、钢渣中硫磷等有害元素回到钢水中并不断富集,影响钢水质量; b、因杂质多,造成渣量增大,喷溅严重; c、冶炼过程中因不能准确确定金属液的重量而影响钢水化学成分的准确控制,浇注时,因钢液重量不足,容易造成短尺废品; 会降低碱度,改变熔渣的组成,这对脱磷及提高炉衬的使用寿 d、钢渣中的主要成分SiO 2 命不利。 此工艺一般小型钢铁厂应用较多。 2、水磨湿选法: 投资大,占地多、小粒度产品品位高,不适合大块钢渣处理,处理大块渣需与其它粗选法配合,尾泥须浓缩、沉淀、脱水、烘干处理才可利用,既污染环境又增加占地、投资,经济效益差。此工艺的致命缺点是: a、尾渣泥处理成本高。目前尾泥处理使用自然沉淀法和机械法。自然沉淀法需要建设大规模的沉淀池系统,沉淀时间长,效果差;机械法以湘潭钢铁为代表,使用斜板沉淀器和压滤机及配套水池、泵、管网系统处理尾渣泥浆。无论哪种方式,都大幅提高了投资及运营成本。 b、脱水后的尾渣含水量也较大,且经细磨水洗后活性丧失,已不能用于钢渣粉的生产,基本丧失利用价值。且经水洗选出的废钢易生锈,铁锈主要成分是Fe(OH)2,在炉内分解

目前钢渣的综合利用(图片)

我国钢铁渣资源化利用现状 1前言 节约资源是我国的基本国策。开展资源综合利用是实施节约资源和转变经济增长方式的具体体现,是发展循环经济、建设资源节约型和环境友好型社会的一项紧迫任务。 钢铁工业是资源、能源消耗最多的行业,在冶炼过程势必产生大量的钢铁渣。每炼一吨铁约产生0.34吨高炉渣,每炼一吨钢约产生0.12吨的钢渣。随着钢铁工业的快速发展,钢铁渣的数量随之增加,钢铁渣的“零排放”成为钢铁工业走循环经济道路,实现可持续发展的重要问题。 “十一五”以来,我国大中型钢铁企业,普遍重视钢铁渣的科学处理和资源化利用。如鞍钢鲅鱼圈新炼钢、首钢京唐钢铁公司(曹妃甸)、新余中冶环保资源开发有限公司、九江中冶环保资源开发有限公司等企业都以先进技术作为支撑,建设钢铁渣“零排放”的示范工程,改善了企业的环境,创造了相应的经济效益,使钢铁渣的处理和利用工作纳入循环经济的轨道。 然而,我国钢铁渣的综合利用率还不高,与国家要求2010年利用率达到86%以上还有一定的差距。部分企业仍采用简单的处理造成钢渣不能全部利用,转移至农村,粗选废钢后堆弃、占用土地、污染环境、浪费资源,使企业可持续发展面临严峻的挑战。 因此,按照科学发展观和走新型工业化道路的要求,加快钢铁渣“零排放”是钢铁行业的责任和紧迫的任务。 2我国钢铁渣资源化利用现状 2009年国家实施了《循环经济促进法》,将资源化综合利用作为一项重大的技术经济政策推进,并以法律形式确定。近几年在国家有关法规和优惠政策支持下,在各企业领导的重视下,钢铁渣的处理工作不断创新,资源化利用途径更加明确,利用规模不断扩大,技术水平逐步提高,一批具有自主知识产权的技术和装备大力推广应用,取得了较好的经济效益、社会效益和环境效益。 2.1取得的成绩 2.1.1高炉渣高价值资源化利用规模不断扩大 2008年我国高炉渣的产生量约为1.6亿吨,综合利用率约为80%。用于生产粒化高炉矿渣粉和水泥混合材的数量约为76.7%。 在二十世纪九十年代中冶建筑研究总院有限公司协同有关单位即进行粒化高炉矿渣粉的研究、生产和推广应用。中冶建筑研究总院有限公司在院属试验厂生产了2万吨粒化矿渣粉用于北京第三航站楼和地铁复八线工程建设,取得了良好的技术经济效果,获得了业内认可,为起草《用于水泥和混凝土中的粒化高炉矿渣粉》国家标准及在国内推广起技术支撑作用。经调研及论证1999年提出采用立式辊磨生产矿渣粉。2000年我国粒化高炉矿渣粉的年产量只有120万吨。2008年我国粒化高炉矿渣粉生产线约有100多条,年产量约为6000万吨。

钢渣的回收利用

钢渣的回收利用.

