当前位置:文档之家› 内存时序以及内存时序优化

内存时序以及内存时序优化

内存时序以及内存时序优化
内存时序以及内存时序优化

谈内存时序以及内存时序优化

原创作者:不抬杠

最近看到一些网友对内存频率的重要性争论不休,认为内存频率不重要的,只能说对电脑运行的工作原理不了解,对超频知识不了解。

内存的实质是随时写入/读取存储器,是一种高速存储器。CPU不能直接读取硬盘内的数据进行计算,那么硬盘的数据就要通过内存来实现和CPU之间的交换,所有的程序运行时候都要调入到内存里才能进一步交换给CPU计算。如果内存速度(频率)低,会直接影响到内存与CPU进行数据交换的速度,因此影响到整体的计算速度。

内存频率虽然重要,内存时序优化也很重要。如果内存时序调校得不好,就算CPU体质再好,频率一样上不去。在主板BIOS设置中,有以下几个重要的内

存时序参数:

1. DRAM Command Rate(CMD Rate)

这个参数表示“首命令延迟”。该参数的单位是时钟周期,越小越好。不过,当内存较多且系统工作不太稳定时,要将此参数调大。在K8主板上,CMD Rate 的选项有Auto、1T或2T。品质好一点的内存模组可以使用1T来提高性能,大部分主板为了保证更好的兼容性,默认采用了2T的保守值。

2. CAS# Latency(tCL)

CAS表示“列地址选通脉冲”,在内存寻址后,系统必须等待列地址信号CAS 才能开始进行数据传输,CL就是列地址脉冲的反应时间,它是衡量内存品质的重要参数之一。通常DDR2内存的tCL=4/5/6,在稳定的前提下,数值越低越好。

3. RAS to CAS Delay(tRCD)

该参数表示“行寻址至列寻址延迟时间”,这个参数主要影响带宽和稳定性,数值越小越好。在超频时大部分内存在设定为5以上时会改善不少稳定性。

4. Row Precharge Timing(tRP)

该参数表示“行位址预充电时间”,即内存从结束一个行存取操作到重新开始下次操作的间隔时间。和tRCD类似,tRP也主要影响带宽和稳定性,数值也

是越小越好。

5. Minimum RAS Active Timing(tRAS)

该参数表示“从行激活到预充电开始程序之间的最小时钟周期”,即从收到一个请求后到初始化RAS并真正接收数据的间隔时间。

6. Trfc*(0/1/2/3) for DIMM*(0/1/2/3)

该参数主要影响带宽和稳定性,可设置为75ns、127.5ns、195ns、327.5ns 等。如果CPU外频在340MHz以下,建议设置为127.5ns;外频在340MHz~370 MHz 范围内,建议设置为195ns;外频高于370MHz时,建议设置为327.5ns。

内存频率及时序优化对CPU系统影响大不大,用EVEREST内存读取/写入速

度就可以明确的测出。

虽然K8架构的CPU与Intel在设置上有些差异,但是其数据交换的工作原

理是相同的。

下面我用数据来说明内存频率及时序优化的重要性。

注:下面所有测试CPU频率不变,保持2.8G的默认频率。

图1内存默认条件下的读取速度

图2内存默认条件下的写入速度

图3内存超频和时序优化后的读取速度

图4内存超频和时序优化后的写入速度

图5默认频率下的3D运行

图6内存超频和时序优化后的3D运行

相对于频率、温度等因素而言,内存时序往往是非常容易被大家忽略的一个要素,但是其重要性却时刻影响着电脑的性能。我们偶尔会听到“某某内存针对某某平台做了优化”,这里起到关键作用的就是内存时序,在K8平台表现的更明显。一般来说,调节到较好的内存时序可以让内存在现有的频率内得到最佳的性能,而较差的内存时序,则可以让内存的超频能力得到大幅提升。

对于我们而言,如果需要内存超频,则可以考虑降低内存的时序,如果不想超频而又希望提高性能,则可以尝试优化内存时序。

CPU-Z帮大忙

我们可以借助一款查看系统信息的小软件看到自己电脑上的内存时序是如何设置的,它就是CPU-Z。这款软件的主要功能是查看关于CPU、主板和内存的关键信息。当我们切换到软件的“Memory”选项卡时,内存的所有关键信息就都出现了,其中的CAS # Latency、RAS to CAS # Latency、RAS # Precharge、Cycle Time (Tras)、Bank Cycle Time(Trc)、Dram Idle Timer都是内存时序的参数,这些稀奇古怪的参数真是令人感到头痛不已。对于内存时序,在国际化组织制定相关内存规格的时候,就已经有了一定的规范,切换到

SPD选项卡,就可以看到在内存出厂的时候,内存厂商给内存预设的时序参数。

可以看到,在不同的频率下,厂商设定的内存时序是有差别的。时序随着频率提高而变大。这里显示的参数是CAS # Latency、RAS to CAS # Latency、RAS # Precharge、Cycle Time(Tras),另外还有没被显示出来的Command Rate,这是5个非常关键的内存时序参数,他们的数值有一种常见的表达方法,就是把5个依次连起来,与频率和Command Rate数值相搭配。比如可以说成在DDR400频率下,内存的时序为3-3-3-8,2T。

延长硬件的寿命走出内存超频的六大误区

2007-01-22 23:40:48 业界| 评论(0) | 浏览(258)

对于DIY 玩家而言,超频的最高境界就是将每一样配件都超到尽头!所以,现在除了对处理器、显示卡进行超频之外,插在主板上的内存也照超不误。但超频能否成功,效果如何,还得取决与超频的方式与方法。笔者观察到不少游戏玩家在对内存超频的过程中存在不少误区,这些不正确的做法导致的后果是轻则影响机器性能,严重的则会危及硬件的寿命,因此决不可掉以轻心。下面就为大家分析内存超频最常见的六个误区,并改正之!

误区一:相同芯片的不同品牌不意味着超频能力相同

有时候两款内存条(不同品牌)虽然采用了相同的芯片,但超频性能上体现出了不小的差异。这可能与

产品的PCB设计及选用颗粒的品质不同有一定的关系,像大家知道的许多内存品牌都采用韩国三星电子提供的颗粒,但这些颗粒(相同编号)也是分等级的,三星会把当中品质最优秀的留给自己的原装内存,或者是关系最好的几家内存厂家。其余关系一般的,或者规模较小的厂家,采购到的颗粒,就有可能是品质次一点的。这一点在其他产品上也可能会出现,所以,芯片固然重要,但它可能只决定了可超频的下限,上限则会因厂商而异。

三星金条为韩国三星电子的原厂原装内存,产品全部选用A级极品颗粒。

误区二:CSP封装的芯片不意味着好超频

虽然CSP封装在技术上更为先进,但却与最终内存性能的关系不大。采用CSP封装芯片的内存,在超频方面和内存优化方面不一定就比传统的TSOP-II芯片模组强,大家不要过分迷信CSP封装,它本身虽然可以达到比TSOP-II更高的频率,但对外围电路的要求和电气环境的变化也更苛刻了。采用TSOP封装的内存,超频能力比CSP封装更强的情况更为普遍。

误区三:带散热片的产品不见得更能超频

其实,笔者一直怀疑在内存上安装散热片的必要性。就目前来看,散热片更多的是起到了美化产品形象的作用。三星金条的低规格产品甚至超过了很多带有散热片的高规格产品就很能说明问题。所以在选购时,有没有散热片并不是考虑因素(连次要因素都排不上),而且有时这种散热片可能还会起到厂商的“遮羞布”的作用,让人看不到所使用的芯片,要知道内存芯片才是决定超频下限的基础。

