当前位置:文档之家› 基于小波变换的一维数据中的特征部位提取算法

基于小波变换的一维数据中的特征部位提取算法

基于小波变换的一维数据中的特征部位提取算法
基于小波变换的一维数据中的特征部位提取算法

基于小波变换的一维数据中的特征部位提取算法

摘要:介绍了基于小波变换的图像分解与重构,小波变换具有时—频局部化的特点,因此不能对图像提供较精确的时域定位,也能提供较精确的频域定位。基于小波变换的这些特性,对图像进行变换,例如图像的增强,图像的特征部位的提取。研究结果表明,基于小波变换的图像处理的特征部位的提取具有理想的效果。

关键词:小波分析,图像处理,特征部位的提取

一、小波的基本知识

1、小波的发展历史及现状

小波理论是傅里叶分析的重要发展,1807年J. Fourier 提出Fourier 级数,1946年,Gabor 提出了Gabor 变换;稍后Gabor 变换发展为窗口傅里叶变换,20世纪80年代初,一些科学家开始使用小波,1986年Y . Meyer 第一次构造出正交小波基。从数学的角度看,小波实际上是在特定的空间内按照称之为小波的基函数对数学表达式的展开与逼近。

经典的小波理论尽管在90年代初期已经显得非常完善,但在实际应用中仍然存在许多缺陷。1995年,Sweldens 提出了通过矩阵的提升格式(lifting scheme)来研究完全重构滤波器,从而建立了称之为第二代小波变换的框架体系。1999年,Kingsbury 等提出了复小波变换,1999年,Candes 与Donoho 提出了脊波(ridgelet)和曲波(curvelet)。2002年,Donoho 和M. Vetterli 提出了轮廓波(contourlet)。2005年,Le Pennec 和Mallat 提出了Bandlet 。2005年,D. Labate 等提出了shearlet 。

2.小波的特点和发展

小波变换的具有如下3个特点:1、小波变换,既有频率分析的性质,又能表现发生的时间。有利于分析确定时间发生的现象(傅里叶变换只具有频率分析的性质)。2、小波变换的多分辨度的变换,有利于各分辨度不同特征不同特征的提取(图像的压缩、边缘抽取、噪声过滤等)。3、小波变换比傅里叶变换还要快一个数量级信号长度为M 时,傅里叶变换和小波变换的计算复杂性分别为:M M O f 2log =,M O w =。“小波分析”是分析原始信号的各种变换的特性,进一步应用于数据的压缩,噪音去除,特征选择等。例如歌唱信号:是高音还是低音,发声时间长短,起伏,旋律等。从平稳的波形发现突变的尖峰。小波分析是利用多种“小波基函数”对“原始信号”进行分解。运用小波基,可以提取信号中“指定时间”和“制定频率”的变化。时间:提取信号中“指定时间”(时间A 或时间B )的变化。顾名思义,小波在某时间发生的小的波动。频率:提取信号中时间A 的比较慢速变化,称较低频率成分;而提取信号中时间B 的变化比较快速变化,称较高频率成分。

3、小波的成就

小波是数学分析、应用数学和工程技术的完美结合。从数学来说是大半个世纪“调和分析”的结晶(包括傅里叶分析、函数空间等)。小波变换是20世纪最辉煌科学成就之一。在计算机应用、信号处理、图像分析、非线性科学、地球科学和应用技术等已有重大突破,预示着

小波分析进一步热潮的到来。

二、小波分析在一维信号处理中的应用

小波变换就是将“原始信号S ”变换成为“小波系数W ”[]b a W W W ,=,包括近似系数a W 与细节系数b W 。近似系数a W 为平均成分(低频),细节系数b W 为变化成分(高频)。小波原始信号分解过程为:原始信号S 可分解为小波近似a 和小波细节b 之和,b a S +=。小波系数[]b a W W W ,=的分量,乘以基函数,形成小波分解:小波近似系数a W *基函数A=近似分解A (平均);小波细节系数b W *基函数D=细节分解d (变化)。

