当前位置:文档之家› 氨氮废水处理

氨氮废水处理

氨氮废水处理
氨氮废水处理

目录

第一章

1 引言本课题的研究意义及内容

吹脱法是近几年处理高浓度氨氮废水的一种有效方法。废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。当pH值为中性时,氨氮主要以铵离子的形式存在;当pH值为碱性时,氨氮主要以游离氮(NH。)的形式存在[2]。吹脱法是将废水的pH值调节至碱性,先将废水中的铵离子(NH4+)转化为游离氨,然后通人蒸汽或空气(气提介质)进行解吸,将废水中的氮转化为气相,进而将其从水中去除,或将氨回收以作它用。空气吹脱法操作灵活,占地面积小,脱氮效率高[3]。本文对拉西环填料塔空气吹脱处理模拟废水中氨氮的操作条件进行了考察,并从理论和实践上对结果进行了分析及讨论,确定了最适宜的操作条件,为实际生产提供了依据。

本设计主要针对模拟氨氮废水进行化学沉淀法去除氨氮的研究。在溶解性磷酸盐,镁及氨氮的起始摩尔浓度比为1:1:1条件下,研究改变起始浓度及pH对氨氮去除效果影响并找出最佳pH条件下,通过改变溶解性磷酸盐,镁及氨氮的起始摩尔浓度配比,考察化学沉淀法

1

对氨氮去除效果的影响并探讨化学沉淀法去除氨氮的最佳实验条件,以便为实际废水中去除氨氮摸索最佳反应条件做铺垫。具体包括:1.探讨当氨氮、溶解性磷酸盐及镁初始摩尔浓度为1:1:1条件下,pH对氨氮处理效果的影响。

2.在同一pH条件下,氨氮初始浓度对氨氮去除率的影响。

3.探讨当pH=11条件下,氨氮、溶解性磷酸盐及镁初始摩尔浓度配比对氨氮处理效果的影响。

1.1 氨氮废水的来源

水是人们居住星球上的一种物质资源,它具有可循环性和独特的物理化学性质,是任何物质不可替代的,它是人类生存的基本条件和生产活动的物资基础。我国由于缺水和水污染对经济发展和人民的身体健康造成了极大危害。全国每年废水排放总量由1998年的395亿吨增至2000年的1415亿吨,全国估计每年水污染造成的经济损失约400亿元保护水资源、防止水体污染已成为我国政府十分关注的重大问题。

2

随着工农业的发展和人民生活水平的提高,含氮化合物废水的排放量急剧增加,已经成为环境的主要污染源而备受关注。氨态氮是水相环境中氮的主要污染形态,其中氨态氮主要存在形式为铵离子和游离氨。总之,来源比较广泛,排放量较大,其主要来源包括生活污水和动物排泄物、工业废水、煤油废水、某些制药防水、垃圾填埋场渗滤液及钢铁、煤油、化肥无机化工、铁合金、玻璃制造、肉类加工和饲料生产等排放废水。

随着科学工作者对氨氮进一步研究和探讨发现,氨氮是水体富营养化和环境污染的一种重要污染物质,一旦氨氮进入水体,可导致水体缺氧滋生有害水生物导致鱼类中毒,并且人类在食用此种鱼类的同时又肯会有轻度中毒状甚至死亡。此外,氨氮还会影响鱼鳃的氧气传递,浓度较高时甚至导致鱼类死亡。大量的氨氮废水排入江河湖海给工业废水的处理带来了困难,在用氯消毒时,氨氮就会与氯气作用生成氯胺,明确降低氯的消费速率,大大增加了氯的需要量。氨转化为硝酸、硝酸盐进一步转化为亚硝酸铵具有严重的三致作用,直接影响人类健康。

氮、磷是水体中某些藻类的营养物质。在一定的水温,光照和水流状态下,当水体中氮、磷达到一定浓度时形成水体富营养化,藻类

3

大量繁殖,使水体严重缺氧,对其他水生生物的呼吸造成障碍,尤其是赤潮生物及其代谢物含有毒素,可引起水生生物中毒、死亡。

氨氮的来源可分为自然来源和人为来源两种,氨氮的人为来源主要是人工固氮制造的氨。氨常用于含氮化合物的生产,特别是硝酸和化肥。氨还是无机和有机合成工业中重要的原料,例如用于尿素、染料、医药品和塑料等精细化工产品的生产。另外氨水具有微碱性,因而常作为洗涤剂。氨有很高的汽化热。并且容易被加压液化,普遍用作压缩机和制冷机中的循环冷却。

(1)工业污染物

由于氨在工业中的广泛应用,使得氨氮存在于许多工业废水中,如钢铁、炼油、化肥以及肉类加工和饲料加工生产等。此外皮革、孵化、屠宰等新鲜废水中氨氮初始含量并不高,由于废水中有机氮的脱氨反应,在废水贮积过程中氨氨浓度会迅速增加。工业生产过程中的氨损失造成的氨氮排放也相当惊人。

(2)面源性的农业污染物

面源性的农业污染物,包括肥料、农药和动物粪便等:肥料和农药从农田中流失,包括通过雨水冲淋、农业捧水和地表径流带入河道

4

和水体,成为直接的营养源。人工合成的化学肥料和农药是水体中氮磷营养元素的主要来源。施入农田的氮肥只有一部分被农作物吸收,未被农作物吸收的氮肥超过50%,有的甚至超过80%。为了取得高额农作物产量,农田用肥良越来越大,加上科学施肥及其推广问题尚未得到有效的解决,进入水体的流失肥料数量也必然越来越多。有机肥