钢渣的回收利用—生产建筑材料论文题目:系别:化学工程系 专业: 姓名: 钢渣的回收利用—生产建筑材料

在国家经济快速发展的形势钢铁工业是国民经济的基础产业,摘要:下,钢铁工业也呈现出跳跃式发展的态势,钢产量近几年不断提高,钢渣作为炼钢工艺流程的衍生物随着钢产量的提高年产量不断递增。亿t,钢渣利用7.822013年我国钢渣的产生量为据最新资料统计,

左右,该数据显示钢渣利用率很低,距离钢铁企业固体废率仅为10%弃物“零”排放的目标尚远。因此,导致大量钢渣弃置堆积。堆积钢为了适应钢铁工业发展渣形成渣山,既污染环境又占用大量的土地。的需要,必须消除渣害。但钢渣的利用率远钢渣、矿渣和粉煤灰被统称为三大工业废渣。 总体而,通常钢渣用来做填料低于矿渣和粉煤灰。,或者用来烧制水泥言利用率不高。等,具备C3S 钢渣中含有一定数量的水泥熟料的主要矿物C2S、可用作水泥混合材和混凝土掺合料的条件。积极开发和应用先进有效的处理技术和资源化利用新技术,提 实现可持续发展的高其利用率和附加值,是钢铁企业发展循环经济,重要课题之一。 Iron and steel industry is the basic industry of Abstract: national economy, the rapid development in the national ecshowialso industry is steel situation, the the under onomy ng a leaping development trend, steel production improve constantly in recent years, the steel slag as process of deriv

钢渣处理技术及综合利用途径

钢渣处理技术及综合利用途径 摘要:国内外对钢渣的利用都作了不少研究,但钢渣利用率不高的原因是其成分很复杂,但随着矿源能源的紧张,对钢渣进行处理和综合利用一直是值得关注和探索的课题,文章就目前较为成熟的方法进行了介绍。 关键词:钢渣处理;技术;综合利用 钢渣是炼钢过程中排出的废渣。钢渣主要来源于铁水与废钢中所含元素氧化后形成的氧化物,加入的造渣剂,金属炉料带入的杂质以及脱硫产物和被侵蚀的炉衬材料等。目前我国钢渣年产量1亿多t,累计堆放尚未利用的钢渣达3亿t,对其进行处理和综合利用,具有很大的经济效益、社会效益和环境效益。 1 钢渣的处理工艺 1.1 冷弃法 钢渣倒入渣罐缓冷后直接运到渣场抛弃,这种处理技术不仅占地大,易形成渣山,而且不利于钢渣加工和合理利用,所以不建议采用此种工艺。 1.2 热泼法 随着炼钢炉容量加大,氧气在炼钢炉中的应用,快速炼钢要求快速排渣,从而发展了热泼法技术。热泼法是把炼钢渣倒进渣罐后,用吊车将渣罐吊起并将里面的熔渣分层倒在渣床上,经空气冷却降温至350~400 ℃时再喷淋适量的水,使高温炉渣急冷碎裂并加速冷却。 1.3 水淬法 由于钢渣比高炉渣碱度高、黏度大,其水淬难度也大。该法原理是;液态高温钢渣在流出和下降过程中,被压力水击碎、分割,同时高温熔渣遇水急冷收缩产生应力集中而破裂,使熔渣在水幕中进行粒化。 1.4 盘泼水冷法 该法是用吊车把渣罐内熔渣泼在高架泼渣盘内,喷淋适量的水使钢渣急冷碎裂,渣层一般厚3~12 cm。然后再用吊车把渣盘翻倒,对碎渣进行池边喷水降温,最后把渣倒入水池内进一步降温冷却,使渣粉碎到粒度为0.5~10 cm,用抓斗抓出装车,送到钢渣车间再处理。 1.5 粒化法 该法和水淬法有相似之处,原理是把液态钢渣均匀流入粒化器,在粒化器中被高速旋转的粒化轮破碎并沿切线方向抛出,同时受高压水流冷却后落入水箱,

