当前位置:文档之家› 2014油气地球化学_大题_总复习~ 2

2014油气地球化学_大题_总复习~ 2

2014油气地球化学_大题_总复习~ 2
2014油气地球化学_大题_总复习~ 2

海相原油的地球化学特征1、原油的化学性质:国外公认的碳酸盐岩生成的石油特征是:高硫(> 1.0 %), 低API度(20~30),Pr/Ph<1.0,Ph/nC18>1.0,偶碳优势CPI<1.0。2、生物标志化合物特征:①正构烷烃碳数分布呈单峰态,②广泛检出C13~C20规则无环类异戊二烯烷烃和C21~C45规则和不规则无环类异戊二烯烷烃。③规则甾烷以C29甾烷占优势,一般占40%~60④C31~C35升藿烷系列相对较发育,且明显受盐度控制。⑤伽马蜡烷为常见的非藿烷骨架型五环三萜烷。⑥三环萜烷含量较高

陆相原油的地球化学特征1、原油的性质:原油普遍高含蜡,硫酸盐含量低,具有低钒/镍比(一般小于1)的特点2、原油的烃类族组成:原油的烃类族组成以烷烃为主,环烷烃次之,芳香烃较少,多属石蜡基原基。3、生物标志化合物特征。①饱和烃馏分:检测出C13~C20规则无环类异戊二烯烷烃,并有丰富的甾烷、萜烷类化合物。②芳烃馏分:陆相原油芳经馏分中含有丰富的芳构化生物标志化合物,主要类型有:

生标物应具备的基本特征 1.化合物的结构表明它曾经是或者可能是生物体的一种成分,存在于沉积物中,尤其是在原油、煤、岩石中能够检测到。2.其母体化合物有较高的浓度,其主要结构特征在沉积和早期埋藏过程中具有化学稳定性3.分子结构有明显的特异性,即具有特殊的碳骨架

影响沉积有机质丰度的主要控制因素①水体环境物理参数对沉积有机质丰度的控制作用:水体环境的物理参数是指沉积物和有机质沉积过程中沉积介质的动态和静态物理性质,包括水流速度、粘土矿物与有机质的絮凝作用、水体深度与浪基面的深度、沉积速度与沉降速度。②水体环境的化学参数对沉积有机质丰度的控制作用:水体环境的化学参数包括氧化还原电位(Eh值)、酸碱度(PH值)、盐度和温度,对沉积有机质最重要的是氧化—还原条件,氧化环境不利于有机质的保存。③水体环境的生物参数对沉积有机质丰度的控制作用主要表现在:提供有机质和沉积物来源;改变沉积环境;加速沉积过程;消耗、改造有机质。

干酪根分类方法及各种方法的优劣1、干酪根的元素分类①Ⅰ型干酪根:H/C原子比一般大于1.5,O/C原子比一般小于0.1,主要来源于藻类和微生物的脂类化合物,以生油为主②Ⅱ干酪根:H/C原子比1.0~1.5,O/C原子0.1 ~ 0.2,主要来源于浮游动、植物和微生物,既能生油,也能生气③Ⅲ干酪根: H/C原子比一般小于1.0,O/C原子比可达0.2或0.3,来源于陆地植物的木质素、纤维素等,以成气为主④Ⅳ干酪根: H/C原子比约0.5 ~0.6,O/C原子比大于0.3,为残余有机质或再循环有机质,其生烃能力极低。优点:采用的是原子比参数,反映干酪根总体的元素组成及其性质,对确定干酪根的类型和生油潜力是有意义的。不足:该分类方法受有机质演化程度的影响,从Van Krevelen图上可看出:各类型干酪根随埋深增加、温度升高而发生演化,其H/C、O/C原子比逐渐趋于接近,因而在干酪根成熟度较高的情况下用此法分类较困难。另一方面,相同类型干酪根,因受近地表风化的影响,其O/C原子比有较大增加,H/C原子比稍下降。

干酪根的显微组成分类目前国内普遍通行的分类方法是根据干酪根类型指数

——TI值来进行分类,具体办法是用鉴定的各组分百分含量计算TI值。优点:能通过干酪根的形态、颜色、透明度、荧光等特征,直接观察干酪根,确定干酪根的显微组分,具有直观、快速、经济、简单等优点,应用也较广泛,适用于有机质的各个演化阶段。不足:观察到的只是一个样品中干酪根的很少一部分,而具有形态的干酪根,包括一些动、植物微化石和碎屑,如藻、孢子等,又只代表干酪根显微组分的一小部分。完整的微化石很少,大部分为无定形干酪根,没有确定的形态和结构,无法根据光学性质加以鉴定。

干酪根在深成阶段的演化特征(1)在125℃以前,在60~125℃温度范围内,干酪根由于受热而大量裂解生成烃类。此时表现为可溶有机质数量迅速增加,生成

的C

15~C

40

的烃类,约占全部烃类生成总量的80~90%左右。沉积有机质处于成

熟状态,生成的主要产物为液态烃,即石油。(2)当温度大于125℃时,即在125—200℃温度范围内,此时将发生强裂的热裂解反应,它不仅可促使干酪根上较短的侧链脱落,同时也可使原先生成的较长链烃的碳—碳键发生断裂,形成的轻质烃往往优于从干酪根上各种键断裂产生的烃,出现了以湿气和凝析油为主的

阶段,即沉积有机质的过成熟阶段。在这一温度范围内,C

1一C

3

烃的含量相对增

加,其它较高碳数的烃含量则相对下降。

油气源对比参数的选择的原则(1)选择在演化、运移和次生变化中较稳定的特征化合物,尤其是那些能够直接反映原始有机质特征的化合物作为对比参数。(2)不同类型的油气采用不同的对比参效。(3)尽量采用有机化合物的分布形式及相对比值。(4)应选用多种参数组合进行综合对比,且应考虑地质构造、岩相等多方面资料。(5)广泛地采用数理统计方法和计算机应用的成果,科学地定量地研究对比参数之间的相关性。(6)样品间的正相关性不一定是样品相关的必要证据,但负相关性却是样品之间缺乏相关性的有力证据。

油气生成的一般模式1、生物甲烷气阶段—成岩阶段该阶段以低温(一般小于70℃)、低压和微生物生物化学作用为主要特点,有机质未成熟,没有大量转化为烃类,主要形成的烃是甲烷,原始干酪根类型取决于有机质类型。2、石油形成阶段(1)生油主带:在生油主带,随着温度持续上升,有机质开始成熟,当达到门限值时,干酪根便在热催化下大量降解形成液态烃及一定量的气体,这是生油的主要阶段,新生的烃具有中到低分子量,没有特征的结构及特殊的分布,它们数量不断增加,逐渐稀释了继承性的生物标志化合物。

(2)凝析油和湿气带:在高温下C-C键断裂更快,剩余的干酪根和己经形成的重烃继续热裂解,轻烃(C1-C8)比例迅速增加,在地层温度和压力超过烃类相态转变的临界值时,这些轻质烃就会发生逆蒸发,反溶解于气态烃中,形成凝析气和更富含气态烃的湿气。3、热裂解甲烷气阶段—准变质阶段:该阶段中残余的少量烷基链,尤其是己经形成的轻质液态烃在高温下继续裂解形成大量的最稳定的甲烷。干酪根的结构进一步缩聚形成官碳的残余物质。因此,该阶段也称为干气阶段。

油藏中原油的次生变化类型及结果1、干酪根的元素分类:优点:采用的是原子比参数,反映干酪根总体的元素组成及其性质,对确定干酪根的类型和生油潜力是有意义的。不足:该分类方法受有机质演化程度的影响,从Van Krevelen图