像三星金条等品牌内存,每颗芯片都是经过精挑细选的优秀型号,发热量很少,而且在频率方面留有余地,即使作适当超频也不会有任何问题,散热方面根本不需要担心。即使不使用任何散热手段,三星金条内存也能有良好的表现。

误区四:单面内存比双面内存在超频方面更有先天优势

这一点不难理解,这种现象主要取决于芯片组的驱动负载能力。单面的内存大多为8颗芯片,如目前主流的512MB产品,双面的为16颗芯片,如目前主流的1GB产品。这就意味着后者需要更大的驱动能力(虽然工作时会通过片选信号选中一个P-Bank工作,但不工作的P-Bank仍会增加地址与控制信号线的负载)。显然,8颗芯片总是要比16颗芯片更容易驱动。另外,芯片的增多,也使PCB上的信号线数量将是前者的一倍,如果设计不良,产生相互干扰的机率也就大幅度增加,这也可能会影响超频能力,不过这是

相对次要的原因,就模组本身而言,超频能力更多的取决于芯片。误区五:规格高的内存在优化能力上不见得比规格低的内存强

理论上DDR-500比DDR-466要快,但我告诉你实际上并不绝对。因为有很多高规格的内存都是靠牺牲时序优化能力来换取的。像DDR-500的内存条虽然标称频率更高,但并不能表示其在DDR-400下具有更好的优化能力。原因很简单,DDR-500所使用的芯片有可能和普通DDR-400的芯片是一样的,在时序优化能力方面并不占优,而能达到DDR-500更多的是通过放宽时序要求来达到的。这种做法对用户的意义不大,但厂家们却非常喜欢,拿同样的产品卖更高的价钱,何乐而不为呢,呵呵!另一方面,有些内存虽然能在DDR-400下以最快的时序工作,但这并不意味着它也很能超频。反过来,某个内存特别能超频,但也不代表它能在DDR-400下达到最快的时序,这两者之间不存在正比例关系。因此,大家一定要注意这一点,这也体现了两种不同的选购倾向,是想得到最佳的DDR-400性能还是最高的工作频率,只能二选其一。

使用三星ZCD5颗粒的三星金条DDR2-533内存在不加电压超频情况下,能够以4-4-4-X的时序稳定工作在DDR2-667模式,更具备挑战DDR2-900的实力。

常见的三星GCCC和GCD5颗粒大都具备在5-5-5-15参数下超频至DDR2-800以上水平。

误区六:有些产品参数设置最大不见得就好超频

以DDR400内存为例,当用3-4-4超不上去时,就应换用By SPD的方法进行超频。有些默认CL=2.5的产品,By SPD反而会比3-4-4好超,但有些则不是,默认CL=3的产品,By SPD与3-4-4都差不多,可能会有1、2MHz的区别。笔者估计这应该是芯片所体现出来的差异。CL是一个唯一在内存初始化时写入芯片内模式寄存的参数(tRCD、tRP只需北桥控制即可),所以它的值与芯片本身固有的可调整范围就需要匹配,如果芯片本身的局限性较大,那么调高CL值反而会造成内存子系统的不稳定而导致不能开机。所以,3-4-4虽然是一个超频时常用的设置,但如果遇到一点也不能超时,建议改用By SPD试一试,可能会有惊喜。另外,很多在200MHz设置为3-3-3的PC3200内存,在By SPD超频时,自动会降为3-4-4,这估计是P4C800主板的自动设定。

如何最优化设置内存时序(以DDR2-800为例)

在默认参数下对内存进行超频,确定内存能够稳定工作的超频频率,其间可适当增加内存电压,但为了安全起见最好不要超过2.1V。(如果用户不打算对内存进行超频,只是想通过优化参数获得更好的性能,可直接跳至第二步)。

1:将内存延时设置在较低的水平,比如DDR2-800内存可以设定为4-4-4-10,更高频率内存可以设定为5-5-5-15。同时将CMD 参数设置为1T,并利用测试软件检查内存是否能够稳定工作。

2:假如降低参数延迟后内存出现不稳定的情况,建议首先将CMD参数调整为AUTO或2T,再使用软件检测内存的稳定性。

3:如果内存在2T或AUTO模式下仍然无法工作,用户可将逐步提高tCL、tRCD、tRP、tRAS参数的延时设置。

4:对于tCL参数对内存性能影响较大,大家可以先增加tRCD、tRP、tRAS参数的延迟,最后再增加tCL参数延迟,直至内存能够稳定工作为止。

调整内存时序以后,等于是对内存进行了超频吗

2007-04-21 19:49

一:关于内存超频与设置的基础知识

在我们进行内存的选购之前,我们要对影响内存性能的一些基本知识进行一个了解,下面这十点,使笔者通过反复论证得到的结果,请大家务必了解。

1、对内存的优化要从系统整体出发,不要局限于内存模组或内存芯片本身的参数,而忽略了内存子系统的其他要素。

2、目前的芯片组都具备多页面管理的能力,所以如果可能,请尽量选择双 P-Bank 的内存模组以增加系统内存的页面数量。但怎么分辨是单 P-Bank 还是双

P-Bank 呢?就目前市场上的产品而言,256MB 的模组基本都是单 P-Bank 的,双面但每面只有 4 颗芯片的也基本上是单 P-Bank 的,512MB 的双面模组则基本都是双 P-Bank的。

3、页面数量的计算公式为: P-Bank 数量 X4,如果是 Pentium4 或 AMD 64 的双通道平台,则还要除以 2。比如两条单面 256MB 内存,就是 2X4=8 个页面,用在 875 上组成双通道就成了 4 个页面。

4、CL、tRCD、tRP 为绝对性能参数,在任何平台下任何时候,都应该是越小越好,调节的优化顺序是CL → tRCD → tRP。

5、当内存页面数为 4 时,tRAS 设置短一些可能会更好,但最好不要小于 5。另外,短 tRAS 的内存性能相对于长 tRAS 可能会产生更大的波动性,对时钟频率的提高也相对敏感。

6、当内存页面数大于或等于 8 时,tRAS 设置长一些会更好。

7、对于 875 和 865 平台,双通道时页面数达到 8 或者以上时,内存性能更好。

8、对于非双通道 Pentium4 与 AMD 64 平台,tRAS 长短之间的性能差异要缩小。

9、Pentium4 或 AMD 64 的双通道平台下,BL=4 大多数情况下是更好的选择,其他情况下 BL=8 可能是更好的选择,请根据自己的实际应用有针对的调整。

10、适当加大内存刷新率可以提高内存的工作效率,但也可能降低内存的稳定性。

二、BIOS中内存相关参数的设置要领

Automatic Configuration“自动设置”(可能的选项:On/ Off或

Enable/Disable)

可能出现的其他描述为:DRAM Auto、Timing Selectable、Timing Configuring By SPD等,如果你要手动调整你的内存时序,你应该关闭它,之后会自动出现详细的时序参数列表。

Bank Interleaving(可能的选项:Off/Auto/2/4)

这里的Bank是指L-Bank,目前的DDR RAM的内存芯片都是由4个L-Bank所组成,为了最大限度减少寻址冲突,提高效率,建议设为4(Auto也可以,它是根据SPD中的L-Bank信息来自动设置的)。

Burst Length“突发长度”(可能的选项:4/8)

一般而言,如果是AMD Athlon XP或Pentium4单通道平台,建议设为8,如果是Pentium4或AMD 64的双通道平台,建议设为4。但具体的情况要视具体的应用而定。

CAS Latency “列地址选通脉冲潜伏期”(可能的选项:1.5/2/2.5/3)