1、 小波分解和小波基

正变换:原始信号在小波基上,获得“小波系数”分量。

反变换:所有“小波分解”合成原始信号,例如:小波分解a=小波系数a W *小波基A 。

2、 离散小波变换公式

信号S 有M 个样本,J 级小波变换:正变换 n=1,……,M []

1,......,d dj aj j W W W W =

3、 小波分析在图像处理中的应用

数字图像的处理至今已有40多年的发展历史,其经典的图像处理方法有很多。小波在图像处理上的应用思路主要采用将空间或时间域上的图像信号变换到小波域上,成为多层次的小波系数,根据小波的特性,分析小波系数的特点,针对不同需求,结合常规的图像处理方法

提出更符合小波分析的新算法来处理小波系数,再对处理后的小波系数进行反变换,将得到所需的目标图像。

Mallat提出了求解小波系数的塔形算法思想,对一幅图像完成一次一维小波变换,需要对图像的行和列分别进行一次Mallat算法处理,也就是水平和垂直滤波。小波变换将原始图像分成4个子带,即一个低频子带(LL)和3个高频子带(LH,HL,HH),对低频子带进一步实施小波变换,分解成下一级4个子带。图像经过M级小波变换后,得到一系列子图像。分解后图像总的像素数不变,因为系列子图像是通过不同的方向的高通或低通滤波得到的,因而反应了图像中的不同部分。

图像是二维信号,其小波变换相当于二次一维信号的小波变换:(1)第一次一维信号的小波变换相当于图像的行变换;(2)第二次一维信号的小波变换相当于图像的列变换。

1、基于小波的图像增强

小波变换将一幅图像分解为大小,位置和方向均不相同的分量。在做逆变换之前,可以根据不同需要,对不同位置,不同方向上的某些分量改变其系数的大小,从而使得某些感兴趣的分量被放大而使某些不需要的分量减小。分解后的图像,其主要信息(即轮廓的大小)由低频部分来表征,而细节部分则由高频部分表征。因此,对分解后的低频系数加权进行增强,而对高频部分进行加权进行弱化,经过如此处理之后,即达到图像增强的增强的目的。

2、基于小波的图像融合

图像融合时将统一图像的两个或更多个图像之和承载一幅图像中,以便满足人们的某种需要。这一技术应用于多频谱图像理解和医学图像处理等领域使得融合图像更容易为人们所理解。

将图像(b)融合到图像(a)中即得到图像(c)。

3、基于小波的图像压缩

图像数据往往存在各种信息的冗余,如空间冗余,信息冗余,视觉冗余和结构冗余等,因此有必要进行压缩。小波分析进行图像压缩的基本的基本原理:根据二维小波分解算法,将一幅图像做小波分解,可得到一系列不同分辨率的图像,而表现一幅图最主要的部分是低频部分,如果去掉图像的高频部分而只保留低频部分,则可达到图像压缩的目的。基于小波的图像压缩数据如下表:

从以上数据可以看出,第一次压缩是提取原始图像中小波分解第一层的低频信息,此时压缩效果好,压缩比较小(约为1/3),第二次压缩是提取第一层分解低频部分的低频部分(即为小波分解第二层的低频部分),其压缩比较大(约为1/12),压缩效果在视觉上基本上过的去,它不需要经过其他的处理即可获得较好的压缩效果。

4、小波变换图像特征抽取

三、总结

目前小波变换在图像识别方面已取得了一定成功的应用,时域信号经小波分析后其特征会更加明显。小波在纹理特征的提取,人脸识别,指纹识别,图像去噪,图像增强等方面有广泛的应用。

参考文献:

[1]刘贵忠,小波分析及其应用[M]。西安西安电子科技大学出版社

[2]朱树龙,小波理论在图像处理中的应用[M]。北京解放军出版社

[3]杨博,数字图像融合[M]。西安西安交通大学

[4]陈武凡,小波分析及其在图像处理中的应用[M]。北京科学出版社

[5]Unser M,Thevenaz P.Aldroubi A.Shift-orthogonal Wavelet Bases Using Splines.IEEE signal Processing Letters,1996;3(3)8588