料也可能经微生物分解,成为可溶行无机盐,然后进入地下水或江河湖泊。此外,畜禽养殖业肥料和水中野生动物的排泄物,氮磷含量也相当高,也会大量进入水体。

(3)城市固体废弃物填埋产生含高浓度氨氮的垃圾渗滤液

随着城市规模的扩大、城市人口的增加和居民生活水平的提高,城市垃圾的产量与日俱增,我国每年的垃圾清运量己超过1.5亿吨,并还在以每年10%的速度递增。目前垃圾处置方法常用的有简单堆放法、堆肥发酵法、卫生填埋法、焚烧发电法等。其中,卫生填埋法以其成本低廉、适用范围广、无二次污染、环保效果显著和处置彻底等优点,被世界各国普遍采用。我国科技部和建设部也将此法定为垃圾处置的首选推广方法。卫生填埋处理垃圾,伴随而来的就是垃圾渗滤

5

液的产生:垃圾中所含的水份、有机物分解产生的水份以及大气降水、径流等由地表渗入填埋场区的水,除一部分被蒸发外,其余的将储存在填埋层中,当垃圾填埋层含水量达到饱和后,便形成了垃圾渗滤液。垃圾渗滤液中的氨氮通常都高达1000mg/L以上,随着垃圾填埋年龄的增长,垃圾渗滤液中的氨氮含量还将逐渐上升。氨氮含量高垃圾渗滤液中氨氮浓度很高,占总氮90%以上,且氨氮浓度在一定时期随时间的延长会有所升高,主要是因为有机氮转化为氨氮造成的。在中晚期填埋场中,氨氮浓度高是垃圾渗滤液的重要特征之一,也是导致处理难度增大的一个重要原因。

1.2 氨氮废水的特点

高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、

6

折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。

1.3 氨氮在废水中的存在形态

氨氮在废水中的存在形态有四种,分别是有机氮、氨氮、亚硝酸盐氮及硝酸盐氮。以生活污水为例,其中有机氮占含氮量的40%一60%,氨氮占50%-60%,亚硝酸盐氮和硝酸氮不到5%。高浓度氨氮废水排放入自然水体或与生活污水混合稀释后,大致存在类似形态。有机氮和氨氮是未处理废水中的氮存在的主要形态。大量有机氮在碳源充足的条件下;发生矿化作用,使废水中大多数有机氨转化为氨氮。在自然界中,氮的循环过程是:有机氮和氨氮首先转化为亚硝酸盐,然后再转化为硝酸盐,每克氨氮需要4.579g氧,这一需氧量常以含氮化合物的需氧量DOC表示,同时还需要7.1g碱度(以CaC03计)。

1.4 工业氨氮废水分类

根据浓度的不同,工业氨氮废水可划分为三类:(1)高浓度氨氮废水:NH3-N>500mg/L,(2)中等浓度氨氮废水;NH3-N为50—500mg /L,(3)低浓度氨氮废水:NH3一N<50mg/L。

7

高氨氮浓度废水一般来源于焦炭、铁合金、煤的气化、湿法冶金、炼油、畜牧业、化肥、人造纤维和白炽灯等生产过程。这些工业氨氮废水极为复杂,不仅不同类工业的废水中氨氮浓度千变万化,即使同类工业不同工厂的废水中其浓度也各不相同,主要取决于若干因素,如原料的性质、生产工艺、水的消耗量和水的复用状况等。

中等浓度氨氮废水一般来源于化肥、炼油、制胶、合成橡胶,乳制品生产、制药、养殖、造纸、制革等行业。

低浓度氨氮废水一般来源于罐头、蔬菜、淀粉、谷物食品加工业以及防腐、涂料油墨等行业。

6 概述

废水中的氨氮含量高低是废水新鲜程度的指标之一,实际工作中常常根据氨氮废水中含有的有机物成分的多少、种类等指标,将氨氮废水分为无机类氨氮废水和有机类氨氮废水两大类。

有机类氨氮废水主要指含有不同氨氮浓度的有机化工氨氮废水、城市污水及其它工业主要含有机物成分的氨氮废水。有机类型的氨氮废水的处理常采用生物脱氮法。生物脱氮工艺氨氮去除效果好,运行稳定可靠,无二二次污染。

8

无机类氨氮废水一般是指主要含氨氮及其它无机污染物的废水,由于它含有机物成分较少,通常采用物化法或化学法来进行处理。国外有学者认为无机型工业氨氮废水的高浓度、高温和有毒性的特征使得传统生化法脱氮不可行。因为常规生物处理高浓度氨氮废水有很大困难:①为能使微生物正常生长,必须增加回流比来稀释原废水:②硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,化肥以及垃圾渗滤液等高氨氮、低碳源废水的生物脱氮处理,就必须增加较多外加碳源;③基础投资较大,运行管理复杂,处理成本高。寻求实用、投资小、运行可靠、高效、符合我国国情的处理工业高浓度氨氮废水的技术和工艺具有重要的现实意义。

1.5 氨的毒性、氨氮废水的危害

1.5.1 氨的毒性

氨可通过皮肤、呼吸道及消化道引起中毒。氨浓度在0.1mg/L 时,人可感觉到刺激作用,浓度在0.7mg/L时可能危及生命。氨极易溶于水,对眼、喉、上呼吸道作用快、刺激性强,可引起充血和分泌物增多,亦可引起肺水肿,高浓度的氨接触粘膜和皮膜时,因吸收大量水分,造成组织溶解坏死,使较深组织受损。浓氨水溅入眼内,