钢渣处理工艺

一、钢渣生产线简介: 钢渣处理生产线是指对钢渣进行处理的生产线,主要是从钢渣中提取钢粒、铁块的成套生产线,高科机械在此对钢渣处理生产线和铬铁渣处理工艺流程作简单介绍,以供参考! 从上图中可以看出,大块钢渣质地紧密,黑色灰质中含有金属光泽的物质,而左下图为提选出的细粒铁粉,右下图为同时分选出的纯铁块,也就是业内人士俗称的粒子钢。钢渣的的利用价值在于钢渣中含有一定量的钢粒和铁粉,也就是回收钢粒和铁粉是利用钢渣的主要途径。那么钢粒和铁粉如何回收呢?巩义市高科机械厂接下来讲解一下钢渣处理工艺流程,供相关人士参考。 二、钢渣处理工艺流程

一般情况下,对于钢渣的处理加工分为两个步骤进行。 步骤一:钢渣的破碎。 钢厂生产的钢渣都呈规则不均匀的块状,钢粒、铁粉和渣子都混合在一起。必须先通过破碎、研磨,把钢渣打碎,才能够分选。由于钢渣多成块状,且硬度较大,采用破碎比大、耐用的颚式破碎机对钢渣进行粗碎,粗碎过后的钢渣如果大小能够达到10mm以下,那么可以直接送入球磨机内进行研磨;否则需要将粗碎后的钢渣送入细粒颚式破碎机进行第二道破碎。 步骤二:球磨机的磨矿。 仅仅通过破碎机无法将钢渣彻底打碎,还需要球磨机。破碎后的达到10mm以下粒度的钢渣直接送入球磨机内磨矿,经过充分研磨将钢渣、铁粉、渣子之间的连接体结构打碎,从而进行下一步分选。我厂生产的球磨机的尾端加有筛笼,这样当物料从球磨机内出来后,筛笼直接将颗粒状的钢粒和细粒的铁粉、渣子分开,省去了振动筛,减少了客户的投资成本。 步骤三:钢粒(粒子钢)和铁粉的提取。 由于钢粒和铁粉都具有磁性,因此分选、提取钢粒和铁粉的设备就是磁选机。我厂生产的球磨机尾端有筛笼装置,筛出来的钢粒可以直接采用皮带式磁选机(腾空磁选机)进

钢渣处理

钢渣处理技术介绍 一、新兴干法钢渣回收利用技术介绍 目前国内钢渣二次处理工艺有: 1.传统干法加工工艺:目前国内大部分钢铁厂所采用的钢渣处理方式多为简单的破碎磁选工艺,所采用的设备为颚式破碎机1~2台或圆锥破碎机1台+带式除铁器若干或干式磁选机1~2台。工序繁多,渣、铁分离不彻底,回收废钢品位低(TFe含量约40%),不利于炼钢使用;尾渣MFe含量高(约6%),造成资源大量浪费,经济效益差。 低品位渣钢对炼钢生产的影响如下: a、钢渣中硫磷等有害元素回到钢水中并不断富集,影响钢水质量; b、因杂质多,造成渣量增大,喷溅严重; c、冶炼过程中因不能准确确定金属液的重量而影响钢水化学成分的准确控制,浇注时,因钢液重量不足,容易造成短尺废品; d、钢渣中的主要成分SiO2会降低碱度,改变熔渣的组成,这对脱磷及提高炉衬的使用寿命不利。 此工艺一般小型钢铁厂应用较多。 2. 水磨湿选法: 投资大,占地多、小粒度产品品位高,不适合大块钢渣处理,处理大块渣需与其它粗选法配合,尾泥须浓缩、沉淀、脱水、烘干处理才可利用,既污染环境又增加占地、投资,经济效益差。此工艺的致命缺点是: a、尾渣泥处理成本高。目前尾泥处理使用自然沉淀法和机械法。自然沉淀法需要建设大规模的沉淀池系统,沉淀时间长,效果差;机械法以湘潭钢铁为