BIOS中可能的其他描述为:tCL、CAS Latency Time、CAS Timing Delay。Command Rate“首命令延迟”(可能的选项:1/2)

这个选项目前已经非常少见,一般还被描述为DRAM Command Rate、CMD Rate 等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数,而从上文的ScienceMark 2.0测试中,大家也能察觉到容量与延迟之间的关系。

RAS Precharge Time “行预充电时间”(可能的选项:2/3/4)

BIOS中的可能其他描述:tRP、RAS Precharge、Precharge to active。

RAS-to-CAS Delay“行寻址至列寻址延迟时间”(可能的选项:2/3/4/5)BIOS中的可能其他描述: tRCD、RAS to CAS Delay、Active to CMD等。Active to Precharge Delay“行有效至行预充电时间”(可能的选项:

1……5/6/7……15)

BIOS中的可能其他描述:tRAS、Row Active Time、Precharge Wait State、Row Active Delay、Row Precharge Delay等。根据上文的分析,这个参数要根据实际情况而定,具体设置思路见上文,并不是说越大或越小就越好。

三、认清影响内存性能的关键

在讲完 SDRAM 的基本工作原理和主要操作之后,我们现在要重要分析一下SDRAM 的时序与性能之间的关系,它不再局限于芯片本身,而是要从整体的内存系统去分析。这也是广大 DIYer 所关心的话题。比如 CL 值对性能的影响有多

大几乎是每个内存论坛都会有讨论,今天我们就详细探讨一下。这里需要强调一点,对于内存系统整体而言,一次内存访问就是对一个页(Page)的访问。由于在 P-Bank 中,每个芯片的寻址都是一样的,所以可以将页访问“浓缩”等效为对每芯片中指定行的访问,这样可能比较好理解。但为了与官方标准统一,在下文中会经常用页来描述相关的内容,请读者注意理解。

可能很多人还不清楚页的概念,在这里有必要先讲一讲。从狭义上讲,内存芯片芯片中每个 L-Bank 中的行就是页,即一行为一页。但从广义上说,页是从整体角度讲的,这个整体就是内存子系统。

对于内存模组,与之进行数据交换的单位就是 P-Bank 的位宽。由于目前还没有一种内存芯片是 64bit 位宽的,所以就必须要用多个芯片的位宽来集成一个

P-Bank。如我们现在常见的内存芯片是 8bit 位宽的,那么就需要 8 颗芯片组成一个 P-Bank 才能使系统正常工作。而 CPU 对内存的寻址,一次就是一个

P-Bank,P-Bank 内的所有芯片同时工作,这样对 P-Bank 内所有的芯片的寻址都是相同的。比如寻址指令是 B1、C2、R6,那么该 P-Bnak 内的芯片的工作状态都是打开 B1 的 L-Bank 的第 C2 行。好了,所谓广义上的页就是指 P-Bank 所包括的芯片内相同 L-Bank 内的相同工作行的总集合。页容量对于内存子系统而言是一个很重要的指标。这个参数取决于芯片的容量与位宽的设计。由于与本文的关系不大,就不具体举例了。

早期 Intel 845 芯片组 MCH 的资料:它可以支持 2、4、8、16KB 的页容量

总之,我们要知道,由于寻址对同一 L-Bank 内行地址的单一性,所以一个

L-Bank 在同一时间只能打开一个页面,一个具有 4 个 L-Bank 的内存芯片,可以打开 4 个页面。这样,以这种芯片组成的 P-Bank,也就最后具备了 4 个页面,这是目前 DDR SDRAM 内存模中每个 P-Bank 的页面最大值。

1、影响性能的主要时序参数

在讲完内存的基本操作流程与相关的 tRP、tRCD、CL、BL 之后,我们就开始深入分析这些参数对内存性能的影响。所谓的影响性能是并不是指 SDRAM 的带宽,频率与位宽固定后,带宽也就不可更改了。但这是理想的情况,在内存的工作周期内,不可能总处于数据传输的状态,因为要有命令、寻址等必要的过程。但这些操作占用的时间越短,内存工作的效率越高,性能也就越好。

非数据传输时间的主要组成部分就是各种延迟与潜伏期。通过上文的讲述,大家应该很明显看出有三个参数对内存的性能影响至关重要,它们是 tRCD、CL 和tRP。按照规定,每条正规的内存模组都应该在标识上注明这三个参数值,可见它们对性能的敏感性。

以内存最主要的操作——读取为例。tRCD 决定了行寻址(有效)至列寻址(读 / 写命令)之间的间隔,CL 决定了列寻址到数据进行真正被读取所花费的时间,tRP 则决定了相同 L-Bank 中不同工作行转换的速度。现在可以想象一下对某一页面进行读取时可能遇到的几种情况(分析写入操作时不用考虑 CL 即可):1、要寻址的行与 L-Bank 是空闲的。也就是说该 L-Bank 的所有行是关闭的,此时可直接发送行有效命令,数据读取前的总耗时为 tRCD+CL,这种情况我们称之为页命中(PH,Page Hit)。

2、要寻址的行正好是现有的工作行,也就是说要寻址的行已经处于选通有效状态,此时可直接发送列寻址命令,数据读取前的总耗时仅为 CL,这就是所谓的背靠背(Back to Back)寻址,我们称之为页快速命中(PFH,Page Fast Hit)或页直接命中(PDH,Page Direct Hit)。

3、要寻址的行所在的 L-Bank 中已经有一个行处于活动状态(未关闭),这种现象就被称作寻址冲突,此时就必须要进行预充电来关闭工作行,再对新行发送行有效命令。结果,总耗时就是 tRP+tRCD+CL,这种情况我们称之为页错失(PM,Page Miss)。

显然,PFH 是最理想的寻址情况,PM 则是最糟糕的寻址情况。上述三种情况发生的机率各自简称为 PHR ——PH Rate、PFHR ——PFH Rate、PMR ——PM Rate。因此,系统设计人员(包括内存与北桥芯片)都尽量想提高 PHR 与 PFHR,同时减少 PMR,以达到提高内存工作效率的目的。

2、增加 PHR 的方法

显然,这与预充电管理策略有着直接的关系,目前有两种方法来尽量提高 PHR。自动预充电技术就是其中之一,它自动的在每次行操作之后进行预充电,从而减少了日后对同一 L-Bank 不同行寻址时发生冲突的可能性。但是,如果要在当前行工作完成后马上打开同一 L-Bank 的另一行工作时,仍然存在 tRP 的延迟。怎么办?此时就需要 L-Bank 交错预充电了。

早期非常令人关注的VIA 4路交错式内存控制,就是在一个L-Bank工作时,对另一个L-Bank进行预充电或者寻址(如果要寻址的L-Bank是关闭的)。这样,预充电与数据的传输交错执行,当访问下一个L-Bank时,tRP已过,就可以直接进入行有效状态了,如果配合得理想,那么就可以实现无间隔的L-Bank交错读/写(一般的,交错操作都会用到自动预充电),这是比PFH更好的情况,但它只出现在后续的数据不在同一页面的时时候。当时VIA声称可以跨P-Bank进行16路内存交错,并以LRU(Least Recently Used,近期最少使用)算法进行交错预充电/寻址管理。

L-Bank 交错自动预充电 / 读取时序图: L-Bank 0 与 L-Bank 3 实现了无间隔交错读取,避免了 tRP与tRCD对性能的影响,是最理想的状态

3、增加 PFHR 的方法

无论是自动预充电还是交错工作的方法都无法消除同行(页面)寻址时tRCD 所带来的延迟。要解决这个问题,就要尽量让一个工作行在进行预充电前尽可能多的接收工作命令,以达到背靠背的效果,此时就只剩下 CL 所造成的读取延迟了(写入时没有延迟)。