9

可引起眼内晶体混浊,严重可失明。长期接触低浓度氨氮,可引起喉炎,声音嘶哑。高浓度氨大量吸入可引起支气管炎和肺炎、肺水肿、昏迷

和休克等。水中的氨氮在微生物作用下转变为硝态氮和亚硝态氮,对人体有毒害作用。硝态氮进入人体后,能通过酶系统还原为亚硝态氮,引起高铁血红蛋白病。硝态氮和亚硝态氮均为强化学致癌物质亚硝基化合物的前体物质,有致癌、致突变、致畸的性质,对人体危害十分严重。

1.5.2 氨氮废水的危害

氨氮废水对自然环境和人体有极大的危害。具体表现在:

(1)消耗水体的溶解氧。

氨氮随污水排入水体后,可在硝化细菌作用下被氧化为硝酸盐。氨氮废水造成水中溶解氧下降,鱼类大量死亡,氨氮对鱼的致死浓度为0.2-2.Omg/L。

一般的城市污水经过二级处理后,含氮化合物主要以氨氮形式存在于污水中。污水排入水体后,氨氮可以被硝化细菌氧化成为亚硝酸盐氮和硝酸盐氮,完全氧化lmg氨氮约需要消耗水体的溶解氧

10

4.57rag。如果排入水体中的氨氮浓度越高,那么消耗掉水体中的氧也就越多,这对水体环境质量的改善和保证,以及鱼类的生存是十分不利的。

(2) 枯水期较高浓度的氨氮会使自来水厂处理运行困难,造成饮用水的异味甚至完全不能饮用。氨氮还会造成给水消毒和工业循环水杀菌处理过程中增大用氯量,从而使自来水中有机氯随之增加,对人体健康产生影响;

(3) 出现水体富营养化现象

进入水体的氮营养来源最主要的危害就是引起水体富营养化现象。在光照和其它环境条件适宜的情况下,水中所富含的磷酸盐和某些形式氮素营养物质足以使水体中的藻类过量生长,在随后的藻类死亡和随之而来的异养微生物代谢活动中,水体中的溶解氧很可能被耗尽,造成水体质量恶化和水生生态环境结构破坏,这就是所谓的水体富营养化现象。藻类生长的限制性因素是氮和磷,其含量通常决定着藻类的收获量,所以水体中的氮和磷营养盐类的增长就成为藻类生长的主要原因,将促进藻类等浮游生物的大量繁殖,致使水面上形成致密的水华或赤潮。藻类的代谢,使得水体具有颜色和异味,影响感官性状,使水质下降。而且藻类的死亡和腐败将引起水体中溶解氧的大

11

量减少,导致水生生物特别是鱼类得大量死亡。另外,水体富营养化后,大量藻类遗体的堆积使得湖泊等水体变浅,水流变缓,最终造成水体消亡,变成沼泽地。水体富营养化后,需要相当长的时间才能得到恢复。如美国的伊利湖是最典型的富营养湖,有报导说要恢复需要100年。

由于我国农田施肥利用率低,绝大多数氮肥存在于土壤之中,随着雨水的冲刷进入江河湖海中,这是造成河流湖泊“水华”和近海海域“赤潮”的重要原因之一。由此而孳生的各类藻类中,蓝藻门的藻类毒性最强,污染范围广且最严重,产生的毒素危害鱼和家畜。

(4) 腐蚀、堵塞管道和用水设备。

氨对某些金属,特别是对铜具有腐蚀性。当污水回用时,再生水中的氨氮可以促进输水管道和用水设备中微生物的繁殖形成污垢,堵塞管道和用水设备,影响换热效率。

(5)影响给水水源,增加给水处理的成本

当水厂进行消毒处理的时候,原水中存在的氨氮会与氯作用形成氯氨,会使加氧量大大增加(每克NH3-N需增加8~10克Cl2),加氯消毒过程中将生成三氯甲烷等有机物质和致突变物质,从而使自来水中有机氯随之增加,对人体健康产生影响。为了脱色、除臭、除味而

12

使化学絮凝剂投加量成倍增加。过量的藻类会给净水厂的过滤过程带来障碍,造成滤池堵塞,就要改善或者增加过滤措施。其次,富营养水体在一定条件下由于厌氧作用而产生硫化氢、甲烷和氨气等有毒有害气体,而且在制水过程中水藻本身及其产生的某些有毒物质增加了水处理的技术难度。即影响净水厂的产水率,又加大了制水费用,有的甚至导致水厂关闭。

(6)对渔业的影响

从渔业角度来看,在富营养水体,水质较肥,浮游生物丰富。以吞食浮游生物和碎屑为主的鱼类可以获得充足的食料,有助于提高鱼产量。但不少藻类含有胶质膜或有毒,不适于作鱼的饵料,从而影响鱼的生存和渔业生产,导致经济效益明摄下降。

第二章高浓度氨氮废水处理技术

2 废水的国内外研究状况

2.1.1国内研究状况

国内在污水生物脱氮方面做了大量工作。王磊等人采用固定化技术保证COD的去除率达到80%,同时保证NH4+-N的去除率达到95.5%;方振等人研究的生物陶粒反应器能达到90%的去除率;刑传宏等研究