代表,使用斜板沉淀器和压滤机及配套水池、泵、管网系统处理尾渣泥浆。无论哪种方式,都大幅提高了投资及运营成本。 b、脱水后的尾渣含水量也较大,且经细磨水洗后活性丧失,已不能用于钢渣粉的生产,基本丧失利用价值。且经水洗选出的废钢易生锈,铁锈主要成分是Fe(OH)2,在炉内分解会增加钢种的氢含量,影响钢材质量。 c、尾渣泥沉淀池系统需占用大量土地,且由于尾泥无利用价值只能扔掉,需占用大量土地,污染环境。 国内使用此工艺的钢铁厂较多,代表钢厂为湘潭钢铁厂。 如何利用简洁高效的工艺装备处理钢渣,生产优质废钢、铁精粉及容易利用的干尾渣,是实现钢渣高附加值利用的技术关键。 为克服传统干法工艺和水洗球磨机处理工艺的缺陷,新兴河北工程技术有限公司借鉴日本、韩国先进钢渣处理工艺,消化吸收,开发出全新的钢渣处理新工艺。此工艺采用钢渣专用棒磨机对钢渣进行破碎,通过湿度、粒度、给料量的综合控制及其它手段,实现对渣、钢的彻底剥离。且产品粒度比较均匀,过粉碎矿粒少,产品粒度在3mm左右。配之以特殊结构的可变磁场干式磁选机将金属全部回收。 本工艺处理后的钢渣所有产品质量好,可利用途径广泛。所得废钢品位~90%,完全可满足炼钢使用要求;所得铁精粉品位>65%,完全可满足烧结使用要求;所得尾渣磁性铁含量<1%,且为干尾渣,可制砖、生产微粉、作为集料等,用途广泛,可利用价值高。 本技术在新疆特钢和济源钢铁厂实际应用,回收效果良好。

钢渣综合利用途径及处理工艺的选择

钢渣综合利用途径及处理工艺的选择钢铁工业是国民经济的基础产业,在国家经济快速发展的形势 下,钢铁工业也呈现出跳跃式发展的态势,钢产量近几年不断提高,钢渣作为炼钢工艺流程的衍生物随着钢产虽的提高年产虽不断递增。据最新资料统计,2004年我国钢渣的产生竝为3819万t ,钢渣利用率仅为10%片-右,该数据显示钢渣利用率很低,距离钢铁企业固体废弃物“零”排放的目标尚远。积极开发和应用先进冇效的处理技术和资源化利川新技术,提高英利川率和附加值,是钢铁企业发展循环经济,实现可持续发展的重要课题之一。 钢渣利用途径和制约钢渣利用率的因素 钢渣的利用途径大致可分为内循环和外循环,内循环指钢渣在钢铁企业内部利用,作为烧结矿的原料和炼钢的返冋料。钢渣的外循环主耍是指用于建筑建材行业。 1钢渣的内循环利用 钢渣返烧结主要是利用钢渣屮的残钢、氧化铁、氧化镁、氧化钙、氧化镭等有益成分,而且可以作为烧结矿的增强剂,因为它本身是熟料,且含有一定数量的铁酸钙,对烧结矿的强度有一定的改善作用,另外转炉渣中的钙、镁均以I古I溶体形式存在,代替溶剂后,可降低溶剂(石灰和、白云石、菱镁右)消耗,使烧结过程碳酸盐分解热减少,降低烧结固体燃料消耗。 钢渣在钢铁企业内部循环历來受到重视和普遍采用,配加转炉渣的烧结矿可改善高炉的流动性,增加铁的还原产暈。但是配矿工艺对返烧结

冇影响,过度使川会造成P等冇害元素的富集;配加转炉渣的烧结矿品位、碱度有所降低。研究表明,当高炉炉料使用100%口熔性球团矿时,5%转炉渣作为溶剂加入会引起高炉运行不畅,原因是明显影响球团矿的软熔特性,增大软熔温度间隔,使炉渣粘性有增大趋势。另外钢渣的成分波动较人,烧结配矿时要求钢渣各种氧化物成分波动W±2%,粒度耍求一般小于3mm,钢渣在成分上很难满足耍求,对钢渣破碎和筛分的要求也高。 由于这些不利因素存在,尤其是各大钢铁公司普遍采用富矿冶炼,推行精料入炉方针,同时要求炼钢和炼钢工序的能耗和材料消耗指标不断降低,致使返回烧结利用的钢渣量越来越低。丨丨前马钢混匀烧结矿屮只加入1%左右,而且是间断式配加。 2钢渣的外循环利用 钢渣的外循环丄耍是建筑建材行业,钢渣在此行业屮利用受制约的主要因素是钢渣的体积不稳定性,钢渣不同于高炉渣的地方是钢渣中存在f C a 0. f Mg 0,它们在高于水泥熟料烧成温度下形成, 结构致密,水化很慢,f C a 0遇水后水化形成C a (OH)2,体积膨胀98%, f Mg 0遇水后水化形成Mg (OH)2,体积膨胀148%, 容易在硬化的水泥浆体中发生膨胀,导致掺有钢渣的混凝土工程、道路、建材制品开裂,因此钢渣在利用之前必须采取有效的处理,使f CaO、f Mg O充分消解才能使用。钢渣在建筑建材行业有以下儿种利用途径。 ——做水泥生料 钢渣中CaO、M g O. FeO、F e2O3含量之和能达到70%,这些成分对水泥都是有用的,钢渣做水泥生料主要作用是做水泥的铁质校正剂,

