当前位置:文档之家› 微分方程数值解II

微分方程数值解II

微分方程数值解II
微分方程数值解II

微分方程数值解II

主要内容:

第一章有限差分法的理论基础

1. 构造差分格式的主要方法;

2. 差分格式的一般性要求;

3. Lax等价性定理;

4. 差分格式的von Neumann稳定性分析方法;

5. 差分格式的修正方程。

第二章线性抛物型方程的差分方法

1. 扩散方程的显式格式;

2. 扩散方程的隐式格式;

3. 线方法;

4. 多维抛物型方程的ADI方法;

5. 分数步法;

6. Burgers方程的差分法和网格雷诺数。

第三章一维线性双曲型方程的数值方法

1. 线性双曲型系统的特征和Riemann问题;

2. 守恒律的有限体积法;

3. Lax-Friedriches格式、Lax-Wendroff格式、特征线法差分格式;

4. 双曲型方程的迎风格式、CIR格式、Godunov 方法;

5. 二阶Godunov格式、总变差概念及限制器函数;

6. 双曲型方程及变系数双曲型方程的高分辨率(TVD)波传播格式。

第四章一维非线性双曲型守恒律的数值方法

1. 非线性双曲型守恒律的间断解、弱解、熵条件;

2. 标量守恒律的Riemann问题解及Godunov格式;

3. 熵修正、数值粘性、Osher格式及高分辨率波传播格式;

4. 守恒型与Lax-Wendroff定理、离散熵条件、非线性稳定性及收敛性;

5. 典型守恒律方程组的Godunov间断分解方法及Godunov格式;

6. 守恒律方程组的MUSCL格式。

第五章多维双曲型守恒律的高分辨率格式

1. 多维方程组的双曲性;

2.Lax-Wendroff方法、Runge-Kutta推进的半离散方法、维数分裂方法;

3. 标量方程的LW方法、Godunov 格式、方向迎风及角迎风格式;

4. 多维标量方程的高分辨率格式;

5. 多维方程组的高分辨率格式。

第六章双曲型守恒律的其它高分辨率方法

1. ENO与WENO格式;

2. 间断Galerkin方法;

3. 高分辨率紧致差分格式。

参考文献:

[1] R. Leveque, Finite V olume Methods for Hyperbolic Problems, Cambridge

University Press, 2002.

[2] C.A.J. Fletcher, Computational Techniques for Fluid Dynamics 1, (second

edition), Spinger-Verlag, 1991.

[3] R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations,

SIAM publishing, 2007.

撰稿人:袁礼

2010-6

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤?? =?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-

微分方程数值解试题库2011(试题参考)

---------------------------------------------------------------------------------------------------------------------- 《常分方程数值解法》试题一及答案 ---------------------------------------------------------------------------------------------------------------------- 1.用欧拉法解初值问题???1 =060≤≤0--='2)() .(y x xy y y ,取步长 h =0.2.计算 过程保留4位小数。 解:h =0.2, f (x )=-y -xy 2.首先建立欧拉迭代公式 ),,k )(y x (y .y hx hy y )y ,x (hf y y k k k k k k k k k k k 21042021=-=--=+=+ 当k =0,x 1=0.2时,已知x 0=0,y 0=1,有 y (0.2)≈y 1=0.2×1(4-0×1)=0.800 0 当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,有 y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4 当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.614 4,有 y (0.6)≈y 3=0.2×0.614 4×(4-0.4×0.4613)=0.800 0 2.对于初值问题? ??1=0='2 )(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式; (3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值. 3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([2 11+++k k k k y x f y x f h , h =x k +1-x k (k =0,1,2,…,n -1),