13

的膜生物反应器,污水中NH4+-N的去除率达97%以上;吕锡武等人验证了氨氮废水处理过程中的好氧反硝化的存在,并对好氧反硝化的机理进行了讨论;李汝其指出曝气生物滤池同时存在好氧、兼性和厌氧微生物,可以同时进行硝化和反硝化反应,并在处理生活废水的实验中氨氮和总氮去除率分别为91.8%和85.1%。在物理化学法处理氨氮废水方面,淮阴钢铁集团公司开发了利用烟道气处理余氨水的技术;姜淑霞等人使用超重力法处理氨氮废水,保持了处理氨氮废水技术上的可行性;胡允良等使用吹脱法处理高浓度制药氨氮废水,吹脱效率可达96%;李可彬等研究了轧状液膜去处氨氮;曲久辉等人研究了不同水质下高铁酸盐对饮用水中氨氮实际效率及主要影响因素;杜鸿章等人对催化湿式氧化法做了一系列的研究,在特定工艺条件下,可以使焦化废水中氨氮去除率达到99.6%。谢炜平研究了化学沉淀法,他利用化学沉淀剂[Mg(OH)2+H3PO4]除去废水中的氨氮,并得到有用复合肥,并且探讨了各反应因素对氨氮去除率的影响。

2.1.2国外研究状况

国外在污水生物脱氮方面作了大量工作。开发了新的脱氮技术和新型生物器, 20世纪60年代后期,迅速发展起来的固定化技术在氨氮工业废水处理领域具有广泛的应用前景。日本下水道事业团用固定化硝化菌在硫化床反应器中进行一年半的生产实验,NH4+-N去除率

14

达到90%以上;Bjorn 等开发了一种能在低温下有效脱氮的浮动床-生物膜反应器,该反应器能在7-18o C内有效去除氨氮。

Yukata等开发出电化学生物反应器,其脱氮原理是将酶或生物膜固定于电化学生物反应器的阴极表面,通以电流,水电解产生氢,硝酸盐从溶液主体扩散至生物膜,氢做为电子供体而进行反硝化反应;VanDerGreaf等发现氨可以直接作为电子供体而进行硝化反应,并称为厌氧氨生物氧化,他们的发现与传统的硝化反硝化相比,该工艺有无需外加有机物作电子供体、防治二次污染及降低能耗等优点。

最近,有研究报道表面反硝化可发生在有氧条件下,既好氧反硝化的存在,它突破了传统生物脱氧技术限制。利用一个生物反应器在一种条件下完成反应,提供了微生物基础。同时硝化反硝化技术可以通过影响硝化和反硝化的基质的投加量或消耗量来实现。

总之,由于不同废水的性质差异,目前还没有一种通用的方法能够处理氨氮废水。因此,必须针对不同的废水选择不同的技术和工艺。但是无论采用何种方法,都应遵循以下原则:能否改进生产技术和改变生产原料,以减少废水量级降低氨氮含量;能否优化水的利用计划,良好的工厂管理及可能的副食品回收相结合;所选择的工艺能否经济、高效的去除废水中的氨氮。

15

7.2 氨氮废水的处理现状

过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。

2.1 废水的水质

上海菜染料化工厂以三聚氰胺、对毅丁酚、正丁醇等为原料生产氨基树脂和酚基树脂。生产过程中产生大量含高浓度氨氮和有机物废水,混合后进水脱氨系统调节池。经测定氨氮最高浓度为52 506.00 mg/L,COD。,浓度为124 079.00 m#L,设计废水日产摄在70 m3/d,废水中悬浮物较少。

主要技术指标

进水水质:COD6000-20000mg/L;BOD2000~

16

12000mg/L;NH 3mNl500~3000mg/L;SS5000~

30000mg/L;pH5.8-8.6。出水水质(一级排放标准):

COD<100mg/L;BOD<30mg/L;NH3-N<15mg /L,

SS<60mg/L;pH6.0~9.0。复合厌氧反应器:运行温度

33。C-38V;体积有机负荷(COD)2~12kg/m3 d。氨

氮吹脱吸收塔:喷淋密度1.5~3.5m3/m2‘h;pH值9~

11。兼氧/好氧生化反应池:体积有机负荷(COD)0.3~

0.5kg/m3·d;DO值0.3-2.5mg/L。纳滤膜机组:膜通

慰爨i焘!爨!撬感I翁镶赣萼雾争£菪{;《l 霉嚣l摹豫霉l{ll霉{鹭蓥i嬖霉I锷氟《带§8

量<30L/m2·h;进水压力<0.7MPa。反渗

17

透机组:膜通

量<25L/m2·h;进水压力3.3MPa。

2.2 吹脱法

吹脱法去除氨氮是利用NH3与NH4+间的动态平衡,通过调整pH,使氨氮主要以游离氨形态存在,然后再进行曝气吹脱。使游离氨从水中逸出,从而达到去除氨氮的目的。对吹脱法处理氮肥厂废水进行了研究.发现若使氨氮去除率达到90%以上,需要调整pH>12,温度>90℃,因此只能采用蒸汽或热空气吹脱;而要使废水达标排放。还需要增加其他后续处理工艺。用鼓风曝气法对垃圾渗滤液进行吹脱。在pH=9.5,吹脱时间为12h时.可使氨氮质量浓度从1 400 mg /L降至530mg/L,且随吹脱时间的延长,出水pH降至8.7,有利于后续生化系统的运行。进行了吹脱法处理尿素厂高氨氮废水的研究。发现吹脱法预处理高浓度氨氮废水是可行的。且氨氮去除率可达78%。