钢渣的处理方式

钢渣综合利用方法和处理工艺的介绍钢铁工业是国民经济的基础产业,在国家经济快速发展的形势下,钢铁工业也呈现出跳跃式发展的态势,钢产量近几年不断提高,钢渣作为炼钢工艺流程的衍生物随着钢产量的提高年产量不断递增。 据最新资料统计,2004年我国钢渣的产生量为3819万t,钢渣利用率仅为10%左右,该数据显示钢渣利用率很低,距离钢铁企业固体废弃物“零”排放的目标尚远。 积极开发和应用先进有效的处理技术和资源化利用新技术,提高其利用率和附加值,是钢铁企业发展循环经济,实现可持续发展的重要课题之一。 钢渣利用途径和制约钢渣利用率的因素 钢渣的利用途径大致可分为内循环和外循环,内循环指钢渣在钢铁企业内部利用,作为烧结矿的原料和炼钢的返回料。钢渣的外循环主要是指用于建筑建材行业。 1 钢渣的内循环利用 钢渣返烧结主要是利用钢渣中的残钢、氧化铁、氧化镁、氧化钙、氧化锰等有益成分,而且可以作为烧结矿的增强剂,因为它本身是熟料,且含有一定数量的铁酸钙,对烧结矿的强度有一定的改善作用,另外转炉渣中的钙、镁均以固溶体形式存在,代替溶剂后,可降低溶剂(石灰石、白云石、菱镁石)消耗,使烧结过程碳酸盐分解热减少,降低烧结固体燃料消耗。 钢渣在钢铁企业内部循环历来受到重视和普遍采用,配加转炉渣的烧结矿可改善高炉的流动性,增加铁的还原产量。但是配矿工艺对返烧结有影响,过度使用会造成磷等有害元素的富集;配加转炉渣的烧结矿品位、碱度有所降低。 研究表明,当高炉炉料使用100%自熔性球团矿时,5%转炉渣作为溶剂加入会引起高炉运行不畅,原因是明显影响球团矿的软熔特性,增大软熔温度间隔,使炉渣粘性有增大趋势。 另外钢渣的成分波动较大,烧结配矿时要求钢渣各种氧化物成分波动≤±2%,粒度要求一般小于3mm,钢渣在成分上很难满足要求,对钢渣破碎和筛分的要求也高。