[6]Daubechies I, Ore ho normal Basis of compactly Supported Wavalet Comm. Pure Appl. Math. 1998(41):909996

几种常用边缘检测算法的比较

几种常用边缘检测算法的比较摘要:边缘是图像最基本的特征,边缘检测是图像分析与识别的重要环节。基于微分算子的边缘检测是目前较为常用的边缘检测方法。通过对Roberts,Sobel,Prewitt,Canny 和Log 及一种改进Sobel等几个微分算子的算法分析以及MATLAB 仿真实验对比,结果表明,Roberts,Sobel 和Prewitt 算子的算法简单,但检测精度不高,Canny 和Log 算子的算法复杂,但检测精度较高,基于Sobel的改进方法具有较好的可调性,可针对不同的图像得到较好的效果,但是边缘较粗糙。在应用中应根据实际情况选择不同的算子。 0 引言 边缘检测是图像分析与识别的第一步,边缘检测在计算机视觉、图像分析等应用中起着重要作用,图像的其他特征都是由边缘和区域这些基本特征推导出来的,边缘检测的效果会直接影响图像的分割和识别性能。边缘检测法的种类很多,如微分算子法、样板匹配法、小波检测法、神经网络法等等,每一类检测法又有不同的具体方法。目前,微分算子法中有Roberts,Sobel,Prewitt,Canny,Laplacian,Log 以及二阶方向导数等算子检测法,本文仅将讨论微分算子法中的几个常用算子法及一个改进Sobel算法。 1 边缘检测

在图像中,边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域( 包括不同色彩) 之间。边缘表明一个特征区域的终结和另一特征区域的开始。边缘所分开区域的内部特征或属性是一致的,而不同的区域内部特征或属性是不同的。边缘检测正是利用物体和背景在某种图像特征上的差异来实现检测,这些差异包括灰度、颜色或纹理特征,边缘检测实际上就是检测图像特征发生变化的位置。边缘的类型很多,常见的有以下三种: 第一种是阶梯形边缘,其灰度从低跳跃到高; 第二种是屋顶形边缘,其灰度从低逐渐到高然后慢慢减小; 第三种是线性边缘,其灰度呈脉冲跳跃变化。如图1 所示。 (a) 阶梯形边缘(b) 屋顶形边缘 (b) 线性边缘 图像中的边缘是由许多边缘元组成,边缘元可以看作是一个短的直线段,每一个边缘元都由一个位置和一个角度确定。边缘元对应着图像上灰度曲面N 阶导数的不连续性。如果灰度曲面在一个点的N 阶导数是一个Delta 函数,那么就

图像颜色特征提取基本知识

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法

SIFT 特征提取算法详解

SIFT 特征提取算法总结 主要步骤 1)、尺度空间的生成; 2)、检测尺度空间极值点; 3)、精确定位极值点; 4)、为每个关键点指定方向参数; 5)、关键点描述子的生成。 L(x,y,σ), σ= 1.6 a good tradeoff

D(x,y,σ), σ= 1.6 a good tradeoff

关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的。在 Lowe 的论文中, 将第0层的初始尺度定为1.6,图片的初始尺度定为0.5. 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。 next octave 是由first octave 降采样得到(如2) , 尺度空间的所有取值,s为每组层数,一般为3~5 在DOG尺度空间下的极值点 同一组中的相邻尺度(由于k的取值关系,肯定是上下层)之间进行寻找

在极值比较的过程中,每一组图像的首末两层是无法进行极值比较的,为了满足尺度 变化的连续性,我们在每一组图像的顶层继续用高斯模糊生成了 3 幅图像, 高斯金字塔有每组S+3层图像。DOG金字塔每组有S+2层图像.

If ratio > (r+1)2/(r), throw it out (SIFT uses r=10) 表示DOG金字塔中某一尺度的图像x方向求导两次 通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度)?