吹脱法去除氨氮具有除氨氮效果较好、操作简便、易于控制等优点。是目前常用的物化脱氮技术。但吹脱法用于处理高氨氮废水存在如下问题:(1)吹脱气体的二次污染;(2)吹脱塔内经常结垢,低温时氨氮去除效率低;(3)对于含有大量弱酸、弱碱盐的高氨氮废水,例

18

如垃圾渗滤液,对pH的缓冲能力强,当将pH调至10左右时,pH变化缓慢,需要投加大量的碱才能使pH突变。因此,吹脱法适合于高浓度氨氮废水的预处理。开发新型高效吹脱装置.提高吹脱效率,对脱氨尾气进行有效处理,防止吹脱气体的二次污染是今后的发展方向。

2.3 选择性离子交换法

由于天然沸石的价格低于人工合成的离子交换树脂,并且对NH4+具有强的选择吸附能力。因此工程上常用的选择性离子交换法是利用沸石对NHg的强选择性。将NH4+截留于沸石表面,从而去除废水中的氨氮。当沸石交换容量饱和后。沸石需再生。该法一般只适用予低浓度氨氮废水,对于高浓度的氨氮废水,会因再生频繁而造成操作困难。因此,用选择性离子交换法处理高氨氮废水时需要结合其他工艺来协同完成脱氮过程。当前相关的研究主要集中在沸石对生物脱氮过程的

强化方面,利用沸石对NH4+的强选择性和微生物对铵沸石的再生作用来实现系统持续稳定的脱氮。针对高氨氮废水的研究相对较少。对沸石进行改性处理,提高吸附速率和交换容量。优化沸石对生物脱氮的强化作用是今后的发展方向。

19

2.4 化学沉淀法

化学沉淀法除氨氮是通过在废水中投加镁的化合物和磷酸或磷酸氢盐.生成磷酸铵镁沉淀.从而去除废水中的氨氮。磷酸铵镁的化学分子式是MgNH4PO3·6H20,俗称鸟粪石,可用作堆肥、花园土壤的添加剂或建筑结构制品的阻火剂。磷酸铵镁沉淀法可以避免吹脱法造成的吹脱塔结垢、臭味等问题.处理效率不受温度限制。但此方法用于高氨氮废水处理主要存在以下问题:(1)处理成本高;(2)按理论计算,去除1 g NH3—N可产生8.35 g NaCl,由此带来的高盐度将会影响后续生物处理的微生物活性。为此,寻找廉价高效的沉淀剂并开发沉淀物作为肥料的价值是今后的发展方向。

,目前相当一部分制革厂采用吹脱法进行去除大部分氨氮。在废水中,氨和铵根离子之间存在着化学平衡(NH4+一NH3+H+),并受pH

值和温度的影响。在25℃和pH为7的条件下,NH3所占比例为O.6%;温度不

变,pH提升到ll时,NH3所占的比例增大到98.2%。提升温度,NH3所占的

比例也随之提高。

空气吹脱法除氨工艺流程如下所示。将废水pH调到lO.5~

20

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

氨氮废水常用处理方法

氨氮废水常用处理方法 来源:作者:发布时间:2007-11-14 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

氨氮去除方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。 物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术 目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

高氨氮废水处理方法

一高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作般上ph 在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水用,ph 一种是无机氨形一种是氨水形成的氨氮,中氨氮的构成主要有两种,成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 形态比例NH3升高,氨在水中PH氨氮在水中存在着离解平衡,随着.升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里( Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持

“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。.2 生物脱氮法 传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。 O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于L,O 段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解

氨氮废水处理系统设计方案百度文库

应平化肥有限责任公司 30T/h氨氮废水处理系统 宜兴市裕泰华环保有限公司 二00八年五月 一、概述 1、采用国内目前较为先进成熟的吹脱+催化氧化+生物滤池处理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况,并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 2、废水处理主要设施材质以钢砼结构为主,具有结构紧凑,占地面积小,布局合理,尽可削减总投资及运行费用加以考虑。 3、对废水处理设施进行充分的考虑,按地区气候条件,考虑必要的防水防冻及防渗措施。 4、废水处理过程中产生的污泥排入污泥池,进行好氧消化稳定后,经压成泥饼外运,保证污泥出路可靠。 二、废水处理量及废水性质: 1废水来源及水量: 废水来源为化肥厂生产工艺经冷却塔冷却后的高氨氮废水 a、废水量:30m3/h b、废水水质:详见表一 表一、废水水质

序号项目数据(mg/L 1 氨氮846.3 2 化学需氧 量 737 3 环状有机 物(Ar-OH 9.095mg/L 4 总磷0.467 5 BOD 21 6 氰化物未知 7 SS 164 8 石油类未知 9 挥发酚未知 10 硫化物未知

11 pH 6-9 12 水温约30℃ c、运行方式:连续运行 1、处理出水标准:废水处理后达合成氨工业水污染物排放标准GWPB 4-1999中中型化肥厂一级排放标准,详见下表。 (2001年1月1日之后建设(包括改、扩建的单位 序号项目标准(mg/L 1 氨氮70 2 化学需氧 量 150 3 氰化物 1.0 4 SS 100 5 石油类 5 6 挥发酚0.1