钢渣的利用

钢渣的利用 钢渣二次利用最好的途径就是用作高炉、转炉原料,在钢铁厂内循环使用。此外,钢渣还可用于道路工程、建材原料、钢渣肥料及填坑造地等。 1、钢渣用于冶金原料 1)钢渣用作烧结材料宝钢、济钢、鞍钢等公司的实践表明:烧结矿中配加钢渣代替熔剂,不仅可回收利用钢渣中残钢、FeO、CaO、MgO、MnO等有价成分,还可用作烧结矿的增强剂。烧结矿中适量配人钢渣后,可显著改善烧结矿的质量,使转鼓指数与结块率提高, 风化率降低,成品率增加。此外,由于钢渣中Fe与FeO的氧化放热,节省了烧结矿中钙、镁碳酸盐分解所需要的热量,使烧结矿燃料消耗降低。高炉使用配入钢渣的烧结矿,由于烧结矿强度高,粒度组成改善,尽管铁品位略有降低,渣量略有增加,但高炉操作顺行,对其产量提高、焦比降低很有利。烧结中配加钢渣应注意磷的富集问题。按照宝钢的统计数据,烧结矿中钢渣配人量增加10kg/t,烧结矿的磷含量将增加约0、0038%,而相应铁水中磷含量将增加0、0076%。比较可行的措施就是控制烧结矿中钢渣的配入比例,另外可以在生产中有针对性地停配钢渣一个时期,待磷降下来后在恢复配料。 2)钢渣用作高炉熔剂 钢渣直接返回高炉作熔剂的主要优点就是利用渣中CaO代替石灰石,节约了熔剂消耗,但由于目前高炉大都使用高碱度烧结矿,基本上不加石灰石,所以钢渣返回高炉的用量受到限制。但对于烧结能力不足的高炉,用钢渣作高炉熔剂的价值仍很大。此外,钢渣中较高的铁含量可代替部分铁矿石;钢渣中的MgO可置换部分白云石,增加炉渣的流动性与稳定性。钢渣中的MnO可回收进入铁水。 3)钢渣用作炼钢返回渣料 钢渣返回转炉冶炼能提高炉龄、促进化渣、缩短冶炼时间,又可降低副原料消耗,并减少转炉总的渣量。日本住友金属与歌山厂在160吨转炉采用返回转炉渣与白云石做造渣剂。钢渣粒度为15~50 mm。在吹炼开始3 min内全部加入,吨钢加入量20 kg到130 kg。为防止渣量过大而引起喷溅,采用低枪位操作。为了吹炼稳定,白云石分批加入。可以提前化渣。减少了石灰与萤石用量,转炉渣总量减少最高达60%。首钢电进行过转炉返回钢渣试验。吨钢加渣25~30 kg,块度小于50mm,钢渣通过炉顶料仓加入。结果表明,初渣成渣快,终渣化得透。试验中70%的炉次无须加萤石,石灰用量减少10%。返回渣配加白云石,终渣较粘,倒炉后可以形成渣壳于炉壁,提高了转炉炉龄。宝钢在国内率先开发了转炉脱磷脱碳的双联法工艺。即在转炉内进行铁水脱磷处理,出半钢后在进行脱碳处理,可以稳定地生产磷含量低于80 ppm的超低磷钢。在双联法工艺中,由于脱磷负荷主要由脱磷炉分担,因此脱碳炉的钢渣磷比较低,可以返回脱磷炉造渣,回收了资源,并降低了副原料单耗。 2、钢渣用于道路工程 钢渣用于筑路就是钢渣综合利用的一个主要途径。欧美各国钢渣约有60%用于道路工程。钢 渣碎石的硬度与颗粒形状都很符合道路材料的要求,与粉煤灰、高炉水渣、水泥、石灰等配料后,可用作道路的基层、垫层及面层。如宝钢在三期工程主干道纬十一路采用钢渣三渣在道路基层施工中进行试验。试验道路第一段采用水淬钢渣、粉煤灰与石灰三渣混合料,第二段采用粒铁回收后的规格渣、粉煤灰与石灰三渣混合料。对比路段采用天然碎石、粉煤灰与石灰三渣与高炉水渣、粉煤灰与石灰三渣。相比天然碎石三渣与高炉水渣三渣,钢渣三渣基层具有较高的承载力,铺筑沥青面层后,经一年行车考验,路面平整无裂纹,与其它路段无区别。此外,钢渣还可以用于沥青混凝土路面。钢渣在沥青混凝土中有很高的耐磨性、防滑性与稳定性,就是公路建设中有价值的材料。国外曾在用沥青混凝土铺筑的试验路面上进行了路面抗防滑轮胎磨损试验,一种就是用硬质天然碎石为骨料,另一种就是用钢渣为骨料。结果表明

钢渣处理工艺与国内外钢渣利用技术

第25卷第7期2013年7月 钢铁研究学报J o u r n a l o f I r o n a n d S t e e l R e s e a r c h V o l .25,N o .7J u l y 2013作者简介:张朝晖(1967—,男,博士,教授; E -m a i l :305201096@q q .c o m ;收稿日期:2013-03-18钢渣处理工艺与国内外钢渣利用技术 张朝晖,廖杰龙,巨建涛,党要均 (西安建筑科技大学冶金工程学院,陕西西安710055 摘要:介绍了钢渣的组成成分,简述了目前国内钢渣的主要处理工艺,对其中最为主流的热泼法、滚筒法、热闷法等钢渣处理工艺的工作原理及其优缺点进行简要评述。并在介绍钢渣特性的基础上,着重综述了钢渣在钢铁冶炼、 建材生产、环境工程、农业等方面的综合利用途径。从钢渣综合利用的现状出发,总结了制约钢渣应用的问题,提出针对具体问题所需提高的钢渣再利用技术与理念,展望了钢渣利用的发展趋势。关键词:钢渣;烧结材料;游离氧化钙;混凝土 文献标志码:A 文章编号:1001-0963(201307-0001- 04T r e a t m e n t P r o c e s s a n d U t i l i z a t i o n T e c h n o l o g y o f S t e e l S l a g i n C h i n a a n d A b r o a d Z HA N G Z h a o -h u i ,L I A O J i e -l o n g ,J U J i a n -t a o , D A N G Y a o -j u n (S c h o o l o f M e t a l l u r g i c a l E n g i n e e r i n g ,X i ′a n U n i v e r s i t y