微分方程数值解--大纲

偏微分方程数值解 (Numerical Methods for Partial Differential Equations) 课程代码:10210801 学位课程/非学位课程:非学位课程 学时/学分:46/3 课程简介: 《偏微分方程数值解》是数学类专业必修的一门专业课。主要内容包括:变分形式和Galerkin有限元法、椭圆型方程的差分方法、抛物型方程的差分方法、双曲型方程的差分方法、离散方程的解法。通过本课程的学习,使学生掌握求解偏微分方程数值解的基本方法,能够根据具体的微分方程使用合适的计算方法。 一、教学目标 1、知识水平教学目标 偏微分方程数值解课程的教学,要使学生掌握椭圆型微分方程、抛物型微分方程、双曲型微分方程等典型方程的差分方法,了解与之相关的理论问题,理解变分原理、有限元方法以及离散方程的解法,理解各种计算方法的收敛条件和收敛速度。 2、能力培养目标 通过偏微分方程数值解课程教学,应注意培养学生以下能力: (1)连续问题离散化能力——掌握科学的思维方法,能够使用差分方法和有限元方法的各种格式对三类典型方程进行离散化处理。 (2)算法分析与设计能力——结合各类偏微分方程的特点,设计各种计算方法,对计算方法的收敛条件和收敛速度等进行分析,具体设计易于上机实现的算法。(3)离散方程组的快速求解能力——理解离散方程组的特点,使用数学软件编程,具体上机实现,进行数值模拟的动手能力。 3、素质培养目标 通过数学物理方程课程教学,应注重培养学生以下素质: (1)具体问题有限化——善于对现实世界中得到的偏微分方程进行有限差分、有限元分析的有限化思想素养。 (2)数值解法定性化——通过学习,引导学生树立偏微分方程数值求解的基本原则,培养学生对数值方法中的稳定性、收敛性和误差等进行定性分析的素质。(3)算法实现程序化——培养学生的创造性和具体实现程序化的思维,使学生学会用数学中算法的观点思考实际问题,用程序和计算机解决数学问题。 二、教学重点与难点 1、教学重点:椭圆型、抛物型、双曲型等微分方程的差分方法,有限元方法。 2、教学难点:各种计算方法的稳定性、收敛性和误差分析,变分形式。 三、教学方法与手段 以教师讲授为主,安排上机实验,辅以习题课、课堂讨论、小论文,注重理论联系实际。 四、教学内容与目标 教学内容教学目标课时分配 (46学时) 1. 边值问题的变分形式 6 二次函数的极值掌握 两点边值问题掌握

微分方程数值解试卷

中国矿业大学2008~2009学年第 1 学期 《微分方程数值解法》试卷(B )卷 考试时间:100 分钟 考试方式:半开卷 学院 班级 姓名 序号 1、下面关于Euler 公式的结论哪些是正确的(打√)?哪些是错误的(打×)? (1)二阶方法;(2)一阶方法;(3)显式公式;(4)隐式公式;(5)是数值稳定的。 2、如果微分方程为,(0)1u tu u '==,则用Taylor 级数法求()u h 时,它的前两项为: 。 3、二阶差商 11 2 2i i i u u u h +--+近似二阶导数()i u x ''局部截断误差为 。 4、算术平均11 2 i i u u +-+近似函数值()i u x 的局部截断误差为 。 5、在课本P98差分方程(3.10)中,第二个方程的局部误差是什么? 。 6、函数空间0()C I ∞ 中函数满足什么性质? 。 二、(10分)求解常系数齐次差分方程21120,1,2, 1,1 i i i u u u i u u ++-+==?? =-=?的解。 三、(25分)已知数值解公式21132(2)m m m m m u u u h f f +++-+=- (1)写出与它们对应的特征多项式。 (2)这个多步法相容吗? (3)利用课本P47公式(2.66)求公式的局部截断误差的主项。 (4)讨论这个算法的零稳定性。 (5)求这个算法的绝对稳定区间。 四、(10分)试利用初值问题的数值解公式 11 11(,) (,)n n n n n n n n u u hf x u u u hf x u ++++=+?? =+? (1)构造一个PECE 预测校正系统;

常微分方程数值解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。[教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步 推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截