上可看出:各类型干酪根随埋深增加、温度升高而发生演化,其H/C、O/C原子比逐渐趋于接近,因而在干酪根成熟度较高的情况下用此法分类较困难。另一方面,相同类型干酪根,因受近地表风化的影响,其O/C原子比有较大增加,H/C 原子比稍下降。2、干酪根的显微组成分类:优点:能通过干酪根的形态、颜色、透明度、荧光等特征,直接观察干酪根,确定干酪根的显微组分,具有直观、快速、经济、简单等优点,应用也较广泛,适用于有机质的各个演化阶段。不足:观察到的只是一个样品中干酪根的很少一部分,而具有形态的干酪根,包括一些动、植物微化石和碎屑,如藻、孢子等,又只代表干酪根显微组分的一小部分。完整的微化石很少,大部分为无定形干酪根,没有确定的形态和结构,无法根据光学性质加以鉴定。3、热解色谱分类方法:岩石热解参数分类法具有快速的优点,但也存在明显的不足,主要表现在:(1)S3测不准;(2)随成熟度增高,S2不断降低,导致H/C变低,而且在成熟度高时与应用H/C原子比和O/C原子比划分干酪根类型一样,就区分不开了;(3)Ⅱ和Ⅲ之间的界限太宽。

油藏中原油的次生变化类型及结果1.热成熟作用:一方面原油发生裂解形成轻质油、凝析油、湿气甚至干气,油气的品质变好;另一方面,也会形成焦沥青,对储层造成伤害。2.生物降解作用:轻组分损失,原油品质变差,水洗作用也会使品质变差。3.气侵和脱沥青作用:一方面形成凝析气藏,另一方面随着天然气的注入发生脱沥青作用,沥青质沉淀,对储层造成伤害,使储层物性变差。

氧化作用:使石油中胶质、沥青质组分增加,原油品质变差。

影响原油类型的地质因素1.原始生油母质的类型和性质,如海相和陆相有机质,由沉积环境决定2.有机质热演化,涉及埋藏历史和地温梯度等 3.储层中石油的蚀变,如生物降解、氧化作用、水洗作用等

油型气的地球化学特征组分组成特征:(1)气态烃组分。油型气组分以烃气为主,一般含量在90%~95%以上,以甲烷为主(2)非烃气气体组分。含有一定的非烃气体,如氮、二氧化碳以及少量的氢、氩和氦气。以氮和二氧化碳为主。同位素组成特征:(1)我国油型气甲烷δ13C值的分布范围在-76‰~-30 ‰,主频在-50‰~-32 ‰,表明我国的油型气以伴生气和高温裂解气为主(2)气态重烃气碳同位素随成熟度的分馏比甲烷碳同位素小得多(3)甲烷氢同位素。我国油型气δD

CH4

值分布较宽,主频在-250‰~-180 ‰,反映出气源岩主要为淡水沉

积。甲烷δ13C

1与δD

CH4

的关系:油型气具有随演化程度增加,甲烷碳、氢同位

素相应变重的趋势

煤型气的地球化学特征组成特征:(1)煤型气烃类气体中,甲烷是最主要的组分,

主体分布在85%~95%(占70% ) 。C

2+在1%~20%(2)含有一定量的非烃气,如N

2

CO

2、H

2

S、Hg、He、Ar及Ne等。同位素特征:(1)甲烷碳同位素。在相同成熟

度的条件下,煤型气的甲烷比油型气富集重碳同位素(2)重烃碳同位素。煤型

气δ13C

2大于-28.1‰、δ13C

3

大于-23‰(3)甲烷氢同位素组成。与气源岩的热

演化程度有关,随着有机质热演化程度的增高,甲烷富集重氢同位素;在相同的演化程度下,甲烷的氢同位素组成主要与其气源岩沉积时水体的盐度有关

立体异构化差异的意义在有机质成熟演化过程中: (1) 链状烃:由不稳定的生物构型R型向稳定的地质构型为S型转化。(2) 环状烃:生物构型大多数为α型,地质构型为β型。(3) 分子重排:由分子中的氢原子或烷基从一个碳原子转移到另一个碳原子(相邻碳原子),由正常构型转变为重排构型

镜质组反射率与成熟度的关系镜质组反射率随热演化程度的升高而稳定增大,并且有相对广泛、稳定的可比性,使R0成为目前应用最为广泛、最为权威的成熟度指标。我国石油行业1995年颁布的R0与有机质演化阶段(成熟度)的关系如下:(1)Ro<0.5%-0.7%为成岩阶段,有机质未成熟(2)0.5%-0.7%< Ro<1.15%-1.3%为深成阶段,有机质从低成熟到成熟,为主要的生油阶段(3)1.15%-1.3%< Ro<2%为深成阶段后期,有机质达到高成熟,主要产湿气和凝析油(4)Ro>2%为有机质变质阶段,有机质过成熟,主要产干气。干酪根则经强烈的芳构化、缩聚而趋向于形成仅含碳元素的石墨

油气源对比的主要依据所谓油气源对比是指在综合地质和地球化学资料的基础上,建立油、气与烃源岩的成因关系,其实质是运用有机地球化学的基本原理,合理地选择对比参数(指标)来研究石油、天然气、烃源岩之间的相互关系;其基本依据是如果源岩中的干酪根、可溶抽提物沥青与来自该层系的油、气有亲缘关系,则它们在化学组成上必然存在某种程度的相似性,反之非同缘的油气则会表现出较大的差异,即“相似相关”是进行油气源对比的基本依据。

油气源研究的主要方法油气源研究的主要方法是对原油(天然气)之间或原油(天然气)和烃源岩之间的相同馏分中某个成分的含量或某些成分之间的比值,或某同系物分布和组成进行比较。可通过元素(样品的总体构成)、分子和同位素参数的对比实现。使用的主要分析技术有气相色谱、气相色谱—质谱联用仪和碳同位素测定仪等

可溶有机质在热演化过程中的变化 1.沥青和总烃含量随埋藏深度增加呈有规律的变化2.烷烃随深度有规律的变化。正构烷烃、异构烷烃和饱和烃随深度的变化,均可以划分为3个变化带,并可与沉积有机质演化的3个阶段进行对比3.环烷烃随深度增加,由多环向单环、二环转化 4.芳香烃随埋藏深度变化的特征与饱和烃类似,只是变化速率略小 5.不同类型干酪根形成烃类的演化特征有一定的差异6.非烃随埋藏深度也呈有规律的变化。在浅层的沥青中胶质和沥青质含O、N、S多,随着埋藏深度的增加,含量逐渐减少

天然气分类一、无机成因气二、1.母质类型腐泥型天然气腐殖型天然气 2.热成熟度未成熟阶段:腐泥型生物气腐殖型生物气成熟阶段:油型热解气煤型热解气过熟阶段:腐泥型裂解气腐殖型裂解气三、混合成因气

有机质丰度评价1). 总有机碳:指岩石中存在于有机质中的碳来反映有机质的丰度。2). 氯仿沥青A:指用氯仿从岩石中抽提出来的有机质,反映的是沉积岩中可溶的有机质含量。3). 总烃:氯仿沥青A中饱和烃和芳香烃之和4). 生烃势S1+S2:烃源岩中已经生成和潜在生成的烃量总和5). 烃源岩颜色

油气源对比的主要依据所谓油气源对比是指在综合地质和地球化学资料的基础上,建立油、气与烃源岩的成因关系,其实质是运用有机地球化学的基本原理,合理地选择对比参数(指标)来研究石油、天然气、烃源岩之间的相互关系;其基本依据是如果源岩中的干酪根、可溶抽提物沥青与来自该层系的油、气有亲缘关系,则它们在化学组成上必然存在某种程度的相似性,反之非同缘的油气则会表现出较大的差异,即“相似相关”是进行油气源对比的基本依据。

油气源研究的主要方法 1.油气源研究的主要方法是对原油(天然气)之间或原油(天然气)和烃源岩之间的相同馏分中某个成分的含量或某些成分之间的比值,或某同系物分布和组成进行比较2.可通过元素(样品的总体构成)、分子和同位素参数的对比实现