转炉钢渣处理的工艺方法

转炉钢渣处理的工艺方法 冶金13-A1 高善超 3 摘要:介绍了钢渣的组成成分,简述了目前国钢渣的主要处理工艺,对其中最为主流的热泼法、滚筒法、热闷法等钢渣处理工艺的工作原理及其优缺点进行简要评述。转炉渣中的f-CaO是影响转炉渣安定性的主要因素,钢渣中的f-CaO遇水会进行如下化学反应:f-CaO+H2O→Ca(OH)2,会使转炉渣体积膨胀98%左右,导致道路、建材制品或建筑物的开裂而破坏。如果能够降低转炉渣中f-CaO的含量,那么对钢渣的利用具有很大的指导意义。 游离氧化钙与二氧化碳酸化反应生成CaCO3,以消解游离氧化钙,使钢渣中氧化钙降低至3%以下,达到国家规定,从而可以在各个工程中得到良好的应用。 高炉渣中含SiO2一般是32%~42%,可见高炉渣可以视为一种含SiO2物料,具有潜在消解转炉钢渣中f-CaO 的能力,如果实现高炉渣与转炉渣熔融态下同步处理,这无疑拓宽了冶金渣资源化处理的有效途径。本文对以上两种钢渣中游离氧化钙的处理方法进行了论述。 关键词:高炉渣;转炉钢渣;游离氧化钙;二氧化碳;石英砂;高温反应;消解率 0引言 钢渣是生产钢铁的过程中,由于造渣材料、冶炼材料、冶炼过程中掉落的炉体材料、修补炉体的补炉料和各种金属杂质所混合成的高温固溶体,是炼钢过程中所产生的附属产品,需要再次加工方可应用【1】。 钢渣在欧美等发达国家可以广泛的利用,说明了钢渣具有非常好的应用前景,对钢渣的处理、利用、开发已经成为我们国家钢铁企业的重要发展方向。由于钢渣中存在游离氧化钙这种物质,其含量在钢渣中约占0~10%,游离氧化钙遇水后发生反应生成Ca(OH)2,这种反应会使钢渣体积发生膨胀,膨胀后钢渣的体积约会增长一倍,这种情况制约了钢渣的使用方向,使其很难在建材与道路工程中加以使用。由于我国正处于高速发展中,各项基础设施建设需要建设,其中高速公路的发展快速,如果可以将处理后的钢渣应用其中,代替其他岩土材料,可以降低建设成本,降低其他材料的消耗,有效的处理了堆积巨大的废弃钢渣,达到实际的经济效益【1-2】。因此对钢渣进行合理的处理并应用已经成为我国钢铁企业重要的发展方向之一。

钢渣的处理方式

钢渣综合利用方法和处理工艺的介绍 钢铁工业是国民经济的基础产业,在国家经济快速发展的形势下,钢铁工业也呈现出跳跃式发展的态势,钢产量近几年不断提高,钢渣作为炼钢工艺流程的衍生物随着钢产量的提高年产量不断递增。 据最新资料统计,2004年我国钢渣的产生量为3819万t,钢渣利用率仅为10%左右,该数据显示钢渣利用率很低,距离钢铁企业固体废弃物“零”排放的目标尚远。 积极开发和应用先进有效的处理技术和资源化利用新技术,提高其利用率和附加值,是钢铁企业发展循环经济,实现可持续发展的重要课题之一。 钢渣利用途径和制约钢渣利用率的因素 钢渣的利用途径大致可分为内循环和外循环,内循环指钢渣在钢铁企业内部利用,作为烧结矿的原料和炼钢的返回料。钢渣的外循环主要是指用于建筑建材行业。 1 钢渣的内循环利用 钢渣返烧结主要是利用钢渣中的残钢、氧化铁、氧化镁、氧化钙、氧化锰等有益成分,而且可以作为烧结矿的增强剂,因为它本身是熟料,且含有一定数量的铁酸钙,对烧结矿的强度有一定的改善作用,另外转炉渣中的钙、镁均以固溶体形式存在,代替溶剂后,可降低溶剂(石灰石、白云石、菱镁石)消耗,使烧结过程碳酸盐分解热减少,降低烧结固体燃料消耗。 钢渣在钢铁企业内部循环历来受到重视和普遍采用,配加转炉渣的烧结矿可改善高炉的流动性,增加铁的还原产量。但是配矿工艺对返烧结有影响,过度使用会造成磷等有害元素的富集;配加转炉渣的烧结矿品位、碱度有所降低。 研究表明,当高炉炉料使用100%自熔性球团矿时,5%转炉渣作为溶剂加入会引起高炉运行不畅,原因是明显影响球团矿的软熔特性,增大软熔温度间隔,使炉渣粘性有增大趋势。 另外钢渣的成分波动较大,烧结配矿时要求钢渣各种氧化物成分波动≤±2%,粒度要求一般小于3mm,钢渣在成分上很难满足要求,对钢渣破碎和筛分的要求也高。