微分方程数值解

浅谈微分方程数值解法(双语)课堂教学模式 姓名:肖录明 学号:11301010232 摘要:微分方程数值解是高等院校信息与计算科学专业的一门重要专业基础课。这是一门本具有较强实际背景,专门研究科学计算的课程。这门课程理论性较强,公式多而且难记。我们还需要通过一门语言(比如MATLAB语言)来实现我们数值计算算法。由于解微分方程在科学计算中极为常见,故学好这门课程就非常有用且能为以后的学习打下基础。在我国双语教学正在慢慢的被倡导,且益处明显。本文主要探讨该课程的双语教学模式,并对在学习过程中出现的一些问题进行了思考。 关键词:微分方程数值解法双语教学科学计算 1引言 微分方程数值解法在数值分析中占有重要的地位,它以逼近论,数值代数等学科为基础,反过来又推动这些学科的发展。微分方程数值解法就主要研究如何通过离散算法将连续形式的微分方程转化为有限维问题,如代数方程组,进而来求解其近似解[1]。主要包括求解区域网格划分、离散方程的建立、方程性能分析、近似解收敛性分析等环节。微分方程数值解法在科学计算、工程技术等领域有极其广泛的应用,比如在计算物理、化学、流体力学航空航天等很多工程领域都有用到。目前已发展成为一门计算技术学科,其核心理论内容也成为高校计算数学和应用数学等专业的核心基础专业课程之一[2]。

2双语教学的必要性 双语教学主要指中英双语教学,是一种重要的教学模式,具有特殊效果和意义。 1.双语教学可丰富教学模式,转变教学理念,促进教育改革和开放。双语教学提倡用原版教材和国外的教学方式。其语言文字原汁原味,叙述合情合理,注重启发性,内容安排适合学生。这不仅使学生学到专业知识,且有助于提高英语水平,特别是专业英语阅读和写作能力。国外的教学模式以人为本,有助于转变以教师为中心、以学习知识体系为主的教育理念,促进教育改革。 2.双语教学有助于提高学生的人文素质。多学习和运用英语可以让我们发现和扬弃汉语中那些带有落后的人文价值观念和行为方式的词汇和句子,批判地接受一些思想观念和做法,使人的思维灵活有深度,个性得以发展,创新能力不断提高。大范围开展双语教学,有助于培养出具有世界主流人文素质且能很好地参与国际交流和合作的人才。 3.双语教学有助于学生以后在国内外学习、工作、考研和国际合作等带来很多方便。 微分方程数值解法既有数学上严密的逻辑性、独特的理论结构体系,又在各种工程计算中有着重要的应用,因此是联系纯数学理论和工程应用的桥梁和纽带。很多工业应用软件是利用数值方法开发成的,并且大都用英语写成。因此,有必要用双语的形式讲授这门课,让学生在学习专业知识的同时,还掌握专业英语词汇,有助于学生以后的学习和发展。从课程的体系和内容衔接上看,这门课一般安排在大学三年级。这时侯,学生对于数学分析、常微分方程、数学物理方程和计算方法等课程有了很好的基础,其中的很多概念如:导数、定积分、

常微分方程数值解法

第七章 常微分方程数值解法 常微分方程中只有一些典型方程能求出初等解(用初等函数表示的解),大部分的方程是求不出初等解的。另外,有些初值问题虽然有初等解,但由于形式太复杂不便于应用。因此,有必要探讨常微分方程初值问题的数值解法。本章主要介绍一阶常微分方程初值问题的欧拉法、龙格-库塔法、阿达姆斯方法,在此基础上推出一阶微分方程组与高阶方程初值问题的 数值解法;此外,还将简要介绍求解二阶常微分方程值问题的差分方法、试射法。 第一节 欧拉法 求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy (1) 的数值解,就是寻求准确解)(x y 在一系列离散节点 <<<<

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=/m=/(1400-18t) dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[*x(2)^2)/(1400-18*t)]; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[*(v.^2))./(1400-18*t)]; [t,h,v,a]; 数据如下: t h v a 000

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

微分方程数值解习题(李立康)

常微分方程习题 《李立康》 习题 1.用Euler 方法求初值问题 ? ? ?=-='0)0(21u tu u 在1=t 时的近似解(取4 1= h )。 2.初值问题 1 3 00 u u u()??'=? ?=? 有解32 23/u(t )t ?? = ? ?? 。但若用Euler 方法求解,对一切N T ,和H T h = ,都只能得到N t u t ,...,2,1,0==,试解释此现象产生的原因。 3.用Euler 方法计算 ?? ?=='1 )0(u u u 在1=t 处的值,取16 1 和41= h ,将计算结果与精确值e =)1(u 相比较。 4.设),(u t f 满足定理2.1的条件,对改进Euler 法(2.10)式证明: (1)其局部截断误差为)()(12 43 h O t u h -'''- ; (2)当1