7 硫化物0.50 8 pH 6-9 三、废水处理工艺选择: 根据废水处理工程特点、功能、要求及废水排放特征,由于废水含有一定的毒性,B/C比较低,氨氮较高,因此需经脱氮及强氧化来提高废水的B/C比在0.3以上,剩余的氨氮及有机物在后级生化系统中去除。 本公司采用生物滤池工艺,经水解酸化后水中的B/C比约0.35左右,可生化大大提高。根据废水排放标准出水有NH3-N的限制,所以在选择废水处理工艺时除了考虑除解有机物外,还考虑到脱氮,为达到这个目的,我们选用了工艺成熟、运行可靠的水解生化+DC生物滤池+N生物滤池的工艺。 四、废水处理工艺流程简图: 1、废水处理系统工艺: 自动加碱废气高空排放或回收塔回收 废水→格栅→调节池→提升泵→PH调节沉淀→中间槽→二级提升泵→氨氮吹脱塔 风机 →三级提升泵→最终中和槽→催化氧化装置→还原反应槽→提升泵→脉冲布水器 自动加酸加还原剂

某厂氨氮废水处理工程设计方案

氨氮废水处理工程 设计方案 废水水量及水质确定 一、废水的水量 根据业主提供的废水处理量为:Q=240T/d, 二、废水的水质 根据业主提供的资料,废水水质如下: NH4-N:6000mg/L T:30℃PH=7-8 SO42-:10000mg/L 废水处理要求 本项目设计废水处理能力为240T/d。 本工程废水处理后废水中氨氮含量达到国家一级排放标准, 即:NH3-N≤15mg/L 废水处理工艺方案 一、工艺确定原则 1、严格执行有关环境保护的各项规定,废水处理后氨氮含量达到该地区的地方排放标准氨氮小于15mg/L; 2、依据废水水质特点,在充分论证的基础上,选用先进合理的废水处理工艺,保证废水达标排放; 3、治理方案力求工艺简洁,方法原(机)理清晰明了; 4、处理系统具有灵活性和操作弹性,以适应废水水质、水量的变化; 5、本方案力求达到工艺先进、运行稳定、管理简单、能耗低、维修方便等特点; 6、处理后不造成二次污染。 二、工艺设计范围 1.废水处理工艺流程、工艺高程和各处理单元设计; 2.废水处理平面布置、设备选型、布置和控制设计; 3.废水处理区1.00m以内的所有工艺管道和线路设计; 三、污水处理工艺设计选择依据 1)、本工程的废水中主要污染物和控制指标为氨氮。氨氮废水处理,目前国内采用的处理工艺有以下几种:https://www.doczj.com/doc/df5613605.html, 1、生化处理工艺 该工艺利用生物菌将有机氮转化为氨氮,再通过硝化与反硝化将硝态氮还原成气态氮从水中逸出,从而达到脱氮的目的。

但由于生物菌所能承受氨氮的浓度较低,一般不能超过200mg/L,当氨氮高于200-300mg/L 时,会抑制细菌生长繁殖。因此该工艺只适用于氨氮含量200mg/L左右的低浓度氨氮废水。此外,生化处理工艺工程占地面积较大,温度较低时,总脱氮效率也不高。 2、传统填料式的吹脱工艺 该工艺是利用废水中所含的氨氮等挥发性物质的实际浓度与平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮等挥发性物质不断的由液相转移到气相中,从而达到从废水中去除氨氮的目的。 但由于氨氮在水中存在溶解平衡关系,当气液两相的氨处于平衡状态时,水中的氨氮将不能被吹脱逸出,因此该工艺不适用于高浓度氨氮废水。且传统填料式吹脱工艺还存在吹脱效率低,吹脱风量大(气液比3000:1左右)、时间长,对温度要求高、填料易结垢等缺点。 3、蒸氨汽提法 蒸氨气体法也是利用氨氮的气相浓度和液相浓度之间的气液平衡关系对氨氮进行分离,该工艺是把水蒸气通入废水中,当蒸气压超过外界压力时,废水沸腾从而加速了氨氮等挥发性物质的逸出过程。 与传统填料式吹脱相同的是,当气液两相中氨达到平衡时,蒸氨气提法也不能继续使水中氨氮持续逸出,因此单次气提也不能将氨氮完全脱除,若采用连续多次气提进行脱氮则会大大增加投资成本和运行成本。 以上两种方法均只能将氨氮处理至100mg/L左右。 4、沸石离子交换法 沸石是含水的钙、钠以及钡、钾的铝硅酸盐矿物,因其含有一价和二价阳离子,具有离子交换性,因此沸石具有离子交换的能力,可将废水中的NH4+交换出来。 该工艺的缺点是只适用于氨氮含量在50mg/L以下的废水,且交换剂用量大需再生,再生频繁,并且再生液需要再次脱氨氮。采用该工艺还要求对废水做预处理以除去悬浮物,因此此法的成本较高,同等浓度下,处理费用为其他工艺的1.5~2倍。 5、折点加氯工艺 折点加氯工艺是利用氯气通入水中所发生的水解反应生成次氯酸和次氯酸盐,通过次氯酸与水中氨氮发生化学反应,将氨氮氧化成氮气而去除。 此方法的缺点是加氯量大、费用高、操作安全性差,设备腐蚀严重,容易发生危险,工艺过程中每氧化1mg/L的氨氮要消耗14.3mg/L的碱度,从而增加了总溶解固体的含量,比较适合低浓度氨氮废水的处理。 6、超声波吹脱工艺 利用超声波来降解水中的化学污染物,尤其是难降解有机污染物,是一种深度氧化处理废水的新技术。 该工艺利用超声波辐射将压缩空气作为超声波的推动力,产生空化气泡,加强了废水中