油气成因理论现代油气成因理论认为:石油主要是由有机质生成的。生物有机质沉积后首先在生物化学和化学的作用下,经分解、聚合、缩聚等作用,在埋深较大的成岩作用晚期进一步缩合为地质大分子----干酪根,随着埋深的进一步增大,热应力的不断升高,干酪根才逐步发生催化裂解和热裂解形成大量的原石油。但是,也有一部分有机质(主要是类脂化合物)不经过干酪根就直接以可溶有机质(相当于原石油)的形式存在于富含有机质的细粒岩石中。干酪根在热力的作用下开始大量生油之前,这一部分的数量通常很少,不足以排出并聚集成为有工业价值的油藏,但在有利的条件下(如树脂体、木栓质体等特殊类型有机质的富集、强烈的微生物活动和改造等),有机质可以在浅埋的阶段早期生成较多的油气,并排出、聚集成为具工业意义的油藏。

天然气的生成实际上是一个从有机质沉积后直到其生气潜力被彻底消耗之前一直在进行的过程.大量生成集中在两个阶段:一是由干酪根受热生成,但它大量生成所需的热力条件高于干酪根成油的热力条件。二是浅埋的早期阶段在厌氧微生物作用下可以大量生成。但多数情况下,由于浅埋时保存条件不佳,所生成的相当部分生物气都散失殆尽,必需有良好的保存条件配合,才能大规模成藏。同时,在有机质转化成烃的过程中,可能有无机组分的参与和加入。对于天然气来说,尤其是非烃气,可能有幔源气的贡献

有机质的沉积分布特征有利于有机质沉积的环境物理参数是:缓慢的水流或停滞的水体;有机质与粘土颗粒的絮凝、粘合作用使聚合体获得近似细砂的沉积速度;浪基面以下静(缓)水低能环境和超过浪基面深度的中等水深,保存潜势高;沉降速率与沉积速率相近或前者稍大时,才能持久保持还原环境。有利于有机质沉积的环境化学参数是:水体下部或沉积物表层保持良好的还原环境。酸碱度影响伴生沉积物性质。只有pH≥7.8才能出现大量碳酸盐与有机质同时沉积

烃源岩的定性评价一、有机质的丰度 1.总有机碳2.氯仿沥青A 3.总烃4.生烃势二、有机质的类型三、有机质的成熟度 1.镜质组反射率 2.碳酸盐岩有机质成熟作用 3.干酪根元素组成及变化 4.干酪根官能团组成的变化 5.自由基浓度的变化 6.干酪根颜色及荧光性的变化 7.干酪根热失重量 8.碳同位素的组成的变化 9. 氯仿沥青A及烃类的含量组成的变化 10.生物标志化合物 11.最高热解峰 12.芳香烃参数 13.噻吩类成熟度参数 14.时间温度指数四、应用有机相评价烃源岩五、有机质原始丰度和原始生烃能力潜力的恢复。

烃源岩的定量评价一、氯仿沥青法 Q总=S*H*A*P*/(1-K运)二、基于成烃机理的成烃率法 Q=S*H*P*TOC*Ih*X 1.热模拟实验法是利用时温互补原理把在地质条件低温下需要十几万年、几亿年才能完成的生烃过程,在实验室的高温条件下在几小时或者几天内完成。2.化学动力学法3.物质平衡法三、基于Rock-Eval 分析所得的生烃势评价方法。

高分子化学试题库

1 高分子化学试题库 一、基本概念题 聚合物的化学反应天然聚合物或由单体经聚合反应合成的聚合物为一级聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应,谓之。 缩聚反应含有两个或两个以上官能团的低分子化合物,在官能团之间发生反应, 缩去小分子的同时生成高聚物的可逆平衡反应,谓之。 乳化作用某些物质能降低水的表面张力,能形成胶束,胶束中能增溶单体,对单体液滴有保护作用,能使单体和水组成的分散体系成为稳定的难以分层的乳液,这种作用谓之。 动力学链长一个活性中心,从引发开始到真正终止为止,所消耗的单体数目,谓之。 引发剂半衰期引发剂浓度分解至起始浓度的一半所需的时间,谓之。 离子交换树脂离子交换树脂是指具有反应性基团的轻度交联的体型无规聚合物,利用其反应性基团实现离子交换反应的一种高分子试剂。 界面缩聚反应将两种单体分别溶于两种互不相溶的溶剂中,形成两种单体溶液,在两种溶液的界面处进行缩聚反应,并很快形成聚合物的这种缩聚称为界面缩聚。 阴离子聚合增长活性中心是带负电荷的阴离子的连锁聚合,谓之。 平均聚合度平均一个大分子链上所具有的结构单元数目,谓之。 阻聚剂某些物质能与初级自由基和链自由基作用生成非自由基物质,或生成不能再引发单体的低活性自由基,使聚合速率为0, 这种作用称为阻聚作用。具有阻聚作用的物质,称为阻聚剂。 平衡缩聚:缩聚反应进行一段时间后,正反应的速率与逆反应的速率相等,反应达到平衡,平衡时生成物的浓度的乘积与反应物浓度的乘积之比是个常数(称为平稳常数),用K表示。该种缩聚反应谓之。 无定型聚合物:如果聚合物的一次结构是复杂的,二次结构则为无规线团,无规线团聚集在一起形成的聚合物谓之。 反应程度P:已参加反应的官能团的物质的量(单位为mol)占起始官能团的物质的量的百分比,称为反应程度,记作P。 杂链聚合物:大分子主链中除碳原子外,还有O、S、N、P、S i和苯环等杂原子的聚合物。交替共聚物:共聚物大分子链中两种单体单元严格相间排列的共聚物。 体型缩聚的凝胶点Pc:体型缩聚中出现凝胶时的反应程度叫凝胶点,或称临界反应程度,记作Pc 。 引发剂的引发效率f:引发剂分解产生初级自由基,但初级自由基不一定都能引发单体形成单体自由基,用于引发单体形成单体自由基的百分率,称为引发剂的引发效率,记作f,(f <1=。 向大分子转移常数Cp:链自由基可能向已形成的大分子发生转移反应。转移结果,链自由基形成一个大分子,而原来的大分子变为一个链自由基。Cp=ktr,p/kp,它表征链自由基向大分子转移速率常数与增长速率常数之比。 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大,聚合物的结构酷似缩聚物。 聚合度变大的化学反应:聚合物的扩链、嵌段、交联和接枝使聚合物聚合度增大,称为聚合度变大的化学反应。 聚合物相对分子质量稳定化法:聚合物相对分子质量达到要求时,加入官能团封锁剂,使缩聚物两端官能团失去再反应的能力,从而达到控制缩聚物相对分子质量的目的的方法。乳化

高分子化学考试模拟试卷及参考答案

高分子化学导论考试模拟试题 一、 写出合成下列高聚物一般常用的单体及由单体生成聚合物的反应式,指出反应所属类型(自由基型、阳离子型、阴离子型、共聚等反应中任何一种即可,对于需要多步反应的,可分步注明反应类型),并简要描述该高聚物最突出的性能特点。 1.丁腈橡胶; 解:单体为:H2C C H C H CH2 和 H2C CH CN 自由基聚合反应 H2C C H C H CH2+H2C CH CN H2 C C H C H H2 C H2 C H C CN m n AIBN 耐油性极好,耐磨性较高,耐热性较好,粘接力强。 2. 氯磺化聚乙烯; 解:反应式: CH2CH2 Cl2,SO2 -HCl CH2CHCH2CH2 SO2Cl 优异的耐臭氧性、耐大气老化性、耐化学腐蚀性等,姣好的物理机械性能、耐老化性能、耐热及耐低温性、耐油性、耐燃性、耐磨性、及耐电绝缘性。 3. 聚环氧乙烷; 解:阴离子开环聚合(醇钠催化)或者阳离子开环聚合(Lewis酸或者超强酸催化) H2C O CH2CH 2 CH2O n 良好的水溶性和生物相容性。4.SBS三嵌段共聚物;