直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向 Identify peak and assign orientation and sum of magnitude to key point The user may choose a threshold to exclude key points based on their assigned sum of magnitudes. 利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备 旋转不变性。以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度 方向。梯度直方图的范围是0~360度,其中每10度一个柱,总共36个柱。随着距中心点越远的领域其对直方图的贡献也响应减小.Lowe论文中还提到要使用高斯函 数对直方图进行平滑,减少突变的影响。

文本特征提取方法

https://www.doczj.com/doc/e012602146.html,/u2/80678/showart_1931389.html 一、课题背景概述 文本挖掘是一门交叉性学科,涉及数据挖掘、机器学习、模式识别、人工智能、统计学、计算机语言学、计算机网络技术、信息学等多个领域。文本挖掘就是从大量的文档中发现隐含知识和模式的一种方法和工具,它从数据挖掘发展而来,但与传统的数据挖掘又有许多不同。文本挖掘的对象是海量、异构、分布的文档(web);文档内容是人类所使用的自然语言,缺乏计算机可理解的语义。传统数据挖掘所处理的数据是结构化的,而文档(web)都是半结构或无结构的。所以,文本挖掘面临的首要问题是如何在计算机中合理地表示文本,使之既要包含足够的信息以反映文本的特征,又不至于过于复杂使学习算法无法处理。在浩如烟海的网络信息中,80%的信息是以文本的形式存放的,WEB文本挖掘是WEB内容挖掘的一种重要形式。 文本的表示及其特征项的选取是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。 目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为文本的特征或特征项。特征项必须具备一定的特性:1)特征项要能够确实标识文本内容;2)特征项具有将目标文本与其他文本相区分的能力;3)特征项的个数不能太多;4)特征项分离要比较容易实现。在中文文本中可以采用字、词或短语作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分值最高的作为特征词,这就是特征抽取(Feature Selection)。

特征提取方法

4.2.2 特征提取方法 图像经过一系列的预处理之后,原来大小不同、分布不规则的各个字符变成了一个个大小相同、排列整齐的字符。下面接要从被分割归一处理完毕的字符中,提取最能体现这个字符特点的特征向量。将提取出训练样本中的特征向量代入BP网络之中就可以对网络进行训练,提取出待识别的样本中的特征向量代入到训练好的BP网络中,就可以对汉字进行识别。 特征向量的提取方法多种多样,可以分为基于结构特征的方法和基于像素分布特征的方法,下面给予简单介绍,并说明本文所用的方法。 (1)结构特征。结构特征充分利用了字符本身的特点,由于车牌字符通常都是较规范的印刷体,因此可以较容易地从字符图像上得到它的字符笔画信息,并可根据这些信息来判别字符。例如,汉字的笔画可以简化为4类:横、竖、左斜和右斜。根据长度不同又可分为长横、短横、长竖和短竖等。将汉字分块,并提取每一块的笔画特征,就可得到一个关于笔画的矩阵,以此作为特征来识别汉字。 (2)像素分布特征。像素分布特征的提取方法很多,常见的有水平、垂直投影的特征,微结构特征和周边特征等。水平、垂直投影的特征是计算字符图像在水平和垂直方向上像素值的多少,以此作为特征。微结构法将图像分为几个小块,统计每个小块的像素分布。周边特征则计算从边界到字符的距离。优点是排除了尺寸、方向变化带来的干扰,缺点是当字符出现笔划融合、断裂、部分缺失时不适用。 ①逐像素特征提取法 这是一种最简单的特征提取方法。它可以对图像进行逐行逐列的扫描,当遇到黑色像素时取其特征值为1,遇到白色像素时取其特征值为0,这样当扫描结束后就获得一个维数与图像中的像素点的个数相同的特征向量矩阵。 这种特征提取方法的特点就是算法简单,运算速度快,可以使BP网络很快的收敛,训练效果好,更重要的是对于数字图像这样特征较少的图像,这种方法提取的信息量最大,所以对于本系统来说,这种方法较为适用。但是它的缺点也很明显,就是适应性不强,所以本文没有选用这种方法。 ②骨架特征提取法