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

高浓度氨氮废水处理方法与工艺

高浓度氨氮废水处理 废水处理, 高浓度废水处理, 高浓度 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L 以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

氨氮废水处理

氨氮废水处理 2氨氮废水的危害 水环境中存在过量的氨氮会造成多方面的有害影响。 (1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43g,氧化成NO3--N耗氧4.57g。 (2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。 (3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。 1氨氮废水的来源 含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工

氨氮废水处理技术

氨氮废水处理技术 氨氮废水的形成一般是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。排放的废水以及垃圾渗滤液等。氨氮废水对鱼类及某些生物也有毒害作用。 另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。 处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。 本文对氨氮废水处理方法作一综述并对各种方法的优缺点进行分析汇总。 化学沉淀法 化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2﹢、PO43﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下: Mg2﹢+NH4﹢+PO43﹣=MgNH4P04

影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg2﹢):n(NH4﹢):n(P043-))等。 以氯化镁和磷酸氢二钠为沉淀剂对氨氮废水进行处理,结果表明当pH值为10,镁、氮、磷的摩尔比为1.2:1:1.2时,处理效果较好。 以氯化镁和磷酸氢二钠为沉淀剂进行研究,结果表明当pH值为9.5,镁、氮、磷的摩尔比为1.2:1:1时,处理效果较好。 对新出现的高浓度氨氮有机废水一生物质煤气废水进行研究,结果表明,MgC12+Na3PO4.12H20明显优于其他沉淀剂组合。当pH值为10.0,温度为30℃,n(Mg2﹢):n(NH4+):n(P043-)=1:1:1时搅拌30min废水中氨氮质量浓度从处理前的222mg/L降到17mg/L,去除率为92.3%。 将化学沉淀法和液膜法相结合用于高浓度工业氨氮废水的处理。在对沉淀法工艺进行优化的条件下,使氨氮去除率达到98.1%,然后联用液膜法进一步处理使其氨氮浓度降低到0.005g/L,达到国家一级排放标准。 对化学沉淀法进行改进研究,考察Mg2﹢以外的二价金属离子(Ni2﹢,Mn2﹢,Zn2﹢,Cu2﹢,Fe2﹢)在磷酸根作用下对氨氮的去除效果。对硫酸铵废水体系提出了CaSO4沉淀—MAP沉淀新工艺。结果表明,可以实现以石灰取代传统的NaOH调节剂。 化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理;化学沉淀法去除效率较好,且不受温度限制,操作简单;形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本;如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。 化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。 吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到

工业废水去除氨氮的方法

工业废水去除氨氮的方法 根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。 1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N 氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。

折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg 的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HClO+H++Cl- NH4++HClO→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进 行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 2.选择性离子交换化去除氨氮 离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子

高氨氮废水处理——Bardenpho工艺

三种高氨氮废水处理工艺 【格林大讲堂】 一、Bardenpho工艺 该工艺是在A/O工艺基础上,增设了一个缺氧段和好氧段,各段反应池均独立运行,混合液自第一好氧池回流至第一缺氧池而第二好氧池无混合液回流(因而须注意,第二缺氧池和第二好氧池并非组成一级A/O工艺)所增设的缺氧段和好氧段起强化脱氨和提高处理出水水质的作用。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 运行过程中,第一好氧池的内部回流混合液、原水中的有机基质及回流污泥进入第一厌氧池,进行反硝化脱氮。由于第一厌氧池进水中含有较多内碳源可利用因而具有较高的反硝化速率,但与其进水中的食料比有关。好氧一池的容积一般可按F./M为0.25考虑;在厌氧二池中,由于好氧二池出水中有机物浓度较低,同时也没有外加碳源因而反硝化菌主要通过内源呼吸作用,以细胞内碳源进行反硝化,因此反硝化效率较低,并与系统的污泥龄有关。但这种反硝化作用可有效地提高整个处理系统的反硝化程度,从而利于提高脱氮效率。 必要时,可将少部分进水引入厌氧二池以适当补充碳源,提高其反硝化速率。该工艺中好氧二池的主要作用是进一步降低废水中的有机物浓度,同时改善出水的表观性状

由于增设了厌氧二池和好氧二池强化处理作用,该工艺的脱氮效率可以高达90%~95%(城市污水)。 二、BABE工艺 在通常的废水生物处理工艺中,其污泥经浓缩的上层液或氧化处理后脱水滤液均需返回至主体工艺进行处理。由于污泥浓缩上层液或脱水滤液中富含氮,因而其向主体工艺的返回将增加主体工艺的处理负荷,从而影响处理出水中氮的指标。 BABE在运行过程中将以A/O方式运行的处理工艺主流程中回流污泥的一部分分流入BABE间歇曝气池,BABE所处理的对象为含有高浓度的TN的污泥浓缩上层液或污泥脱水滤液。通过BABE池的间歇曝气运行,不仅有效地延长了处理工艺的污泥龄,并可对其进液中的氮实现充分的硝化作用,同时由于BABE池的良好消化条件,即较低的有机负荷及良好的温度控制(一般将温度控制在30℃),有效地提高了污泥中硝化菌的数量。 BABE池经间歇曝气后富含硝化菌的混合液、内回流与进水一起进入A/O工艺主流程,可实现充分的反硝化脱氮,强化了系统对氮的去处作用。 三、超声吹脱处理氨氮 超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的