如何做到这一点呢?这就是北桥芯片的责任了。现在我们就又接触到 tRAS 这个参数,在 BIOS 中所设置的 tRAS 是指行有效至预充电的最短周期,在内存规范中定义为 tRAS(min),过了这个周期后就可以发出预充电指令。对于 SDRAM 和DDR SDRAM 而言,一般是预充电命令至少要在行有效命令 5 个时钟周期之后发出,最长间隔视芯片而异(目前的 DDR SDRAM 标准一般基本在 70000ns 左右),否则工作行的数据将有丢失的危险。那么这也就意味着一个工作行从有效(选通)开始,可以有 70000ns 的持续工作时间而不用进行预充电。显然,只要北桥芯片不发出预充电(包括允许自动预充电)的命令,行打开的状态就会一直保持。在此期间的对该行的任何读写操作也就不会有 tRCD 的延迟。可见,如果北桥芯片在能同时打开的行(页)越多,那么 PFHR 也就越大。需要强调的是,这里的同时打开不是指对多行同时寻址(那是不可能的),而是指多行同时处于选通状态。我们可以看到一些 SDRAM 芯片组的资料中会指出可以同时打开多少个页的指标,这可以说是决定其内存性能的一个重要因素。

但是,可同时打开的页数也是有限制的。从 SDRAM 的寻址原理讲,同一L-Bank 中不可能有两个打开的行(读出放大器只能为一行服务),这就限制了可同时打

开的页面总数。以 SDRAM 有 4 个 L-Bank,北桥最多支持 8 个 P-Bank(4 条DIMM)为例,理论上最多只能有 32 个页面能同时处于打开的状态。而如果只有一个 P-Bank,那么就只剩下 4 个页面,因为有几个 L-Bank 才能有同时打开几个行而互不干扰。Intel 845 的 MHC 虽然可以支持 24 个打开的页面,那也是指 6 个 P-Bank 的情况下(845MCH 只支持 6 个 P-Bank)。可见 845 已经将同时打开页数发挥到了极致。

不过,同时打开页数多了,也对存取策略提出了一定的要求。理论上,要尽量多地使用已打开的页来保证最短的延迟周期,只有在数据不存在(读取时)或页存满了(写入时)再考虑打开新的指定页,这也就是变向的连续读 / 写。而打开新页时就必须要关闭一个打开的页,如果此时打开的页面已是北桥所支持的最大值但还不到理论极限的话(如果已经达到极限,就关闭有冲突的L-Bank内的页面即可),就需要一个替换策略,一般都是用 LRU 算法来进行,这与 VIA 的交错控制大同小异。

回到正题,虽然 tRAS 代表的是最小的行有效至预充电期限,但一般的,北桥芯片一般都会在这个期限后第一时间发出预充电指令(自动预充电时,会在tRAS 之后自动执行预充电命令),只有在与其他操作相冲突时预充电操作才被延后(比如,DDR SDRAM 标准中规定,在读取命令发出后不能立即发出预充电指令)。因此,tRAS 的长短一直是内存优化发烧友所争论的话题,在最近一两年,由于这个参数在 BIOS 选项中越来越普及,所以也逐渐被用户所关注。其实,在 SDRAM 时代就没有对这个参数有刻意的设定,在 DDR SDRAM 的官方组织 JEDEC 的相关标准中,也没有把其列为必须标明的性能参数(CL、tRCD、tRP 才是),tRAS 应该是某些主板厂商炒作出来的,并且在主板说明书上也注明越短越好。

其实,缩小 tRAS 的本意在于,尽量压缩行打开状态下的时间,以减少同 L-Bank 下对其他行进行寻址时的冲突,从内存的本身来讲,这是完全正确的做法,符合内存性能优化的原则,但如果放到整体的内存系统中,伴随着主板芯片组内存页面控制管理能力的提升,这种做法可能就不见得是完全正确的,在下文中我们会继续分析 tRAS 的不同长短设置对内存性能所带来的影响。

4、BL 长度对性能的影响

从读 / 写之间的中断操作我们又引出了 BL(突发长度)对性能影响的话题。首先,BL 的长短与其应用的领域有着很大关系,下表就是目前三个主要的内存应用领域所使用的 BL,这是厂商们经过多年的实践总结出来的。

BL与相应的工作领域

BL 越长,对于连续的大数据量传输很有好处,但是对零散的数据,BL 太长反而会造成总线周期的浪费,虽然能通过一些命令来进行终止,便也占用了控制资源。以 P-Bank 位宽 64bit 为例,BL=4 时,一个突发操作能传输 32 字节的数据,为了满足 Cache Line 的容量需求,还得多发一次,如果是 BL=8,一次就可以满足需要,不用再次发出读取指令。而对于 2KB 的数据,BL=4 的设置意味着要每隔 4 个周期发送新的列地址,并重复 63 次。而对于 BL=256,一次突发就可完成,并且不需要中途再进行控制,但如果仅传输 64 字节,就需要额外的命令来中止 BL=256 的传输。而额外的命令越多,越占用内存子系统的控制资源,从而降低总体的控制效率。从这可以看出 BL 对性能的影响因素,这也是为什么PC 上的内存子系统的 BL 一般为 4 或 8 的原因。但是不是 8 比 4 好,或者 4 比 8 好呢?并不能统一而论,这在下文会分析到。

到此,大家应该有一些优化的眉目了吧。我们可以先做一下界定,任何情况下,只要数值越小或越大(单一方向),内存的性能会越好的参数为绝对参数,而数值越小或越大对性能的影响不固定的参数则为相对参数。那么,CL、tRCD、tRP 显然就是绝对参数,任何情况下减少它们的周期绝对不会错。而且从上文的分析可以发现,从重要性来论,优先优化的顺序也是CL → tRCD → tRP,因为 CL 的遇到的机会最多,tRCD 其次,tRP 如果页面交错管理的好,大多不受影响。而 BL、tRAS 等则可以算是相对参数。也正是由于这些相对参数的存在,才使得内存优化不再那么简单。

K8内存超频优化

K8(非AM2,下面提到的K8暂不包括AM2)作为第一款64 bit的CPU,其最大的特点就是内置内存控制器,从而取消了FSB的概念,取而代之的是HTT(Hyper Transport)总线。这一简单的改变,也使得K8控制器对于内存超频、优化有着新的要求。再加上DDR在频率上的表现不佳,内存异步也就成了穷人超频的法拉利。如何设置内存异步,如何解读内存异步,如何优化K8构架的内存设置,看完本文就会找到答案。

一、K8内存超频的几个事实

1。由于K8将内存控制器内置,所以其体质会影响到内存的超频。一般情况下,Athlon64 FX〉Opteron〉Athlon64〉Athlon64 ×2〉Sempron。

2。一般情况,内存单通道超频能力强于双通道。而内存同步时,可以让CPU挑战更高的外频(内存频率也会相对的高)。

3。插槽的位置也有学问。一般而言,越靠近CPU的那条插槽可以上的极限就越高,反之就越低。而对于组建双通道的用户,选择哪条内存在靠近CPU的内存插槽里,需要自己动手调试,因为不同主板其内存的摆放顺序要求不同。

二、K8内存分频机制

K8以优秀的超频能力征服了众多的DIY er,但内置的控制器仅支持DDR,由于DDR频率上表现不佳,采用内存异步是普通DIY er超频的必用手段。那么K8的内存分频机制如何分配内存的频率呢?和传统的内存异步有什么样的区别呢?下面笔者先阐述一下传统的内存分频机制,这有助于明白K8的分频机制。