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真 目录 第1章绪论 1 1.1 序言 1 1.2 数字图像边缘检测算法的意义 1 第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 3 2.3 数字图像边缘检测关于边缘的定义 4 2.4 基于一阶微分的边缘检测算子 4 2.5 基于二阶微分的边缘检测算子 7 第3章编程和调试 10 3.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结 13 第5章图像边缘检测应用领域 13 附录参考文献 15

第1章绪论 §1.1 序言 理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。图像边缘是分析理解图像的基础,它是图像中最基本的特征。在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。 图像边缘主要划分为阶跃状和屋脊状两种类型。阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。 Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。另外其相对简单的算法使得整个过程可以在较短的时间实现。实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。 §1.2 数字图像边缘检测算法的意义 数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。边缘中包含图像物体有价值的边界信息,这些信息可以用于图像理解和分析,并且通过边缘检测可以极降低后续图像分析和处理的数据量。图像理解和分析的第一步往往就是边缘检测,目前它已成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。 图像的边缘检测技术是数字图像处理技术的基础研究容,是物体识别的重要基础。边缘特征广泛应用于图像分割、运动检测与跟踪、工业检测、目标识别、双目立体视觉等领域。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

图像特征提取算法

Histograms of for Human Detection Navneet Dalal and Bill Triggs INRIA Rh?o ne-Alps,655avenue de l’Europe,Montbonnot38334,France {Navneet.Dalal,Bill.Triggs}@inrialpes.fr,http://lear.inrialpes.fr Abstract We study the question of feature sets for ob-ject recognition,adopting linear SVM based human detec-tion as a test case.After reviewing existing edge and gra-dient based descriptors,we show experimentally that grids of Histograms of Oriented Gradient(HOG)descriptors sig-ni?cantly outperform existing feature sets for human detec-tion.We study the in?uence of each stage of the computation on performance,concluding that?ne-scale gradients,?ne orientation binning,relatively coarse spatial binning,and high-quality local contrast normalization in overlapping de-scriptor blocks are all important for good results.The new approach gives near-perfect separation on the original MIT pedestrian database,so we introduce a more challenging dataset containing over1800annotated human images with a large range of pose variations and backgrounds. 1Introduction Detecting humans in images is a challenging task owing to their variable appearance and the wide range of poses that they can adopt.The?rst need is a robust feature set that allows the human form to be discriminated cleanly,even in cluttered backgrounds under dif?cult illumination.We study the issue of feature sets for human detection,showing that lo-cally normalized Histogram of Oriented Gradient(HOG)de-scriptors provide excellent performance relative to other ex-isting feature sets including wavelets[17,22].The proposed descriptors are reminiscent of edge orientation histograms [4,5],SIFT descriptors[12]and shape contexts[1],but they are computed on a dense grid of uniformly spaced cells and they use overlapping local contrast normalizations for im-proved performance.We make a detailed study of the effects of various implementation choices on detector performance, taking“pedestrian detection”(the detection of mostly visible people in more or less upright poses)as a test case.For sim-plicity and speed,we use linear SVM as a baseline classi?er throughout the study.The new detectors give essentially per-fect results on the MIT pedestrian test set[18,17],so we have created a more challenging set containing over1800pedes-trian images with a large range of poses and backgrounds. Ongoing work suggests that our feature set performs equally well for other shape-based object classes. We brie?y discuss previous work on human detection in §2,give an overview of our method§3,describe our data sets in§4and give a detailed description and experimental evaluation of each stage of the process in§5–6.The main conclusions are summarized in§7. 2Previous Work There is an extensive literature on object detection,but here we mention just a few relevant papers on human detec-tion[18,17,22,16,20].See[6]for a survey.Papageorgiou et al[18]describe a pedestrian detector based on a polynomial SVM using recti?ed Haar wavelets as input descriptors,with a parts(subwindow)based variant in[17].Depoortere et al give an optimized version of this[2].Gavrila&Philomen [8]take a more direct approach,extracting edge images and matching them to a set of learned exemplars using chamfer distance.This has been used in a practical real-time pedes-trian detection system[7].Viola et al[22]build an ef?cient moving person detector,using AdaBoost to train a chain of progressively more complex region rejection rules based on Haar-like wavelets and space-time differences.Ronfard et al[19]build an articulated body detector by incorporating SVM based limb classi?ers over1st and2nd order Gaussian ?lters in a dynamic programming framework similar to those of Felzenszwalb&Huttenlocher[3]and Ioffe&Forsyth [9].Mikolajczyk et al[16]use combinations of orientation-position histograms with binary-thresholded gradient magni-tudes to build a parts based method containing detectors for faces,heads,and front and side pro?les of upper and lower body parts.In contrast,our detector uses a simpler archi-tecture with a single detection window,but appears to give signi?cantly higher performance on pedestrian images. 3Overview of the Method This section gives an overview of our feature extraction chain,which is summarized in?g.1.Implementation details are postponed until§6.The method is based on evaluating well-normalized local histograms of image gradient orienta-tions in a dense grid.Similar features have seen increasing use over the past decade[4,5,12,15].The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of local intensity gradients or 1