解:阴离子聚合 m H2C CH RLi H2 C H C R Li m n H2C C H C H CH2 H2 C CH R H2 C m C H C H H2 C Li n p H2C CH H2 C CH R H2 C m C H C H H2 C H2 C n H C Li p 双阴离子引发: 2m H2C CH ,Na n H2C C H C H CH2 H2 C C H C H H2 C Na Na H2 C CH H2 C m C H C H H2 C H2 C n H C p 具有优良的拉伸强度,表面摩擦系数大,低温性能好,电性能优良,加工性能好等特性,成为目前消费量最大的热塑性弹性体。 5. 环氧树脂(双酚A型); 解:缩聚反应,单体 HO C CH3 CH3OH 和 H2C H C O CH2Cl 反应式:

《高分子化学》复习题和答案

《高分子化学》 复习题答案 一.名词解释 1.热塑性高聚物 在熔融状态下塑化, 冷却后定型, 再加热又形成一个新的形状, 如此反复若干次, 从结构上看, 没有大分子链的严重断裂,其性质也不会发生显著变化, 这样的高聚物成为热塑性高聚物. 2.聚合度 聚合物中重复结构单元重复次数称为聚合度. 3.单体 带有某种官能团、并具有聚合能力的低分子化合物, 或能形成高分子化合物中结构单元的原低分子化合物称为该聚合物的单体. 4.重复结构单元 重复组成高分子分子结构的最小的结构单元。 5.阻聚剂和缓聚剂 有些物质能与初级自由基及增长自由基反应,生成非自由基或活性过低而不能增长的自由基,使聚合反应受到抑制。. 根据抑制程度可将这些物质分为: 阻聚剂: 能终止所有自由基并使聚合反应完全停止到这些物质耗尽为止。 缓聚剂: 只能终止一部分自由基而使聚合速率降低。 这两类物质的作用,只有程度不同而非本质区别。 6.高分子化合物 也叫聚合物分子或大分子,具有高的相对分子量,其结构必须是由多个重复单元所组成,并且这些重复单元实际上或概念上是由相应的小分子衍生而来。高分子化合物或称聚合物,是由许多单个高分子(聚合物分子)组成的物质.

7.结构单元 构成高分子链并决定高分子结构以一定方式链接起来的原子组合称为结构单元。 8.单体单元 聚合物中具有与单体相同化学组成而不同电子结构的单元称为单体单元. 9.通用塑料 通用塑料指产量大, 成本低和应用广泛的一类塑料. 10.工程塑料 广义地说, 工程塑料是作为工程材料或结构材料的塑料; 狭义地说, 一般是指具有某些金属性能, 能承受一定外力作用, 并有良好的机械性能和尺寸稳定性, 以及在较高或较低温度下仍能保持其优良性能的塑料. 11.均聚物 由一中单体进行的缩聚反应称为均缩聚 12.混聚物 由两种带不同官能团的单体进行的缩聚反应称为混缩聚. 13.共聚物 由两种或两种以上单体进行的, 并能形成两种或两种以上重复单元的缩聚反应称为共缩聚 14.平衡缩聚和非平衡缩聚 平衡缩聚通常指平衡常数小于103的缩聚反应.非平衡缩聚通常则指平衡常数大于103从缩聚反应或基本不可逆的缩聚反应. 15.反应程度和转化率 反应程度指反应了的官能团数与起始官能团数之比.转化率指反应了的单体分子数与起始单体分子数之比. 16.聚合物的多分散性 聚合物是由一系列分子量(或聚合度)不等的同系物高分子组成这些同系物

(完整版)(含答案)高分子化学练习题.doc

高分子化学练习题 一、名词解释 1、重复单元在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 2、结构单元高分子中多次重复的且可以表明合成所用单体种类的化学结构。 3、线型缩聚 2 官能度单体或 2-2 体系的单体进行缩聚反应,聚合过程中,分子 链线形增长,最终获得线型聚合物的缩聚反应。 4、体型缩聚有官能度大于 2 的单体参与的缩聚反应,聚合过程中,先产生支链,再交联成体型结构,这类聚合过程称为体型缩聚。 5、半衰期物质分解至起始浓度(计时起点浓度)一半时所需的时间。 6、自动加速现象聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自动加速现象主要是体系粘度增加所引起的。 7、竞聚率是均聚和共聚链增长速率常数之比, r 1 =k11/ k12,r 2 = k 22/ k21, 竞聚 率用来直观地表征两种单体的共聚倾向。 8、悬浮聚合悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体,水、油溶性引发剂、分散剂四部分组成。 9、乳液聚合是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶 性引发剂、水溶性乳化剂组成。 10、接枝共聚物聚合物主链只由某一种结构单元组成,而支链则由其它单元组 成。 二、选择题 1、聚酰胺反应的平衡常数为400,在密闭体系中最终能够达到的反应程度为 ( B ) A. 0 .94 B. 0.95 C. 0.96 D. 0.97 2、在线型缩聚反应中,成环反应是副反应,其中最易形成的环状化合物是( B ) A. 3, 4 元环 B. 5,6 元环 C. 7 元环 D. 8-11 元环 3、所有缩聚反应所共的是(A) A. 逐步特性 B. 通过活性中心实现链增长 C. 引发率很快 C. 快终止 4、关于线型缩聚,下列哪个说法不正确?(B)

高分子化学试题及答案汇总

一、名词解释 1、热塑性聚合物:聚合物大分子之间以物理力聚而成,加热时可熔融,并能溶于适当溶剂中。热塑性聚合物受热时可塑化,冷却时则固化成型,并且可以如此反复进行。 2、热固性聚合物:许多线性或支链形大分子由化学键连接而成的交联体形聚合物,许多大分子键合在一起,已无单个大分子可言。这类聚合物受热不软化,也不易被溶剂所溶胀。 3、官能度:一分子聚合反应原料中能参与反应的官能团数称为官能度。 4、自动加速现象:聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自动加速现象主要是体系粘度增加所引起的。 5、动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链长,动力学链在链转移反应中不终止。 6、胶束成核:在经典的乳液聚合体系中,由于胶束的表面积大,更有利捕捉水相中的初级自由基和短链自由基,自由基进入胶束,引发其中单体聚合,形成活性种,这就是所谓的胶束成核。 7、笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单本分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。 8、引发剂效率:引发聚合部分引发剂占引发剂分解消耗总量的分率称为引发剂效率。 9、活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 10、竞聚率:是均聚和共聚链增长速率常数之比,r1=k11/k12,r2=k22/k21,竞聚率用来直观地表征两种单体的共聚倾向。 11、阻聚剂:能够使每一自由基都终止,形成非自由基物质,或形成活性低、不足以再引发的自由基的试剂,它能使聚合完全停止。 12、凝胶点:多官能团单体聚合到某一程度,开始交联,粘度突增,气泡也难上升,出现了所谓凝胶,这时的反应程度称做凝胶点。 13、反应程度:参加反应的官能团数占起始官能团数的分率。 14、半衰期:物质分解至起始浓度(计时起点浓度)一半时所需的时间。 二、填空题 1.尼龙66的重复单元是-NH(CH2)6NHCO(CH2)4 CO- 。 2.过氧化苯甲酰可作为的自由基聚合的引发剂。 3.自由基聚合中双基终止包括岐化终止和偶合终止。 4.聚氯乙烯的自由基聚合过程中控制聚合度的方法是控制反应温度。 5.苯醌可以作为自由基聚合以及阳离子聚合的阻聚剂。 6.竞聚率是指单体均聚和共聚的链增长速率常数之比(或r1=k11/k12, r2=k22/k21) 。 7.邻苯二甲酸和甘油的摩尔比为1.50 : 0.98,缩聚体系的平均官能度为 2.37 ;邻苯二甲酸酐与等物质量 的甘油缩聚,体系的平均官能度为 2 (精确到小数点后2位)。 8、聚合物的化学反应中,交联和支化反应会使分子量变大而聚合物的热降解会使分子量变小。 9、己内酰胺以NaOH作引发剂制备尼龙-6 的聚合机理是阴离子聚合。 10.一对单体共聚时,r1=1,r2=1,其共聚行为是理想共聚。 11.两对单体可以共聚的是①Q和e值相近②Q值相近而e值相差大; 12在高分子合成中,容易制得有实用价值的嵌段共聚物的是阴离子活性聚合 13、乳液聚合的第二个阶段结束的标志是单体液滴的消失; 14、自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可采用乳液聚合聚合方法。 6、自基聚合的特点:慢引发,快增长,速终止; 7、引发剂效率小于1的原因是( 诱导分解)和(笼壁效应)。 8、聚合方法分为两大类,大多数乙烯基单体发生连锁聚合,大多数非乙烯基单体发生逐步聚合。 9、玻璃化温度是无定形聚合物的使用上限温度;玻璃化温度是橡胶使用的下限温度;熔点是结晶聚合物的使用上限温度。 10、链锁聚合反应一般由链引发、链增长、链终止等基元反应组成。(顺序错不扣分) 11、根据自由基聚合机理,自由基聚合体系内往往由单体和聚合物两部分组成。