钢渣处理及资源化综合利用工艺_郭秀键

0概述 钢渣是炼钢产生的副产物,约为钢产量的9%~ 12%。 炼钢根据产钢流程,分转炉流程和电炉流程,转炉流程产生的渣有脱硫渣、转炉钢渣、注余渣等;电炉流程产生的钢渣有电炉渣、注余渣等。炼钢不同工序产生的渣量也不同,脱硫渣12~15kg/t(铁水),转炉渣100~110kg/t(钢),电炉渣120~150kg/t(钢),注余渣25~30kg/t(钢)。2010年全球粗钢产量达到14.14亿吨,亚洲粗钢产量为8.11亿吨,其中,中国以6.267亿吨位居全球第一位,占全球钢产量的44.3%。全球粗钢以转炉钢为主,产量约占2/3,中国约有90%为转炉钢,年产生的钢渣量超过0.63亿吨。目前钢渣 利用率较低,研究钢渣的资源化综合利用十分必要。 1影响钢渣利用的因素 炼钢过程中为了脱硫、脱磷、脱碳需要,加入的 造渣材料(石灰等)与酸性氧化物反应生成的矿物形成钢渣。在钢渣产生及处理过程中,有如下因素影响其资源化综合利用。1.1成分 炼钢是一个间断性的生产工艺,每炉钢冶炼工况都有所差异,同一炉冶炼过程不同时段排出渣的成分有所区别,不同炉或不同工序产出的渣混装在一起,也会导致钢渣成分不稳定,增加下游用户的使用难度。钢渣成分的稳定要从冶炼及出渣制度、处置方 钢渣处理及资源化综合利用工艺 郭秀键 (中冶赛迪集团公司,重庆市400013) 〔摘 要〕通过对影响钢渣利用的成分、安定性及活性因素的分析,提出了对应的解决措施;通过对钢渣冷 却工艺和利用途径的对比分析,提出采用余热自解工艺冷却钢渣,充分选铁并回收含铁物料及部分可做熔剂的钢渣;尾渣控制合理的粒度,采用不同的深加工工艺,生产钢渣微粉、砌块等建材产品或直接作筑路、回填料,以实现钢渣的资源化综合利用,达到钢渣的“零排放”的目标。 〔关键词〕钢渣;安定性;活性;改质;余热自解;微粉;综合利用 中图分类号:X757 文献标识码:B 文章编号:1004-4345(2012)06-0017-03 Steel Slag Treatment and Resource Comprehensive Utilization Process GUO Xiu-jian (CISDI Group Co.,Ltd.,Chongqing,400013,China) Abstract The corresponding solutions are introduced by analyzing composition,stability and activity that is affected by utilization of steel slag;process of waste heat self-dissolution adopted for steel slag cooling is presented by comparing and analyzing the processes of steel slag cooling and utilization approaches,iron will be selected adequately,materials containing iron and steel slag that may be acted as flux will be recovered;and particle of slag tails will be controlled reasonably.The different deep processing processes will be adopted to produce building materials(such as steel slag fine powder and building blocks),or steel slag may be regarded as materials for paving and filling,resource comprehensive utilization and "zero discharge"purpose of steel slag can be achieved. Keywords steel slag;stability;activity;property changing;waste heat self-dissolution;fine powder;comprehensive utilization 收稿日期:2012-07-05 作者简介:郭秀键(1978—),男,工程师,主要从事固体废物处理与资源化。 有色冶金设计与研究 第33卷2012年第6期 12月

相关主题
文本预览
相关文档 最新文档