氨氮废水处理技术分析

氨氮废水处理技术分析 随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮废水污染已经成为当今环境工作者所面临的重大课题。 1氨氮废水的来源 含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。 人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。 人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。 随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。 近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。 氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3--N)以及亚硝态氮(NO2--N)等多种形式存在,而氨态氮是最主要的存在形式之一。 废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。 2氨氮废水的危害

水环境中存在过量的氨氮会造成多方面的有害影响: (1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43 g,氧化成NO3--N耗氧4.57g。 (2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。 (3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。 NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N 存在时,水处理厂将需要更大的加氯量,从而增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。

氨氮废水常用处理方法

氨氮废水常用处理方法 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。 采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。 用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo 中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18 cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。 应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可

氨氮废水的处理方法及案例介绍

氨氮废水的处理方法 氨氮废水主要来源于化肥、焦化、石化、制药、食品等行业废水,由于存在一定的隐患问题,因此人们对于这一废水的处理很重视,传统的处理方法有物理法、化学法、物理化学以及生化法等。 (1)生物法 传统的生化法主要用于低浓度氨氮废水处理,它是利用微生物的硝化及反硝化作用使氨氮转变为氮气。低浓度氨氮废水通常具有比低的特点,有些生产废水甚至不含COD,因此采用生物脱氮的方式处理,需要加入碳源,运行成本很高。常见工艺有A/O或A2/O)和SBR工艺。其缺点是处理过程对温度和工业废水中某些组分的干扰非常敏感,需要的反应器体积比较大,而且反硝化过程中会产生N2O,易转化为其它影响臭氧层的氮氧化物,反硝化把NH4+这种有价值的物质转化成N2逸入空气,造成浪费。在A/O工艺中,为了促使反硝化反应顺利进行,一般要求C/N大于3。 (2)蒸汽汽提法 蒸汽汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,其处理机理与吹脱法基本相同,也是一个气液传质过程,即在高pH值时,使废水与蒸汽密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气相中氨的分压与废水中氨的浓度对应的平衡分压之间的差值。蒸汽汽提法由于采用的工作介质是蒸汽,氨自废水进入蒸汽中,然后在塔顶精馏成为浓氨水回收,因此无需增加后处理工序。蒸汽汽提所需蒸汽体积要比空气吹脱法中所需空气体积小得多,因此设备体积较小,占地面积较少。汽提法比较适用于处理1000mg/L以上的高浓度氨氮废水,对氨氮的去除率可达99%以上,效率高,技术成熟度好。但是,常规的汽提废水脱氨技术蒸汽消耗量大,处理废水单耗比较高。蒸汽汽提废水脱氨技术的普及推广应用需要在节能降耗方面加大研究开发的力度。

高氨氮废水处理技术及其发展趋势

高氨氮废水处理技术及其发展趋势 (能源与环境学院,环境工程072班,学号:200701144210) 摘要:经济有效地控制氨氮废水污染是当前面临的重大课题。本文简述了高浓度氨氮废水的危害, 介绍了对高浓度氨氮废水处理的处理方法, 并对这些方法工艺的优缺点做出了分析,对今后高氨氮废水的处理技术作出了展望。 关键词:脱氨氮废水处理技术发展 一、引言 随着人们生活水平的提高和对环境要求的加强、环境污染治理的加强和环保技术的发展,水体中有机物的代表指标——COD 基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。 随着社会经济的发展,来源广泛的高氨氮废水处理越来越受到重视,像传统领域的化工、制革、屠宰等行业废水的预处理主要采用物化的吹脱工艺或投加氯系氧化剂的化学处理工艺,在市政污水处理方面,随着排放标准的提高,A /O或A /A /O的生化处理工艺得到了越来越广泛的应用。本文总结了高氨氮废水处理技术、现状及其发展趋势等。 二、技术简介 许多方法都能够有效的处理氨氮,如物理化学法有吹脱、气提、折点加氯、离子交换、混凝沉淀、反渗透、电渗析及各种高级氧化技术(AOTs)等多种方法;生物方法有硝化及水藻等水生植物养殖。但具有应用方便,处理效果稳定、适应废水水质及比较经济等优点,并且目前实用性较好、研究较多、具有良好发展用前景的有:氨吹脱、化学沉淀法、高效生物脱氮法和高级氧化技术。 1. 吹脱法 吹脱法是目前处理氨氮废水最普遍应用的方法之一。研究主要集中在:吹脱设备(吹脱池、吹脱塔)、吹脱形式(自然吹脱、鼓风吹脱)、填料形式(规整填料、拉西环、聚丙烯鲍尔环等)吹脱参数(pH 值、气水比、吹脱温度等)。 吹脱法是将废水中的离子态铵(NH4+),通过调节pH 值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH 值、水温、布水负荷、气液比、足够的气液分离空间。。研究结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理。 吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 2.化学沉淀法(MAP 法) 化学沉淀法是在含有NH4+离子的废水中,投加Mg2+和PO43-,使之与NH4+生成难溶复盐磷酸氨镁MgNH4PO4·6H2O(简称MAP)结晶,通过沉淀,使MAP 从废水中分离出来。 化学沉淀法尤其适用于处理高浓度氨氮废水,且有90%以上的脱氮效率。在废水中无有毒有害物质时,磷酸氨镁是一种农作物所需的良好的缓释复合肥料。处理时,若pH 值过高,易造成部分NH3 挥发。建议缩短沉淀时间,适当降低

相关主题
文本预览
相关文档 最新文档