高分子化学试卷4答案

《高分子化学》模拟试题(四)答案 一、名词解释(共15分,每小题3 分,) 1.聚合物的无规热降解:对于一般聚合物而言,其使用温度的最高极限为150℃,如超过150℃可能发生降解反应。聚合物在热的作用下大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解。⒉缩合反应和缩聚反应:缩合反应——含有一个官能团的化合物,在官能团之间发生反应,缩去一个小分子生成新的化合物的可逆平衡反应。缩聚反应——而含有两个(或两个以上)官能团的化合物,在官能团之间发生反应,在缩去小分子的同时,生成高聚物的可逆平衡反应。 2.. 乳化剂的临界胶束浓度CMC:乳化剂能够形成胶束的最低浓度,称为临界胶束浓度,记作CMC。 3.凝胶点:体型缩聚反应进行到一定程度时,体系黏度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。此时的反应程度叫凝胶点。 4.共聚合和共聚物:两种或两种以上单体混合物,经引发聚合后,形成的聚合物其大分子链中,含有两种或两种以上单体单元的聚合过程,称为共聚合反应,。大分子链中,含有两种或两种以上单体单元的聚合物,称为共聚物 5.聚醚型聚氨酯:以二异氰酸酯和端羟基聚醚为原料,经逐步加成聚合反应形成的大分子链中含有氨基甲酸酯基和聚醚链段的一类聚氨酯。 二、填空题(共20分,每空1分)

⒈ 阴离子聚合的单体有 丙烯腈 、偏二腈基乙烯、偏二氯乙烯 和 甲基丙烯酸甲酯 等。 ⒉ 聚合物降解的原因有 热降解 、 化学降解 、 机械降解 和聚合物的老化四种。 ⒊ 乳化剂有 阴离子型 、 阳离子型 、 两性 和 非离子型 四种。 ⒋ 阳离子聚合的引发体系有 含氢酸 、 Lewis 和 有机金属化合物 等。 ⒌ 逐步聚合反应包括 缩聚 和 逐步加成聚合 两类。 ⒍ 聚合物聚合度变大的化学反应有 扩链反应 、 交联反应 和 接枝反应 等。 三、简答题(共20分,每题5分,简答下列各题) ⒈ 写出下列常用引发剂的结构式和分解反应式: ⑴ 偶氮二异庚腈 ⑵ 氢过氧化异丙苯 并说明这些引发剂的引发活性和使用场合。 解:⑴ 偶氮二异庚腈(2分) 油溶液性、高活性,适用于本体聚合、悬浮聚合和溶液聚合。 ⑵ 氢过氧化异丙苯 2CH 3 CH CH 2 C + N CH 3CH 3CN CH 3 CH CH 2 C N N C CH 2 CH CH 3 CH 3CH 3CH 3CH 3 CN CN

高分子化学复习题——简答题

第一章绪论 1、与低分子化合物相比,高分子化合物有什么特点能否用蒸馏的方法提纯高分子化合物 答:与低分子化合物相比,高分子化合物主要特点有:(1)相对分子质量很大,通常在104~ 106之间;(2)合成高分子化合物的化学组成比较简单,分子结构有规律性;(3)各种合成 聚合物的分子形态是多种多样的;(4)一般高分子化合物实际上是由相对分子质量大小不等 的同系物组成的混合物,其相对分子质量只具有统计平均的意义及多分散性;(5)由于高 分子化合物相对分子质量很大,因而具有与低分子化合物完全不同的物理性质。 不能。由于高分子化合物分子间作用力往往超过高分子主链内的键合力,当温度升高到汽化 温度以前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构,因而不能用蒸 馏的方法提纯高分子化合物。 2、何谓相对分子质量的多分散性如何表示聚合物相对分子质量的多分散性 答: 聚合物是相对分子质量不等的同系物的混合物,其相对分子质量或聚合度是一平均值. 这种相对分子质量的不均一性称为相对分子质量的多分散性.相对分子质量多分散性可以用 重均分子量和数均分子量的比值来表示.这一比值称为多分散指数, 其符号为D. 即D =M w/M n. 分子量均一的聚合物其D为越大则聚合物相对分子质量的多分散程度越大. 相对分子质量多分散性更确切的表示方法可用相对分子质量分布曲线表示.以相对分子质量 为横坐标, 以所含各种分子的质量或数量百分数为纵坐标, 即得相对分子质量的质量或数 量分布曲线.相对分子质量分布的宽窄将直接影响聚合物的加工和物理性能. 聚合物相对分子质量多分散性产生的原因注意由聚合物形成过程的统计特性所决定. 3、各举三例说明下列聚合物 (1)天然无机高分子,天然有机高分子,生物高分子。 (2)碳链聚合物,杂链聚合物。 (3)塑料,橡胶,化学纤维,功能高分子。 答:(1)天然无机高分子:石棉、金刚石、云母;天然有机高分子:纤维素、土漆、天然橡胶; 生物高分子:蛋白质、核酸 (2)碳链聚合物:聚乙烯、聚苯乙烯、聚丙烯;杂链聚合物:聚甲醛、聚酰胺、聚酯 (3)塑料:PE、PP、PVC、PS;橡胶:丁苯橡胶、顺丁橡胶、氯丁橡胶、丁基橡胶 化学纤维:尼龙、聚酯、腈纶、丙纶;功能高分子:离子交换树脂、光敏高分子、高分子催化 剂 4、什么叫热塑性塑料什么叫热固性塑料试各举两例说明。 热塑性塑料是指可反复进行加热软化或熔化而再成型加工的塑料,其一般由线型或支链型聚合物作为基材。如以PE、PP、PVC,PS和PMMA等聚合物为基材的塑料。 热固性塑料是指只能进行一次成型加工的塑料,其一般由具有反应活性的低聚物作基材,在成型加工过程中加固化剂经交联而变为体型交联聚合物。一次成型后加热不能再软化或熔化,因而不能再进行成型加工。其基材为环氧树脂、酚醛树脂、不饱和聚酯树脂和脲醛树脂等。 5、高分子链的结构形状有几种它们的物理、化学性质有何不同 答: 高分子链的形状主要有直线形、支链形和网状体形三种,其次有星形、梳形、梯形等(它 们可以视为支链或体形的特例). 直线性和支链形高分子靠范德华力聚集在一起, 分子间力较弱.宏观物理性质表现为密度小、强度低.聚合物具有热塑性, 加热可融化, 在溶剂中可溶解. 其中支链形高分子由于支 链的存在使分子间距离较直线形的大, 故各项指标如结晶度、密度、强度等比直线形的低, 而溶解性能更好, 其中对结晶度的影响最为显著. 网状体形高分子分子链间形成化学键, 其硬度、力学强度大为提高. 其中交联程度低的具有 韧性和弹性, 加热可软化但不熔融, 在溶剂中可溶胀但不溶解. 交联程度高的, 加热不软化, 在溶剂中不溶解. 第二章逐步聚合反应