?? ?=='1 )0(u u u 计算公式 m m h h u ??? ? ??-+=22 取4 1 = h 计算)1(u 的近似值,并与习题3的结果比较。 6.就初值问题 ?? ?=+='0 )0(u b at u 分别导出用Euler 方法和改进Euler 法求近似解的表达式,并与真解 bt t a u += 22 相比较。 7.证明改进Euler 法的绝对稳定区域是整个左半平面0)Re(

微分方程数值解法答案

包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。解答问题关键在过程,能够显示出你已经掌握了书上的内容,知道了解题方法。这次考试题目的类型:20分的选择题,主要是基本概念的理解,后面有五个大题,包括差分格式的构造、截断误差和稳定性。 习题一 1. 略 2. y y x f -=),(,梯形公式:n n n n n n y h h y y y h y y )121(),(2111+-+=+- =+++,所以0122)1(01])121[()121()121(y h h y h h y h h y h h n h h n n n +--+--+-+=+-+==+-+= ,当0→h 时, x n e y -→。 同理可以证明预报-校正法收敛到微分方程的解. 3. 局部截断误差的推导同欧拉公式; 整体截断误差: ? ++++++-++≤1 ),())(,(11111n n x x n n n n n n n dx y x f x y x f R εε 11)(++-++≤n n n y x y Lh R ε,这里R R n ≤ 而111)(+++-=n n n y x y ε,所以 R Lh n n += -+εε1)1(,不妨设1

微分方程数值解――

微分方程数值解―― 第二章 习题 1. 设)('x f 为)(x f 的一阶广义导数,试用类似办法定义)(x f 的k 阶广义导数) () (x f k ( ,2,1=k )。 解:对一维情形,函数的广义导数是通过分部积分来定义的。 我们知,)(x f 的一阶广义导数位)(x g ,如果满足 dx x x f dx x x g b a b a )()()()('?? -=?? 类似的,)(x f 的k 阶广义导数为)()() (x f x g k =,如果有 dx x x f dx x x g b a k k b a )()()1()()()(?? -=?? 2. 试建立与边值问题 ?????====<<=+=) 2.1(0)()(,0)()() 1.1(,''44b u b u a u a u b x a f u dx u d Lu 等价的变分问题。 证明: 设}0)()(,0)()(),(|{' '2====∈=b v a v b v a v I H v v V 对方程)1.1(两边同乘以v ,再关于x 在),(b a 上积分)(V v ∈,得 ??=+b a b a fvdx vdx u dx u d )(44 其中 dx dx dv dx u d dx dx dv dx u d dx u d v dx u d d v vdx dx u d b a b a b a b a b a ???? -=-==33 33333344|)( dx dx v d dx u d dx dv dx u d dx u d d dx dv b a b a b a ??+-=-=22222222|)( dx dx v d dx u d b a ? = 2 222 (*) 记dx uv dx v d dx u d v u a b a ?+=)(),(2 222,?=b a fvdx v f ),(。于是我们得到以下等价变分问题的提法:

常微分方程数值解法

第八章 常微分方程数值解法 考核知识点: 欧拉法,改进欧拉法,龙格-库塔法,单步法的收敛性与稳定性。 考核要求: 1. 解欧拉法,改进欧拉法的基本思想;熟练掌握用欧拉法,改进欧拉法、求微 分方程近似解的方法。 2. 了解龙格-库塔法的基本思想;掌握用龙格-库塔法求微分方程近似解的方 法。 3. 了解单步法的收敛性、稳定性与绝对稳定性。 例1 用欧拉法,预估——校正法求一阶微分方程初值问题 ? ??=-='1)0(y y x y ,在0=x (0,1)0.2近似解 解 (1)用1.0=h 欧拉法计算公式 n n n n n n x y y x y y 1.09.0)(1.01+=-+=+,1.0=n 计算得 9.01=y 82.01.01.09.09.02=?+?=y (2)用预估——校正法计算公式 1,0)(05.01.09.0)0(111)0(1=???-+-+=+=++++n y x y x y y x y y n n n n n n n n n 计算得 91.01=y ,83805.02=y 例2 已知一阶初值问题 ???=-='1 )0(5y y y 求使欧拉法绝对稳定的步长n 值。 解 由欧拉法公式 n n n n y h y h y y )51(51-=-=+ n n y h y ~)51(~1-=+