肺结节检测中特征提取方法研究

小型微型计算机系统JournalofChineseComputerSystems2009年10月第10期V01.30No.102009 肺结节检测中特征提取方法研究 何中市1,梁琰1,黄学全2,王健2 1(重庆大学计算机学院,重庆400044) 2(第三军医大学西南医院放射科,重庆400038) E—mail:zshe@cqu.edu.ca 摘要:计算机辅助诊断(Computer—AidedDiagnosis,CAD)系统为肺癌的早期检测和诊断提供了有力的支持.本文对孤立性肺结节特征提取问题进行研究.通过对肺结节和肺内各组织在序列CT图像上的医学征象分析和研究对比,结合专家提供的知识,提出了肺结节特征提取总体方案.该方案分别从肺部CT图像的灰度特征、肺结节形态、纹理、空间上下文特征等几个方面,对关键的医学征象进行图像分析,从而实现对ROI(RegionsofInterest)区域的特征提取和量化;提出特征提取的评价方案,实验结果表明,本文提取的特征提取方案是有效的.利用本文提取的特征,肺结节检测正确率达到93.05%,敏感率为94.53%. 关键词:孤立性;肺结节;特征提取;CT图像;特征评价 中图分类号:TP391文献标识码:A文章编号:1000—1220(2009)10—2073-05 ResearchontheFeatureExtractionApproachforSPNsDetection 腼Zhong—shil,LIANGYanl,HUANGXue—quan2,WANGJian2 1(CollegeofComputerScience,c‰增幻增Univers毋,Chongqing400044,China) 2(DepartmentofRadiology,Southwest丑却池z,ThirdMilitaryMedwalUniversityofChinesePL4,Chongqing400038,China) Abstract:Imageprocessingtechniqueshaveprovedtobeeffectiveforimprovementofradiologists7diagnosisofpubmonarynodules.Inthispaper,wepresentastrategybasedonfeatureextractiontechniqueaimedatSolitaryPulmonaryNodules(SPN)detection.Infeatureextractionscheme,36featureswereobtained,contained3greylevelfeatures,16morphologicalfeatures,10texturefeaturesand7spatialcontextfeatures.Andtheclassifier(SVM)runningwiththeextractedfeaturesachievescomparativeresults,withare-suitof93.05%innoduledetectionaccuracyand94.53%insensitivity. Keywords:isolated;solitarypulmonarynodules;featureextraction;CTimages;featureassessment 1引言 近几年,随着影像检查技术的改进,临床结果初步证明CT扫描是检测早期无症状肺癌最有效的影像学方法。1J.肺部疾病在CT影像上通常表现为孤立性肺结节(SolitaryPul—monaryNodules,SPNs),因此,对孤立性肺结节的检测和识别是对肺部疾病诊断最重要的途径.计算机辅助诊断系统一方面,大大减轻了医生的工作量,提高了工作效率;另一方面,使影像诊断更加客观化,提高诊断的效率和正确效率.因此,用计算机进行肺结节辅助诊断,提取肺结节特征,检测肺结节,是具有十分重要的意义和研究价值的. 在孤立性肺结节自动识别中,肺结节的特征提取及表示是其关键问题之一,它是进行识别的重要手段.关于肺结节检测方法有很多。2…,但对肺结节医学征象描述并不充分.目前一般常用面积、周长等形态方面进行肺结节特征提取.对肺结节的形态、全局、局部上下文特征以及病理征象的分析不足,使得特征提取描述不到位,影响识别准备率.同时也欠缺对识别结果的解释.正因为对提取的特征与肺结节医学征象问的对应关系分析不足,无法对识别结果进行医学知识上的解释, 特征提取特征评价 懂歪母 I里斗1显查鲎堑卜_倒1J躺l 帽霭瓣||描述程度l 1絮嚣卜 lJs、,M识 --|别性能 图1SPNs诊断框架图 Fig.1OverviewofSPNsdetection 而只有”是”或”否”的识别结果,无法给医生提供更多的信息.本文围绕以上几个问题,意在提供全面的、系统的量化信息,便于医学专家诊断的客观化、效率化.本文对孤立性肺结节特征提取问题进行研究.通过对肺结节和肺内各组织在序列CT图像上的医学征象分析和研究对比,提出了肺结节特征提取总体方案.该方案分别从肺部CT图像的灰度特征、形 收稿日期:2008-08-30基金项目:重庆市重大科技专项项目(CSTC,2008AB5038)资助;重庆市自然科学基金项目(CSTC,2007BB2134))资助.作者简介:何中市,男,1965年生,博士,教授,研究方向为人工智能、机器学习与数据挖掘等;梁琰,女,1982年生,博士研究生,图像处理、模式识别;黄学金,男,1966年生,博士,副教授,研究方向为影像诊断和介入放射学;王健,男,1964年生,博士,教授,研究方向为影像诊断和介入放射学.