最新高分子化学期末重点试题及答案

1、使自由基聚合反应速率最快的聚合方式是(C )。 A.热引发聚合 B.光聚合 C.光敏聚合 D. 热聚合 答案( C ) 2、在自由基聚合反应中,链自由基的( D )是过氧类引发剂引发剂效率降低 的主要原因 A.屏蔽效应 B.自加速效应 C.共轭效应 D.诱导效应 3、MMA(Q=0.74)与( C )最容易发生共聚 A. St(1.00 ) B. VC(0.044 ) C. AN ( 0.6 ) D. B( 2.39) 4、异戊二烯配位聚合理论上可制得( 6 )种立体规整聚合物。 A. 6 B. 4 C. 5 D.3 1、丁二烯配位聚合可制得(B )种立体规整聚合物。 A. 6 B. 4 C. 5 D.3 5、是阻聚剂并可用于测定引发反应速率的是( B ) A.对苯二酚 B.DPPH C.AIBN D.双酚A 3、丁二烯(e=-1.05)与(D )最容易发生交替共聚 A.苯乙烯(-0.8) B.氯乙烯(0.20) C.丙烯腈(0.6) D.马来酸酐(2.25) 4、不需要引发剂的聚合方法是(D )。 A.热引发聚合 B.光聚合 C.光敏聚合 D. 热聚合 5、常用于保护单体的试剂是( D ) A. BPO B.FeCl3 C.AIBN D. 对苯二酚 1、某一聚合反应,单体转化率随反应时间的延长而增加。它属于(连锁)聚合 反应。 2、BPO在高分子合成中是(引发剂)剂,对苯二酚加在单体中用作(阻聚剂)。 3、氧在低温时是(阻聚剂 )、在高温时是(引发剂)。 4、常用的逐步聚合反应方法有(熔融)缩聚、( 溶液) 缩聚、(界面 ) 缩聚。 5、链转移剂能使聚合物的分子量(降低 ) 7、梯形结构聚合物有较高的(热 )稳定性。 8、聚乙烯、聚苯乙烯、聚氯乙烯和聚丙烯的结构分别是(-[CH2CH2]n- )、(-[CH2CH(C6H5)]n- )、(-[CH2CHCl]n- )和(-[CH2CHCH3]n- )。 9、腈纶的化学名称是(聚丙烯腈)。 精品文档

高分子化学试题

高分子化学试题 一、名词解释 第一章绪论(Introduction) 高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。 单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯 重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。 聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量(Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。 重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。 分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数(Distribution Index) :重均分子量与数均分子量的比值,用来表征分子量分布的宽度或多分散性。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 塑料(Plastics):具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。软塑料接近橡胶,硬塑料接近纤维。 橡胶(Rubber):具有可逆形变的高弹性聚合物材料。在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。

高分子化学模拟试题B答案

模拟题B 答案 一、基本概念题(共20分,每小题4分) ⒈ 体型缩聚及其凝胶点c P :在缩聚反应中,参加反应的单体只要有一种单体具有两个以上官能团(f >2),缩聚反应将向三个方向发展,生成支化或交联结构的体型大分子的缩聚反应,称为体型缩聚。体型缩聚中出现凝胶时的反应程度叫凝胶点,或称临界反应程度,记作P c 。 ⒉ 引发剂及其引发效率f :含有弱键的化合物,它们在热的作用下,共价键均裂而产生自由基的物质,称为引发剂。引发剂分解产生初级自由基,但初级自由基不一定都能引发单体形成单体自由基,用于引发单体形成单体自由基的百分率,称为引发剂的引发效率,记作f ,(f <1)。 ⒊ 向溶剂转移常数S C :链自由基可能向溶剂发生转移反应。转移结果,链自由基活性消失形成一个大分子,而原来的溶剂变为一个自由基。p S tr,S =k k C ,它表征链自 由基向溶剂转移速率常数与增长速率常数之比。 ⒋ 逐步加成聚合反应:形成大分子的方式如同连锁聚合那样是通过单体反复加成而进行的,而动力学过程如同缩聚那样是随着反应时间的延长聚合物的相对分子质量逐步增大,聚合物的结构酷似缩聚物。⒌ 聚合物的化学反应:单体通过聚合反应合成的聚合物以及天然的聚合物称为一级聚合物。一级聚合物并非都是化学惰性的,如果其侧基或端基官能团是反应性基团(具有再反应的能力),那么在适当的条件下,端基或侧基仍可以发生化学反应变为新的基团,从而形成新的聚合物,这种新的聚合物称为二级聚合物。由一级聚合物变为二级聚合物的聚合过程称为聚合物的化学反应,或者叫高分子的化学反应。 二、(共10分,每错一处扣1分)选择正确答案填入( )中。 1.(本题1分)某工厂为了生产PV Ac 涂料,从经济效果和环境考虑,他们

高分子化学复习题——高分子化学试卷库合集

高分子化学试题库 一、基本概念题 ⒈聚合物的化学反应天然聚合物或由单体经聚合反应合成的聚合物为一级 聚合物,若其侧基或端基为反应性基团,则在适当的条件下可发生化学反应,从 而形成新的聚合物(为二级聚合物),由一级聚合物变为二级聚合物的化学反应, 谓之。 ⒉缩聚反应含有两个或两个以上官能团的低分子化合物,在官能团之间发生 反应, 缩去小分子的同时生成高聚物的可逆平衡反应,谓之。 ⒊乳化作用某些物质能降低水的表面力,能形成胶束,胶束中能增溶单体, 对单体液滴有保护作用,能使单体和水组成的分散体系成为稳定的难以分层 的乳液,这种作用谓之。 ⒋动力学链长一个活性中心,从引发开始到真正终止为止,所消耗的单体数 目,谓之。 ⒌引发剂半衰期引发剂浓度分解至起始浓度的一半所需的时间,谓之。 6、离子交换树脂离子交换树脂是指具有反应性基团的轻度交联的体型无规聚 合物,利用其反应性基团实现离子交换反应的一种高分子试剂。 7、界面缩聚反应将两种单体分别溶于两种互不相溶的溶剂中,形成两种单体溶液,在两种溶液的界面处进行缩聚反应,并很快形成聚合物的这种缩聚称为界面缩聚。 8、阴离子聚合增长活性中心是带负电荷的阴离子的连锁聚合,谓之。 9、平均聚合度平均一个大分子链上所具有的结构单元数目,谓之。 10、阻聚剂某些物质能与初级自由基和链自由基作用生成非自由基物质,或生成不能再引发单体的低活性自由基,使聚合速率为0, 这种作用称为阻聚作用。具有阻聚作用的物质,称为阻聚剂。 11. 平衡缩聚:缩聚反应进行一段时间后,正反应的速率与逆反应的速率相等, 反应达到平衡,平衡时生成物的浓度的乘积与反应物浓度的乘积之比是个常 数(称为平稳常数),用K表示。该种缩聚反应谓之。 12. 无定型聚合物:如果聚合物的一次结构是复杂的,二次结构则为无规线团, 无规线团聚集在一起形成的聚合物谓之。 13. 反应程度P:已参加反应的官能团的物质的量(单位为mol)占起始官能 团的物质的量的百分比,称为反应程度,记作P。 14. 杂链聚合物:大分子主链中除碳原子外,还有O、S、N、P、S i和苯环 等杂原子的聚合物。 15. 交替共聚物:共聚物大分子链中两种单体单元严格相间排列的共聚物。 16、体型缩聚的凝胶点P c:体型缩聚中出现凝胶时的反应程度叫凝胶点,或称临界 反应程度,记作P c。 17、引发剂的引发效率f:引发剂分解产生初级自由基,但初级自由基不一定都能 引发单体形成单体自由基,用于引发单体形成单体自由基的百分率,称为引发剂的 引发效率,记作f,(f <1=。 18、向大分子转移常数C p:链自由基可能向已形成的大分子发生转移反应。转移 结果,链自由基形成一个大分子,而原来的大分子变为一个链自由基。C p=k tr,p/k p, 它表征链自由基向大分子转移速率常数与增长速率常数之比。