相减得01)51()51(e h e h e n n n -==-=-Λ 当 151≤-h 时,4.00≤

微分方程数值解(学生复习题)

一.填空 1. Euler 法的一般递推公式为 ,整体误差为 ,局部截断误差为: .,改进Euler 的一般递推公式 整体误差为 ,局部截断误差为: 。 2. 线性多步法绝对稳定的充要条件是 。 3.当 ,则单步法1(,,)0,1,2,,n n n n T u u h t u h n h ?+=+= ,稳定。 4. 一个相容,稳定的多步法若绝对稳定,则绝对稳定域在 。 5. 若 ,则多步法是相容的。 6.所有内点,界点的差分方程组成一个封闭的线性代数方程组,其系数矩阵是 。 7.刚性方程是: 8.Runge-Kutta 法的特征值为 , 相容的充要条件为: 8.二阶常微分方程边值问题:22,(), ()d u Lu qu f a x b dx u a u b αβ?=-+=<

4、一级Runge-Kutta 法的绝对稳定域(-2,0) 5、若差分方程满足相容条件,且按右端稳定,则差分解收敛至波动方程的解。 6、Euler 法非A 稳定。 7.对任意网比0r >,六点对称格式的解有收敛阶22()O h τ+ 8. 对任意网比12 r ≤,向前差分格式的解有收敛阶2()O h τ+。 9、相容,稳定的多步法一定绝对稳定。 三.选择 1.抛物型方程的加权隐式差分格式的稳定性为() A 绝对稳定 B 无条件稳定 C 条件稳定 D 非条件稳定 2.von Neumann 条件是差分格式稳定的() A 充分条件 B 必要条件 C 充要条件 D 既非充分也非必要条件 3.实系数二次方程20b c λλ--=的根按模小于或者等于1的充要条件是() A 12b c ≤-≤ B 1+2b c ≤≤ C 12c b ≤-≤ D 12c b ≤+≤ 4.若线性多步法A 稳定,则有( ),其中1,2,,i i k λ= ()为()()0h ρλσλ-=的根。 A Re 01,1,2,,i h i k λ= B 1Re 0i h λ≥?≥ C Re 01,1,2,,i h i k λ≤?≤= D 1Re 0i h λ

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中得很多现象,可以归结为微分方程定解问题。其中,常微分方程求解就是微分方程得重要基础内容。但就是,对于许多得微分方程,往往很难得到甚至不存在精确得解析表达式,这时候,数值解提供了一个很好得解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用得数值解法,如欧拉法、改进得欧拉法、Runge—Kutta方法、Adams预估校正法以及勒让德谱方法等,通过具体得算例,结合MA TLAB求解画图,初步给出了一般常微分方程数值解法得求解过程。同时,通过对各种方法得误差分析,让大家对各种方法得特点与适用范围有一个直观得感受。 【关键词】常微分方程数值解法MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛得一门课程,不仅在数学专业,其她得理工科专业得本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还就是在方法上都获得了很大得发展.同时,由于微分方程就是描述物理、化学与生物现象得数学模型基础,且它得一些最新应用已经扩展到经济、金融预测、图像处理及其她领域在实际应用中,通过相应得微分方程模型解决具体问题,采用数值方法求得方程得近似解,使具体问题迎刃而解。 2 欧拉法与改进得欧拉法 2、1 欧拉法 2、1、1 欧拉法介绍 首先,我们考虑如下得一阶常微分方程初值问题 (21) 事实上,对于更复杂得常微分方程组或者高阶常微分方程,只需要将瞧做向量,(21)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法就是解常微分方程初值问题最简单最古老得一种数值方法,其基本思路就就是把(21)中得导数项用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在中取等距节点,因为在节点点上,由(21)可得: , (22) 又由差商得定义可得: (23) 所以有 (24) 用得近似值代入(24),则有计算得欧拉公式 (25) 2、1、2欧拉法误差分析

(整理)常微分方程数值解法

i.常微分方程初值问题数值解法 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法--差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<<<<=L (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1,,1n n n n u u hf t u n N +=+=-L 方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t L 上的差分解1,,N u u L 。

相关主题
文本预览
相关文档 最新文档