一般主板的内存选项有Auto/100/133/166/200这几个选项,而DFI的选项就更为丰富一下,图1。

一般DIY er对这几个选项有两种理解:一、认为此选项可以将内存频率锁定在某一个值上,这显然是错误的。二、此选项代表了FSB:Mem的比率关系,如Auto/200代表着1:1,100代表着2:1,133代表着3:2,166代表着5:4;内存按照这种比率关系变化着。例如选择166时,当CPU外频至300MHz时,此时的内存频率为250MHz(计算方式:200:166=300:X,这里的X就是内存运行的频率。),即DDR500,其详细关系,如图2。

第二种理解方式,显然被更多的DIY er所接受(这也包括昨天的笔者),因为通过简单的事例,可以证明这种理解更接近事实。其实,这种对内存分频机制的理解套用到K8构架是不正确的。

通过CPU-Z(图3)可以发现内存频率的计算公式:Mem=CPU/12,即内存的频率=CPU 的主频/整数(非零)。

全面教你认识内存参数

全面教你认识内存参数 内存热点 Jany 2010-4-28

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是 Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM 的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存 第二代DDR内存

DDR2 是 DDR SDRAM 内存的第二代产品。它在 DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存 DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit 预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片

电脑内存时序

举例9-9-9-27,一般1600的条子spd出厂就这么设置的 前面2个9对性能很重要,第2个9又比第1个9重要,比如说 我要超1866或者2133,设置成9-10-X-X基本没有问题,但是 设置成10-9-X-X就开不了机了,很多条子都这样子的,比如说 现在很火的3星金条。 第3位9基本上是打酱油的了,设置成9,10,11都对性能木有太大影响。 第4位数字基本就无视好了,设置21-36对测试都没变化,原来稳定的 还是稳定,原来开不了机的还是开不了。 以前的ddr2时代对内存的小参数很有影响,现在ddr3了,频率才是王道哦。 2133的-11-11-11-30都要比1866的-9-9-9-27测试跑分的多。当然平时用是感觉不出来的。 最后我再鄙视下金士顿的XX神条马甲套装,当年不懂事大价钱买的,就是YY用的, 1.65v上个1866都吃力,还要参数放的烂。 对性能影响最大的是CL 第一个9对性能影响最大。l第二个9对超频稳定性影响最大 最普通的ddr3 1333内存都可以1.5V运行在7-8-6-1666 CR1,77 Z博士: 一般来说,体现内存延迟的就是我们通常说的时序,如DDR2-800内存的标准时序:5-5-5-18,但DDR3-800内存的标准时序则达到了6-6-6-

15、DDR3-1066为7-7-7- 20、而DDR3-1333更是达到了9-9-9-25! 土老冒: 俺想知道博士所说的5-5-5- 18、6-6-6-15等数字每一个都代表什么。 Z博士: 这4个数字的含义依次为: CAS Latency(简称CL值)内存CAS延迟时间,这也是内存最重要的参数之一,一般来说内存厂商都会将CL值印在产品标签上。 第二个数字是RAS-to-CAS Delay(tRCD),代表内存行地址传输到列地址的延迟时间。 第三个则是Row-precharge Delay(tRP),代表内存行地址选通脉冲预充电时间。 第四个数字则是Row-active Delay(tRAS),代表内存行地址选通延迟。 除了这四个以外,在AMD K8处理器平台和部分非Intel设计的对应Intel芯片组上,如NVIDIA nForce 680i SLI芯片组上,还支持内存的CMD 1T/2T Timing 调节,CMD调节对内存的性能影响也很大,其重要性可以和CL相比。 其实这些参数,你记得太清楚也没有太大用处,你就只需要了解,这几个参数越低,从你点菜到上菜的时间就越快。 土老冒: 好吧,俺自己也听得一头雾水,只需要记得它越低越好就行了。那么俺想问,为什么DDR3内存延迟提高了那么多,Intel和众多的内存模组厂商还要大力推广呢?

SDRAM内存详解(经典)

SDRAM内存详解(经典) 我们从内存颗粒、内存槽位接口、主板和内存之间的信号、接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路... 虽然目前SDRAM内存条价格已经接底线,内存开始向DDR和Rambus内存过渡。但是由于DDR内存是在SDRAM基础上发展起来的,所以详细了解SDRAM内存的接口和主板设计方法对于设计基于DDR内存的主板不无裨益。下面我们就从内存颗粒、内存槽位接口、主板和内存之间的信号接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路。 内存颗粒介绍 对于DRAM(Dynamic Random Access Memory)内存我想凡是对于计算机有所了解的读者都不会陌生。这种类型的内存都是以一个电容是否充有电荷来作为存储状态的标志,电容冲有电荷为状态1,电容没有电荷为状态0。其最大优点是集成度高,容量大,但是其速度相对于SRAM (Static Random Access Memory) 内存来说慢了许多。目前的内存颗粒封装方式有许多种,本文仅仅以大家常见的TSSOP封装的内存颗粒为例子。 其各个管脚的信号定义和我们所使用的DIMM插槽的定义是相同的,对于不同容量的内存,地址信号的位数有所不同。另外一个需要注意的地方就是其供电电路。Vcc和Vss是为内存颗粒中的存储队列供电,而VccQ和VssQ是为内存颗粒中的地址和数据缓冲区供电。两者的作用不同。 我们对内存颗粒关心的问题主要是其颗粒的数据宽度(数据位数)和容量(寻址空间大小)。而对于颗粒自检、颗粒自刷新等等逻辑并不需要特别深入的研究,所以对此我仅仅是一笔带过,如果读者有兴趣的读者可以详细研究内存颗粒的数据手册。虽然内存颗粒有这么多的逻辑命令方式,但是由于目前北桥芯片和内存颗粒的集成度非常高,只要在布线和元器件的选择上严格按照内存规范来设计和制造,需要使用逻辑分析仪来调试电路上的差错的情况比较少,并且在设计过程中尽量避免出现这种情况。 168线DIMM内存插槽的信号定义  我们目前PC和Server使用的内存大都是168 Pins的SDRAM,区别只是其工作频率有的可能是100MHz频率,有的可能是133MHz频率的。但是只要是SDRAM,其DIMM插槽的信号定义是一样的。而这些引脚得定义就是设计内存条和主板所必须遵从的规范。 内存引脚主要分为如下几类:地址引脚、数据引脚(包含校验位引脚)、片选等控制信号、时钟信号。整个内存时序系统就是这些引脚上的信号配合产生。下面的表中就是内存插槽的引脚数量和引脚定义,对于一些没有定义或者是保留以后使用的信号就没有列出来。 符号功能详细描述 DQ [0-63] I/O 数据输入/输出 CB [0-7] I/O ECC内存的ECC校验输入/输出 A [0-13] I/O 地址选择 BA [0-1] Control Bank选择 CS [0-3] Control 片选信号 RAS Control 行地址选择信号 CAS Control 列地址选择信号 DQMB [0-7] Control 数据掩码控制(DQ Mask)高有效* WE Control 写允许信号 CK [0-3] Clock 时钟信号 CKE [0-1] Clock 时钟允许信号** REGE Control 寄存器 (Registered) 允许信号