高分子化学试题合辑附答案

《高分子化学》课程试题 得分 一、基本概念(共15分,每小题3分) ⒋动力学链长 ⒌引发剂半衰期 二、填空题(将正确的答案填在下列各题的横线处)( 每空1 分,总计20分) ⒈自由聚合的方法有本体聚合、溶液聚合、乳液聚合和悬浮聚合。 ⒉逐步聚合的方法有熔融缩聚、溶液缩聚、固相缩聚和界面缩聚。 ⒊聚氨酯大分子中有、、 和基团。 ⒋聚合反应按反应机理可分为连锁聚合、逐步聚合、 开环聚合和聚合物之间的化学反应四类。 ⒌聚合物按大分子主链的化学组成碳链聚合物、杂链聚合物、元素无机聚合物和元素有机聚合物四类。 得分 三、简答题(共20分,每小题5分) ⒈乳液聚合的特点是什么 ⒊什么叫自由基自由基有几种类型写出氯乙烯自由基聚合时链终止反应方程式。 四、(共5分,每题1分)选择正确答案填入( )中。 ⒈自由基共聚合可得到( 1 4 )共聚物。 ⑴无规共聚物⑵嵌段共聚物⑶接技共聚物⑷交替共聚物 ⒉为了得到立构规整的PP,丙烯可采用( 4 )聚合。 ⑴自由基聚合⑵阴离子聚合⑶阳离子聚合⑷配位聚合

⒊工业上为了合成聚碳酸酯可采用( 1 2 )聚合方法。 ⑴熔融缩聚⑵界面缩聚⑶溶液缩聚⑷固相缩聚 ⒋聚合度基本不变的化学反应是( 1 ) ⑴PVAc的醇解⑵聚氨酯的扩链反应⑶高抗冲PS的制备⑷环氧树脂的固化 ⒌表征引发剂活性的参数是( 2 4 ) ⑴k p(⑵t1/2⑶k i⑷k d 五、计算题(共35分,根据题目要求计算下列各题) ⒈(15分)用过氧化二苯甲酰(BPO)作引发剂,60℃研究甲基丙烯酸甲酯的本体聚合。 已知:C (偶合终止系数)=;D (歧化终止系数)=; f =; k p=×102 L/ ;k d =×10-6 s-1; k t=×106 L/ ;c(I)=mol / L; C M=×10-5;C I=2×10-2; 甲基丙烯酸甲酯的密度为g./ cm3; X。 计算:聚甲基丙烯酸甲酯(PMMA)的平均聚合度 n 《高分子化学》课程试题 一、基本概念(共14分,5. 2分, 其余3分) ⒋自由基共聚合反应 ⒌引发剂 二、填空题(将正确的答案填在下列各题的横线处)( 每空1 分,总计20分) ⒈自由聚合的单体有、、和等。 ⒉单体可分为、和三大类。 ⒊表征乳化剂性能的指标是、和。 ⒋阴离子聚合的引发体系有强碱、碱金属和碱金属配合物。 ⒌某些聚合物按大分子主链中含的特征基团可命名为聚酯、聚酰胺、和 聚醚聚合物等。

高分子化学模拟题完版

一.名词解释 1.聚合度:聚合物大分子链上所含结构单元数目的平均值。 2.平均官能度:至反应体系中平均每一分子上带有的能参加反应的官能团(或新中心)的数目 3.反应程度:参加反应的官能团数占起始官能团数的分率。 4.凝胶点:体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不 熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象,此时的反应程度叫凝胶点。 (出现凝胶化现象时的反应程度) 5.偶合终止:两链自由基的独电子相互结合成共价键的终止反应 6.歧化终止:某链自由基夺取另一自由基的氢原子或其他原子的终止反应 7.双基终止:链自由基的独电子与其它链自由基中的独电子或原子作用形成共价键的终止 反应 8.引发剂效率:引发聚合部分引发剂占引发剂分解消耗总量的分率叫引发剂效率 9.自动加速现象:聚合中期随着聚合的进行,聚合速率逐渐增加,出现自动加速现象,自 动加速现象主要是体系粘度增加所引起的 10.动力学链长:每个活性种从引发阶段到终止阶段所消耗的单体分子数定义为动力学链 长,动力学链在链转移反应中不终止 11.链转移常数:是链转移速率常数和增长速率常数之比,代表链转移反应与链增长反应 的竞争能力。 12.竞聚率:是均聚和共聚链增长速率常数之比,竞聚率用来直观地表征两种单体的共聚倾 向。(由共轭效应、极性效应、位阻效应三个因素决定) 13悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油 溶性引发剂、分散剂四部分组成。 14乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、 水溶性乳化剂组成。 15胶束成核:在经典的乳液聚合体系中,由于胶束的表面积大。更有利县城捕捉水相中的 初级自由基和短链自由基,自由基进入胶束,引发其中单体聚合,形成活性种,这就是所谓的胶束成核。 16均相成核:又称水相成核,当选用水溶性较大的单体,溶于水的单体被引发聚合成的短 链自由基将含有较多的单体单元,并有相当的亲水性,水相中多条这样较长的短链自由基互 相聚集在一起,絮凝成核,以此为核心,单体不断扩散入内,聚合成乳胶粒,这个过程即为 均相成核。

高分子化学习题与答案

《高分子化学》习题与答案 第一章绪论习题 1. 说明下列名词和术语: (1)单体,聚合物,高分子,高聚物 (2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子 (3)主链,侧链,侧基,端基 (4)结构单元,单体单元,重复单元,链节 (5)聚合度,相对分子质量,相对分子质量分布 (6)连锁聚合,逐步聚合,加聚反应,缩聚反应 (7)加聚物,缩聚物,低聚物 2.与低分子化合物比较,高分子化合物有什么特征? 3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。 4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。 5. 各举三例说明下列聚合物 (1)天然无机高分子,天然有机高分子,生物高分子。 (2)碳链聚合物,杂链聚合物。 (3)塑料,橡胶,化学纤维,功能高分子。 6. 写出下列单体的聚合反应式和单体、聚合物的名称 (1) CH2=CHF (2) CH2=CH(CH3)2 CH3 | (3) CH2=C | COO CH3 (4) HO-( CH2)5-COOH (5) CH2CH2CH2O |__________| 7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合? (1) -[- CH2- CH-]n- | COO CH3 (2) -[- CH2- CH-]n- | OCOCH3 (3) -[- CH2- C = CH- CH2-]n- | CH3 (4) -[-NH(CH2)6NHCO(CH2)4CO-]n- (5) -[-NH(CH2)5CO-]n- 8. 写出合成下列聚合物的单体和反应式: (1) 聚苯乙烯 (2) 聚丙烯