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

颜色特征常用的特征提取与匹配方法

颜色直方图: 全局颜色直方图:反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率,Swain 和 Ballard最先提出了使用颜色直方图作为图像颜色特征的表示方法。他们还指出:颜色直方图相对于图像的以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,颜色直方图对于图像质量的变化(如模糊)也不甚敏感。颜色直方图的这种特性使得它比较适合于检索图像的全局颜色相似性的场合,即通过比较颜色直方图的差异来衡量两幅图像在颜色全局分布上的差异。 颜色直方图的主要性质有:直方图中的数值都是统计而来,描述了该图像中关于颜色的数量特征,可以反映图像颜色的统计分布和基本色调;直方图只包含了该图像中某一颜色值出现的频数,而丢失了某象素所在的空间位置信息;任一幅图像都能唯一的给出一幅与它对应的直方图,但不同的图像可能有相同的颜色分布,从而就具有相同的直方图,因此直方图与图像是一对多的关系;如将图像划分为若干个子区域,所有子区域的直方图之和等于全图直方图;一般情况下,由于图像上的背景和前景物体颜色分布明显不同,从而在直方图上会出现双峰特性,但背景和前景颜色较为接近的图像不具有这个特性。 累加直方图:当图像中的特征并不能取遍所有可取值时,统计直方图中会出现一些零值。这些零值的出现会对相似性度量的计算带来影响,从而使得相似性度量并不能正确反映图像之间的颜色差别。为解决这个问题,在全局直方图的基础上,Stricker和Orengo进一步提出了使用“累加颜色直方图”的概念。在累加直方图中,相邻颜色在频数上是相关的。相比一般直方图,虽然累加直方图的存储量和计算量有很小的增加,但是累加直方图消除了一般直方图中常见的零值,也克服了一般直方图量化过细过粗检索效果都会下降的缺陷。一般的颜色直方图由于颜色空间是三维的,具有相同的三通道独立分布,但其联合分布并不为一。这种不考虑联合分布的方法,会导致在结果集中不相似的图像数目增加。

相关主题
文本预览
相关文档 最新文档