DDR内存时序设置详解

内存时序设置详解 内容概要 关键词:内存时序参数设置 导言:是否正确地设置了内存时序参数,在很大程度上决定了系统的基本性能。本文详细介绍了内存时序相关参数的基本涵义及设置要点。 与传统的SDRAM相比,DDR(Dual date rate SDRSM:双倍速率SDRAM),最重要的改变是在界面数据传输上,其在时钟信号上升缘与下降缘时各传输一次数据,这使得DDR 的数据传输速率为传统SDRAM的两倍。同样地,对于其标称的如DDR400,DDR333,DDR266数值,代表其工作频率其实仅为那些数值的一半,也就是说DDR400 工作频率为200MHz。 FSB与内存频率的关系 首先请大家看看FSB(Front Side Bus:前端总线)和内存比率与内存实际运行频率的关系。 FSB/MEM比率实际运行频率 1/1 200MHz 1/2 100MHz 2/3 133MHz 3/4 150MHz 3/05 120MHz 5/6 166MHz 7/10 140MHz 9/10 180MHz 对于大多数玩家来说,FSB和内存同步,即1:1是使性能最佳的选择。而其他的设置都是异步的。同步后,内存的实际运行频率是FSBx2,所以,DDR400的内存和200MHz的FSB正好同步。如果你的FSB为240MHz,则同步后,内存的实际运行频率为240MHz x 2 = 480MHz。

FSB与不同速度的DDR内存之间正确的设置关系 强烈建议采用1:1的FSB与内存同步的设置,这样可以完全发挥内存带宽的优势。内存时序设置 内存参数的设置正确与否,将极大地影响系统的整体性能。下面我们将针对内存关于时序设置参数逐一解释,以求能让大家在内存参数设置中能有清晰的思路,提高电脑系统的性能。 涉及到的参数分别为: ?CPC : Command Per Clock ?tCL : CAS Latency Control ?tRCD : RAS to CAS Delay ?tRAS : Min RAS Active Timing ?tRP : Row Precharge Timing ?tRC : Row Cycle Time ?tRFC : Row Refresh Cycle Time ?tRRD : Row to Row Delay(RAS to RAS delay) ?tWR : Write Recovery Time ?……及其他参数的设置 CPC : Command Per Clock 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。

DDR系列内存详解及硬件设计规范-Michael

D D R 系列系列内存内存内存详解及硬件详解及硬件 设计规范 By: Michael Oct 12, 2010 haolei@https://www.doczj.com/doc/df4475544.html,

目录 1.概述 (3) 2.DDR的基本原理 (3) 3.DDR SDRAM与SDRAM的不同 (5) 3.1差分时钟 (6) 3.2数据选取脉冲(DQS) (7) 3.3写入延迟 (9) 3.4突发长度与写入掩码 (10) 3.5延迟锁定回路(DLL) (10) 4.DDR-Ⅱ (12) 4.1DDR-Ⅱ内存结构 (13) 4.2DDR-Ⅱ的操作与时序设计 (15) 4.3DDR-Ⅱ封装技术 (19) 5.DDR-Ⅲ (21) 5.1DDR-Ⅲ技术概论 (21) 5.2DDR-Ⅲ内存的技术改进 (23) 6.内存模组 (26) 6.1内存模组的分类 (26) 6.2内存模组的技术分析 (28) 7.DDR 硬件设计规范 (34) 7.1电源设计 (34) 7.2时钟 (37) 7.3数据和DQS (38) 7.4地址和控制 (39) 7.5PCB布局注意事项 (40) 7.6PCB布线注意事项 (41) 7.7EMI问题 (42) 7.8测试方法 (42)

摘要: 本文介绍了DDR 系列SDRAM 的一些概念和难点,并分别对DDR-I/Ⅱ/Ⅲ的技术特点进行了论述,最后结合硬件设计提出一些参考设计规范。 关键字关键字::DDR, DDR, SDRAM SDRAM SDRAM, , , 内存模组内存模组内存模组, , , DQS DQS DQS, DLL, MRS, ODT , DLL, MRS, ODT , DLL, MRS, ODT Notes : Aug 30, 2010 – Added DDR III and the PCB layout specification - by Michael.Hao

微星970A-G46主板BIOS图文详解教程

微星9系列主板支持AMD推土机。BIOS采用第2代UEFI图形BIOS(Click BIOS II)。AMI BIOS 设置基本都一样,这里以970A-G46为例,讲解BIOS设置。 Version E7693AMS 版BIOS界面如下:Click BIOS II是由MSI开发,它提供了一个图形用户界面。通过鼠标和键盘来设置BIOS参数。最大的改进是提高BIOS首页的信息量。整个页面分为二大部分,信息显示区和BIOS设置区。 通过Click BIOS II 用户可以改变BIOS设置,检测CPU温度、选择设备启动优先权并且查看系统信息,例如:CPU名称,DRAM容量,操作系统版本和BIOS版本。用户可以从备份中导入数据资料也可以与朋友分享导出数据资料。通过Click BIOS II连接英特尔网,用户可以再你的系统中浏览网页,检查MAIL和实用Live Update来更新BIOS。 温度检测 此区域显示了处理器和主板的温度 系统信息 此区域显示日期,时间,CPU名称,CPU频率,DRAM频率,DRAM容量和BIOS版本。 BIOS菜单选择 这些区域用来选择BIOS菜单。下列选项可用的: ▲SETTING主板设置- 使用此菜单指定芯片组功能,启动设备的设置。 ▲OC超频设置- 此菜单包含频率和电压调整选项,增加频率可能获得更好的性能,然而,高频率和高温度可能导致不稳定。我们不建议普通用户超频。 ▲ECO节能设置–此菜单与节能设置相关联。 ▲BROWSER浏览器- 此功能用来进入MSI Winki网页浏览。 ▲UTILITIES适应程序–此菜单包含备份和升级功能。 ▲SECURITY安全设置–此安全菜单用来放置未经许可而做任意更改的设置。你可以使用这些安全功能来保护你的系统。 设备启动优先权栏 此状态栏显示了启动设备的优先权,高亮的图片表示设备是可用的。 高优先权低优先级 按住图标后左右拖曳来指定启动优先权。 启动菜单 此菜单按钮用来打开一个启动菜单。用鼠标点击此选项迅速从设备中启动系统。 模式按钮 此功能允许你预先导入节能或超频功能 BIOS设置常用的功能键: 一、S ETTINGS(主板设置) 点击进入主板设置。 主板设置的选项。

电脑练习题讲解

单选题 一.单选题 1.第一台电子数字计算机的名称是________。 A、ENIAC B、ENIAVC C、APPLE D、EDSAC 答案(A) 2.第二代计算机其主要器件是由________ 构成。 A、集成电路 B、晶体管 C、电子管 D、大规模集成电路 答案(B) 3.在计算机内部用于汉字存储运算等处理的信息代码是________。 A、汉字输入码 B、汉字机内码 C、汉字字形码 D、汉字交换码 答案(B) 4.________不等于1MB。 A、2的20次方字节 B、1000KB C、1024*1024字节 D、1024KB 答案(B) 5.计算机的存储量是以KB为单位的,1KB表示________。 A、1024个字节 B、1024个二进制信息位 C、1000个字节 D、1000个二进制信息位答案(A) 6.________不是存储容量的单位。 A、bit B、KB C、MB D、GB 答案(A) 7.世界上公认的第一台电子计算机逻辑元件是________。 A、集成电路 B、晶体管 C、电子管 D、继电器 答案(C) 8.16×16点阵的汉字要占用________个字节。 A、8 B、36 C、32 D、256 答案(C) 9.计算机中信息存储的最小单位是________。 A、位 B、字长 C、字节 D、字 答案(C) 10.计算机的存储器容量,常用KB作单位,其中B是表示________。 A、位 B、字长 C、字节 D、字 答案(C) *11.不同型号的计算机,就其工作原理而论都是基于________原理。 A、二进制数 B、布尔代数 C、开关电路 D、存储程序控制 答案(D) 12.CAD是________的英文缩写。 A、计算机辅助教学 B、计算机辅助设计 C、计算机辅助制造 D、计算机辅助控制答案(B) 13.CAM是________的英文缩写。 A、计算机辅助教学 B、计算机辅助设计 C、计算机辅助制造 D、计算机辅助控制答案(C) 14.字符的ASCII码十进制值为71,其十六进制表示为________。