高分子化学模拟试卷(五)答案

《高分子化学》模拟试卷(五)答案 一、基本概念题(共15分,每题3分) ⒈连锁聚合:连锁聚合是指聚合反应一旦开始,反应便可以自动地一连串的进行下去,生成一个大分子的时间是极其短暂的,是瞬间完成的,只需要0。01s到几秒的时间。因此聚合物的相对分子质量与时间的关系不大。但是,单体的转化率是随时间的延长而提高的。这类聚合反应称为连锁聚合。 ⒉正常聚合速率:在低转化率(<5%~10%)条件下,聚合速率遵循速率方程所表现的速率为正常聚合速率,随聚合时间的延长单体浓度和引发剂浓度降低,聚合速率降低。 ⒊向大分子转移:链自由基向大分子夺取一个基团,结果,链自由基终止为一个大分子,而原来的大分子变为一个链自由基,这就是链自由基向大分子的转移反应。 ⒋共聚物组成:在共聚过程中,先后生成的共聚物组成不一致,共聚物组成一般随转化率而变,存在着组成分布和平均组成的问题。共聚物组成,包括瞬时组成、平均组成、序列排布。共聚物大分子链中单体单元的比例即为共聚物组成。 ⒌聚合物的老化:聚合物在使用或贮存过程中,由于环境的影响,性能变坏,强度和弹性降低,颜色变暗、发脆或者发粘等现象叫聚合物的老化。 二、(共10分,每错一处扣1分)选择正确答案填入( )中。 1.(本题1分)某工厂用PVC为原料制搪塑制品时,从经济效果和环境考 虑,他们决定用(⑶)聚合方法。 ⑴本体聚合法生产的PVC ⑵悬浮聚合法生产的PVC ⑶乳液聚合法生产的PVC ⑷溶液聚合法生产的PVC ⒉(本题1分)为了提高棉织物的防蛀和防腐能力,可以采用烯类单体与棉纤 维辐射技术或化学引发接枝的方法,最有效的单体是(⑶) ⑴ CH2=CH-COOH ⑵ CH2=CH-COOCH3 ⑶ CH2=CH-CN ⑷ CH2=CH-OCOCH3 ⒊(本题1分)在乙酸乙烯酯的自由基聚合反应中加入少量苯乙烯,会发生( ⑴聚合反应加速;⑵聚合反应停止; ⑶相对分子量降低;⑷相对分子量增加。 ⒋(4分)丙烯酸单体在85℃下采用K2S2O8为引发剂,在水溶液中引发聚合,可 的产品。若要制得的产品,在聚合配方和工艺上可采取(⑴⑵⑶⑷)手

(完整版)高分子化学复习题——填空题精选

一、填空题 1. 聚合物有两个分散性,是相对分子质量多分散性和聚合度多分散性。 2. 聚合反应按机理来分逐步聚合和连锁聚合两大类,如按单体与聚合物组成差别分为加聚反应、缩聚反应和开环反应。 3.阻聚和缓聚反应的本质:链自由基向阻聚剂和缓聚剂的链转移反应,可能生成没有引发活性的中性分子,也可能是活性低的新自由基。两者的区别是程度上的不同,前者使聚合反应完全终止,后者只是使聚合反应速度降低。 4. 在自由基聚合中,具有能同时获得高聚合和高相对分子质量的实施方法有乳液聚合 5.乳液聚合的特点是可以同时提高相对分子质量和反应速率,原因是:乳化剂浓度对聚合反应速率和聚合度的影响是一致的,对乳化程度的强化而可以同时达到较高的聚合速率和聚合度的目的。 6.合成高聚物的几种聚合方法中,能获得最窄的相对分子质量分布的是阴离子聚合 7. 线形缩聚的核心问题是相对分子质量的影响因素和控制;体形缩聚的关键问题是凝胶点的控制。所有缩聚反应共有的特征是逐步特性 8.在自由基聚合和缩聚反应中,分别用单体的转化率和反应程度来表征聚合反应进行的深度。 9. 线形缩聚相对分子质量的控制手段有加入单官能团的单体,进行端基封锁和控制反应官能团加入的当量比。 10.所谓的配位聚合是指采用的引发剂是金属有机化合物与过渡化合物的络合体系,单体在聚合反应中通过活性中心进行配位而插入活性中心离子与反离子之间,最后完成聚合过程。所谓的定向聚合是指指能够生成立构规整性聚合物为主(>=75%)的聚合反应。 11.自由基聚合的特征慢引发、快增长、速终止。阳离子的聚合特征是快引发、快增长、难终止、易转移。阴离子的聚合特征是快引发、慢增长、易转移、无终止。 12.自由基聚合的实施方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合。逐步聚合的实施方法溶液聚合、界面聚合、熔融聚合。 13.用动力学推导共聚组成方程时做了五个假定,分别是等活性理论、稳态、忽略链转移、双基终止、无解聚反应和无前末端效应。 14.推导微观聚合动力学方程,作了4个基本假定是:链转移反应无影响、等活性理论、聚合度很大、稳态假设。 15.自由基聚合规律是转化率随时间而增高,延长反应时间可以提高转化率。缩聚反应规律是转化率随时间无关,延长反应时间是为了提高聚合度。 16. 在聚合过程中,加入正十二硫醇的目的是调节相对分子质量,原理是发生链转移反应 17. 悬浮聚合的基本配方是水、单体、分散剂、油溶性引发剂,影响颗粒形态的两种重要因素是分散剂和搅拌。乳液聚合的配方是单体、水、水溶性引发剂、水溶性乳化剂 18.Ziegler-Natta引发剂的主引发剂是IVB~VIIIB族过渡金属化合物,共引发剂是IA~IIIA 族金属有机化合物。 19. 三大合成材料是塑料、纤维、橡胶。 20. 非晶高聚物随温度变化而出现的三种力学状态是玻璃态、高弹态、粘流态。 21. 影响聚合物反应活性的化学因素主要有极性效应和共轭效应。 22. 两种单体的Q、e值越接近越易发理想共聚聚合,相差越远易发生交替共聚聚合。 23.熔点是晶态聚合物的热转变温度,而玻璃化温度则主要是非晶态聚合物的热转变温度。 24. 室温下,橡胶处于高弹态,粘流温度为其使用上限温度,玻璃化温度为其使用下限温度。 25.高分子,又称聚合物,一个大分子往往由许多简单的结构单元通过共价键重复键接而成。 26.玻璃化温度和熔点是评价聚合物耐热性的重要指标。

中学化学竞赛试题资源库——高分子化学

中学化学竞赛试题资源库——高分子化学 A组 1.下列物质一定不是天然高分子的是 A 橡胶 B 蛋白质 C 尼龙 D 纤维素 2.下列物质一定不属于有机高分子的是 A 树脂镜片 B 维生素 C 高碳钢 D 不粘锅上防粘物质 3.下列物质中,不属于高分子化合物的是 A 生油 B 棉花 C 淀粉 D 橡胶 4.下列物质不属于高分子化合物的是 A 硫化橡胶 B 脂肪 C 醋酸纤维 D 硬脂酸钠 5.相同质量的下列材料制成相同长度的绳子,能吊起的重物质量最大的是 A 涤纶绳 B 锦纶绳 C 金属钛绳 D 碳钢绳 6.俗作“塑料王”的聚四氟乙烯,结构式为CF2-CF2,它不具有的性质是 A 耐高温 B 电绝缘性 C 耐腐蚀性 D 热固性 7.下列高分子材料中属于线型结构的是 A 有机玻璃 B 硫化橡胶 C 电木 D 聚乙烯 8.下列原料或制成的产品中,若出现破损不可以进行热修补的是 A 聚氯乙烯凉鞋 B 电木插座 C 自行车内胎 D 聚乙烯塑料膜 9.下列原料或制品中,若出现破损不可以进行修补的是 A 聚氯乙烯凉鞋 B 电木插座 C 自行车内胎 D 聚乙烯塑料膜 10.可用来修补和粘合有机玻璃制品的是 A 乙醇 B 乙酸 C 丙酮 D 氯仿 11.天然橡胶是下列哪种物质的聚合物 A B CH2=CH-CH=CH2 C D 12.下列关于天然橡胶的说法中,不正确的是 A 能在汽油中溶胀 B 天然橡胶日久后会老化,实质上发生的是氧化反应 C 天然橡胶加工时要进行硫化,实质上是打开碳碳双键,形成碳硫键或双硫键 D 天然橡胶是具有网状结构的高分子化合物 13.下列物质中,能自身聚合成高分子化合物的是 A CH3(CH2)4COOH B CH3CH(NH2)COOH C D -OH 14.现有两种烯烃:CH2=CH2和CH2=CR2(R为烃基),把它们的混合物进行聚合反应后,产物中含

相关主题
文本预览
相关文档 最新文档