超频内存时序表

内存时序 一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。 在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是 “CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍: 一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置 首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表: Command Per Clock(CPC) 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。 显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。 该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。CAS Latency Control(tCL) 可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。 一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。 CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。 内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。 这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失数据,因此在提醒大家把CAS延迟设为2或2.5的同时,如果不稳定就只有进一步提高它了。而且提高延迟能使内存运行在更高的频率,所以需要对内存超频时,应该试着提高CAS延迟。

如何读懂时序图

https://www.doczj.com/doc/df4475544.html,/itangcle CPE/EE 421 Microcomputers WEEK #10 Interpreting the Timing Diagram 如何读懂时序图 The 68000 Read Cycle

2 Alan Clements 3 Actual behavior of a D flip - f lop Timing Diagram of a Simple Flip - F lop Idealized form of the timing diagram Data hold time Data setup time Max time for output to become valid after clock 4 An alternative form of the timing diagram General form of the timing diagram

A memory access begins in clock state S0 and ends in state S7 6

The most important parameter of the clock is the duration of a cycle, t C YC.

8 Address Timing 地址时序 ?We are interested in when the 68000 generates a new address for use in the current memory access 我们感兴趣的是当6800芯片能够生成一个新的地址供当前的内存访问 ?The next slide shows the relationship between the new address and the state of the 68000 ’s clock 下面展示的是新的地址跟6800芯片时钟的 关系 Alan Clements

SDRAM时序控制

SDRAM的时序控制 一、SDRAM的外在物理结构 (1)P-Bank 为保证CPU的正常工作,SDRAM必须一次传输完CPU在一个传输周期内所需要的数据量,也就是CPU数据总线的位宽(bit),这个位宽也就是物理Bank(Physical Bank, P-Bank)的位宽,所以内存需要组成P-Bank来与CPU打交道。 (2)芯片位宽与芯片数量 然而每个内存芯片都有自己的位宽,即每个传输周期能提供的数据量。由于技术要求、成本和实用性等方面限制,内存芯片的位宽一般都小于P-Bank的位宽,这就需要多颗内存芯片并联工作,以提供CPU正常工作时一个传输周期内所需要的数据量。所以,P-Bank实际上就是一组内存芯片的集合,这个集合的位宽总和=P-Bank的位宽=CPU数据位宽,但这个集合的数据容量没有限制。 一个SDRAM只有一个P-Bank已经不能满足容量的需要,所以,多个芯片组可以支持多个P-Bank,一次选择一个P-Bank工作。 (3)SDRAM的封装 SIMM: Single In-line Memory Module,单列内存模组,内存模组就是我们常说的内存条,所谓单列是指模组电路板与主板插槽的接口只有一列引脚(虽然两侧都有金手指pin)DIMM: Double In-line Memory Module, 双列内存模组,所谓双列是指模组电路板与主板插槽的接口有两列引脚,模组电路板的每侧金手指对应一列引脚。 DIMM是SDRAM集合形式的最终体现。前文讲过P-Bank对芯片集合的位宽有要求,对芯片集合的容量则没有任何限制。高位宽的芯片可以让DIMM的设计简单一些(因为所用的芯片少),但在芯片容量相同时,这种DIMM的容量就肯定比不上采用低位宽芯片的模组,因为后者在一个P-Bank中可以容纳更多的芯片。 SDRAM的引脚与封装: 二、SDRAM内部逻辑结构 (1)L-Bank SDRAM的内部实际上是一个存储阵列,就如同表格一样,而每个单元格就称为存储单元,这张表格就成为逻辑Bank(Logical Bank, L-Bank)。考虑到技术、成本、执行效率等方面原因,不可能只需要一个全容量的L-Bank,所以人们在SDRAM内部分割多个L-Bank,目前基本都是4个,内存访问时,一次只能是一个L-Bank。

内存的时序以及内存时序优化

一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。 在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是“CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍: 一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置 首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off 或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表: Command Per Clock(CPC) 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。 显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。 该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。 CAS Latency Control(tCL) 可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。 一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。 CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency 是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。 内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。 这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失

第二章 计算机系统及计算原理习题ok讲解

第二章计算机系统及计算原理 一、是非题 1.操作系统是系统软件中最重要的一种,其功能是对计算机系统所有资源进行管理、调度和分配。[A] A.对B.错 2.一台计算机能够识别的所有指令的集合称为该计算机的指令系统。 [A] A.对B.错 3.为了提高计算机的运行速度和执行效率,在现代计算机系统中,引入了流水线控制技术,使负责取指令、分析指令、执行指令的部件串行工作。[B] A.对B.错 4.构成计算机系统的电子原件、机械装置和线路等可见实体称为计算机系统的硬件。[A] A.对B.错 5.主频是指CPU和芯片组的时钟频率或工作频率。[B] A.对B.错 6.Cache主要是解决CPU的高速度和RAM的低速度的匹配问题。[A]

第二章计算机硬件系统与信息存储121 A.对B.错 7.外存和内存相比,具有容量大,速度慢,成本高,持久存储等特点。[B] A.对B.错 8.目前微型计算机中常用的硬盘接口主要有IDE和SATA两种。其中,IDE是一种串行接口,SATA是一种并行接口。[B] A.对B.错 9.微型计算机的台式兼容机是自己根据需要选择各个部件,配置出自己的计算机。[A] A.对B.错 10.微型计算机外存储器是指软盘、硬盘、光盘、移动存储设备等辅助存储器。[A] A.对B.错 11.刷新频率是CRT显示器的技术指标,指的是屏幕更新的速度。刷新频率越高,屏幕闪烁就越少。[A] A.对B.错 12.计算的复杂度指的是随着问题规模的增长,求解所需存储空间的变化情况。[B] A.对B.错 13.汇编语言的特点是由二进制组成,CPU可以直接解释和执行。[B]

122大学计算机基础上机实验指导及习题·第二篇习题 A.对B.错 14.ASCII码用7位二进制编码,可以表示26个英文字母(大小写)及42个常用符号,34个控制字符。[A] A.对B.错 15. 声音信号和视频信号的数字化处理过程都是采样→量化→编码。 [B] A.对B.错 二、单选题 1. 一个完整的计算机系统包括______。[D] A.主机及其外部设备 B.主机、键盘、显示器 C.系统软件及应用软件 D.硬件系统及软件系统 2.软件系统包括______。[B] A.程序与数据 B.系统软件与应用软件 C.操作系统与语言处理系统 D.程序数据与文档 3.系统软件中最重要的是______。[A] A.操作系统 B.语言处理程序 C.工具软件 D.数据库管理系统 4.下列四种软件中,属于系统软件的是______。[C] A. WPS B. Word

内存时序修改教程

如题,首先上个修改的好的低时序,给大伙看看改好后的效果,原时序为1066频率下的7-7-7-20(1333内存条降频到1066) 这是原始时序: 修改后的低时序:

也许有人发现问题了,频率变了,没错,但是这个只是内存频率变了,实际有效频率依然是1066(533)

虽然如此,但是偶们已经达到偶们的目的——时序变低了(6-6-6-19,如上图),而这结果带来的影响不仅仅只是参数变了,请看下两图: 这是原始参数7-7-7-20时序在EVREST内存测试中的成绩:

这是在EVREST的内存测试中修改后的低时序6-6-6-19的成绩:

可以明显的看出低时序相对原始时序在内存读写性能上的提升,这低时序正是追求性能的DIY玩家所需要的,反之,高时序则是稳定性的保证,然而因为内存颗粒体制的差别,过低的时序反而会引起系统的不稳定(本人亲测过修改成了4-4-4-12时序的4G DDR2 800的尔必达日本原厂条,结果开机不能)同时也是金士顿HYPERX神条强势的原因(颗粒体制)。 这只是个引子,一是希望让大家了解下修改时序的意义和效果,也是为不死兄説的1656上1333频率做准备,既然知道了高时序能保证稳定性,那么对于要超到1333内存频率的I3/I5(包括I7 6系列)的1656来说,通过修改时序达到1333内存默认时序,对超频到1333来说,是一个有力的保证。接下来偶就将修改过程一步步教给大家: 首先,偶们用到的工具软件有:THAIPHOON BURNER 6.3 SuperBlaster Edition(DRIVER Signature Enforcement Overrider,该软件是专为64位系统修改时序准备的,32位WINDOWS系统不需要。使用方法看见P.S.部分) THAIPHOON BURNER 的修改基本原理与方法,与流行一时的SPDTOOLS差不多,不

内存基本知识详解

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存

第二代DDR内存 DDR2 是DDR SDRAM 内存的第二代产品。它在DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存

DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片 SPD(Serial Presence Detect): SPD是一颗8针的EEPROM(Electrically Erasable Programmable ROM 电可擦写可编程只读存储器), 容量为256字节,里面主要保存了该内存的相关资料,如容量、芯片厂商、内存模组厂商、工作速度等。SPD的内容一般由内存模组制造商写入。支持SPD的主板在启动时自动检测SPD中的资料,并以此设定内存的工作参数。 启动计算机后,主板BIOS就会读取SPD中的信息,主板北桥芯片组就会根据这些参数信息来自动配置相应的内存工作时序与控制寄存器,从而可以充分发挥内存条的性能。上述情况实现的前提条件是在BIOS设置界面中,将内存设置选项设为“By SPD”。当主板从内存条中不能检测到SPD信息时,它就只能提供一个较为保守的配置。 从某种意义上来说,SPD芯片是识别内存品牌的一个重要标志。如果SPD内的参数值设置得不合理,不但不能起到优化内存的作用,反而还会引起系统工作不稳定,甚至死机。因此,很多普通内存或兼容内存厂商为了避免兼容性问题,一般都将SPD中的内存工作参数设置得较为保守,从而限制了内存性能的充分发挥。更有甚者,一些不法厂商通过专门的读

最新有关DDR DDR2 DDR3内存频率的问题详解教学内容

DDR2可以看作是DDR技术标准的一种升级和扩展:DDR的核心频率与时钟频率相等,但数据频率为时钟频率的两倍,也就是说在一个时钟周期内必须传输两次数据。而DDR2采用“4 bit Prefetch(4位预取)”机制,核心频率仅为时钟频率的一半、时钟频率再为数据频率的一半,这样即使核心频率还在200MHz,DDR2内存的数据频率也能达到800MHz—也就是所谓的DDR2 800。 目前,DDR2内存分为DDR2 400和DDR2 533,还有DDR2 667和DDR2 800,其核心频率分别为100MHz、133MHz、166MHz和200MHz,其总线频率(时钟频率)分别为200MHz、266MHz、333MHz和400MHz,等效的数据传输频率分别为400MHz、533MHz、667MHz和800MHz,其对应的内存传输带宽分别为3.2GB/sec、4.3GB/sec、5.3GB/sec和6.4GB/sec,按照其内存传输带宽分别标注为PC2 3200、PC2 4300、PC2 5300和PC2 6400。 PS:不列颠应该是britain,如果指英国应该说UK,光说English其他人会不高兴的,比如irish,welsh。 DDR3与DDR2的不同之处 1、逻辑Bank数量 DDR2 SDRAM中有4Bank和8Bank的设计,目的就是为了应对未来大容量芯片的需求。而DDR3很可能将从2Gb容量起步,因此起始的逻辑Bank就是8个,另外还为未来的16个逻辑Bank做好了准备。 2、封装(Packages) DDR3由于新增了一些功能,所以在引脚方面会有所增加,8bit芯片采用78球FBGA 封装,16bit芯片采用96球FBGA封装,而DDR2则有60/68/84球FBGA封装三种规格。并且DDR3必须是绿色封装,不能含有任何有害物质。 3、突发长度(BL,Burst Length) 由于DDR3的预取为8bit,所以突发传输周期(BL,Burst Length)也固定为8,而对于DDR2和早期的DDR架构的系统,BL=4也是常用的,DDR3为此增加了一个4-bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。 3、寻址时序(Timing) 就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2至5之间,而DDR3则在5至11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0至4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。 4、新增功能——重置(Reset) 重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界已经很早以前就要求增这一功能,如今终于在DDR3身上实现。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有的操作,并切换至最少量活动的状态,以节约电力。在Reset期间,DDR3内存将关闭内在的大部分功能,所以有数据接收与发送器都将关闭。所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。 5、新增功能——ZQ校准 ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚

SDRAM的相关时序参数设置(精)

在我们一般用的什么 SRAM 啊, PSRAM 啊, RAM 啊, 一般而言都是有多少根地址线, 然后可以算出寻址空间, 比如有 11根地址线, 那寻址空间就是 2的 11次方减 1。但是 SDRAM 是分列地址和行地址的, 行、列地址线是复用的, 所以有时候我们看到说寻址空间有多大多大,但是看看地址线怎么就那么几根啊,呵呵。SDRAM 一般还有 2根 BANK 的线,分成 4个 BANK ,在有的处理器的 SDRAM 控制模块中,这两根线可能映射到地址线的某两根去。一般芯片常按照以下方式写芯片的配置,比如 4Meg x 4 x 16,那这个芯片就是 256Mbits 。其中 16指数据线是 16根,中间一个 4是只分 4个 BANK , 每个 BANK 是 4Meg 。 SDRAM CAS Latency Time(内存 CAS 延迟时间可选项:2, 3。内存 CAS (Column Address Strobe, 列地址选通脉冲延迟时间控制 SDRAM 内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。在 133MHz 频率下,品质一般的兼容内存大多只能在 CAS=3下运行,在 CAS=2下运行会使系统不稳定、丢失数据甚至无法启动。 CAS 延迟时间是一个非常重要的内存参数,对电脑性能的影响比较大, Intel 与 VIA 就 PC133内存规范的分歧也与此参数有关, Intel 认为 PC133内存应能稳定运行于 133MHz 频率、 CAS=2下, 而 VIA 认为 PC133内存能稳定运行于 133MHz 频率即可, 并未特别指定 CAS 值, 因此 Intel 的规范更加严格, 一般只有品牌内存才能够满足此规范,所以大家感觉 Intel 的主板比较挑内存。 SDRAM Cycle Time Tras/Trc(内存 Tras/Trc时钟周期可选项:5/7, 7/9。该参数用于确定 SDRAM 内存行激活时间和行周期时间的时钟周期数。 Tras 代表 SDRAM 行激活时间(Row Active Time ,它是为进行数据传输而开启行单元所需要的时钟周期数。 Trc 代表 SDRAM 行周期时间(Row Cycle Time ,它是包括行单元开启和行单元刷新在内的整个过程所需要的时钟周期数。出于最佳性能考虑可将该参数设为5/7,这时内存的速度较快,但有可能出现因行单元开启时间不足而影响数据传输的情况,在 SDRAM 内存的工作频率高于 100MHz 时尤其是这样,即使是品牌内存大多也承受不了如此苛刻的设置。

相关主题
文本预览
相关文档 最新文档