当前位置:文档之家› 废水液滴在低温烟气中的蒸发特性数值

废水液滴在低温烟气中的蒸发特性数值

废水液滴在低温烟气中的蒸发特性数值
废水液滴在低温烟气中的蒸发特性数值

蒸发器尺寸设计

蒸发器工艺尺寸计算? 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;????? L---加热管长度,m;? 因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 ???? 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 ?? 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 ?? 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。 管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。我们选用的设计管心距是:???? 确定加热室内径和加热管数的具体做法是:先计算管束中心线上管数nc,管子安正三角形排列时,nc=1.1* ;其中n为总加热管数。初步估计加热室Di=t(nc-1)+2b’,式中b’=(1—1.5)d0.然后由容器公称直径系列,试选一个内径作

蒸发器的选择计算

. 新乡双赢蒸发器选择计算的任务是选择合适的蒸发器类型和计算蒸发器的传热面积,确定定型产品的型号与规格。蒸发器的传热面积计算公式为 Qe=kA△tm 式中Qe----蒸发器的制冷量,W; K-----蒸发器的传热系数,W/(M2.℃); A-----蒸发器的传热面积,M2; Tm----蒸发器的平均传热温差,℃。 对于冷却液体或空气的蒸发器,蒸发器的制冷量应为 Qe=Mc(T1-T2) Qe=M(H1-H2) 式中M---被冷却液体(水、乙二醇)或空气的质量流量,kg/s; C--------被冷却液体的比热,J/(kg.℃); T1、T2----被冷却液体进、出蒸发器的温度,℃; H1、H2----被冷却空气进、出蒸发器的比焓,J/kg。 对于制冷系统,M、c、T1、T2,通常是已知的。例如,为空调系统制备冷冻水,其流量、要求供出的冷冻水温度(T2)及回蒸发器的冷冻水温度(T1)都是已知的。因此,蒸发器的热负荷Qe是已知的。对于热泵系统,进蒸发器的温度T1与热泵的低位热源有关。例如,水作低位热源时,T1决定于水位(河水、湖水、地下水、海水等)的温度。而T2、M的确定需综合考虑热泵的COPh、经济性等因素确定。 蒸发器内制冷剂出口可能有一定的过热度,但过热所吸收的热量比例很小,因此在计算传热温差时,制冷剂的温度就认为是蒸发温度Te,平均传热温差应为 T1--T2 △tm=----------------- T1--Te LN--------- T2--Te △tm和Te的确定影响到系统的运行能耗、设备费用、运行费用等。如果Te取得低,则△tm增大,传热面积减少,降低了蒸发器设备费用;而系统的制冷量、性能系数减小,压缩机的功耗增加,运行费用增大。如果取得高,则与之相反。用于制取冷水的满液式蒸发器Te一般不低于2℃。关于△tm或(T2-Te)的推荐值列于表中。蒸发器的传热系数K与管内、外的放热系数、污垢热阻等因素有关,详细计算请参阅文献。表中还列出了常用蒸发器传热系数K的推荐值。 '.

多效蒸发方案(以NaOH为例)

冬胞工夕丸卑 化工原理课程设计 NaOH蒸发系统设计 目录 章前言§ 1概述' 第二章蒸发工艺设计计算 § 1蒸浓液浓度计算

§ 2溶液沸点和有效温度差的确定 S 2 ? 1各效由于溶液的蒸汽压下降所引起的温度差损失

§2 ? 2各效由于溶液静压强所因引起的温度差损失 §22 ? 3由经验不计流体阻力产生压降所引起的温度差损失 §2 3加热蒸汽消耗量和各效蒸发水量的计算 §2 4蒸发器的传热面积和有效温度差在各效中的分布以及传热系数 K的确定§ 5温差的重新分配与试差计算 §5 ? 1重新分配各效的有效温度差, § 5? 2重复上述计算步骤 § 6计算结果列表 第三章NaO H溶液的多效蒸发优化程序部分 §3 1具体的拉格朗日乘子法求解过程 §3 2程序内部变量说明 §3 3程序内容: §3 4程序优化计算结果 §3 5优化前后费用比较 第四章蒸发器工艺尺寸计算 §4 1加热管的选择和管数的初步估计 §4 1 1加热管的选择和管数的初步估计 §4 1 2循环管的选择 §4 1 3加热室直径及加热管数目的确定 §4 1 4分离室直径与高度的确定 §4 2接管尺寸的确定 §4 2 ? 1溶液进出 §4 2 ? 2加热蒸气进口与二次蒸汽出口 §4 2 ? 3冷凝水出口 第五章、蒸发装置的辅助设备 §5 1气液分离器 §5 2蒸汽冷凝器 §5 2 1冷却水量 §5 2 2计算冷凝器的直径 §23淋水板的设计 §5 3泵选型计算 §5 4预热器的选型 第六章主要设备强度计算及校核 § 6 ? 1蒸发分离室厚度设计 § 6 ? 2加热室厚度校核 第七章小结与参考文献: 符号说明 希腊字母: c 比热容,KJ/(Kg.h> a -------- 对流传热系数,W /m2. °C d --- 管径,mA ------ 温度差损失,C D——直径,mn——误差, D ――加热蒸汽消耗量,Kg/h n ――热损失系数, f --- 校正系数,n ----- 阻力系数, F――进料量,Kg/h入一一导热系数,W /m2. C g --- 重力加速度,9.81m/s2卩---- 粘度,Pa.s h 咼度,m p 密度,Kg/m3

蒸发器的原理以及分类

除湿机蒸发器又称冷却器,它是制冷循环中直接制冷的器件,一般装在室内机组中。 蒸发器的种类很多,很大一部分蒸发器主要用来冷却空气,即表面冷却式蒸发器;还有少部分是用来冷却水的蒸发器,即冷水机组。 1.冷却空气的蒸发器(表面冷却式蒸发器) 1)表面冷却式蒸发器的工作原理。表面冷却式蒸发器的工作过程是一个汽化吸热过程。制冷剂经节流过程后,成为气液混合体,但其中液体占大部分。降压后的制冷剂液体在蒸发器中流动时,激烈的进行吸热汽化,称为沸腾,这一步才是获得制冷效应的热力过程,是制冷系统的最终目的,这一过程在蒸发器内进行,此后制冷剂变为气态再经过压缩进入空气冷凝过程。 蒸发器吸收的热量来自于两部分:一是冷却空气所放出的显热;二是空气中水蒸气冷凝时放出的潜热。换句话说,空调器的制冷量一部分用于降低被冷却空气的温度,另一部分用于空气中水蒸气的冷凝(除湿)。2)表面冷却式蒸发器的结构。表面冷却式蒸发器的结构与空气冷凝器一样,只是外观造型不一样,它也是用风机鼓动空气强迫对流式的蒸发器。 2.冷水机组蒸发器 3.冷水机组过去是大。中型的机组,一般用于中央空调中,以水作为介质,把冷源送往各个房间。目前 已发展至制冷量为23250W左右的小型制冷装置,甚至更小的冷水机组,作为一种称为模块式的冷水机组。这种机组体积小,搬运灵活,安装场地小,可以几台并列安装,组合使用,较适宜于户式中央空调器。 冷水机组的制冷剂都是水,用于空调中以冷却水为介质的蒸发器,最常用的有以下两种类型。1)干式壳管式蒸发器 干式壳管式蒸发器的实物外形及其结构。一个细长的筒体两端有圆板,用焊接形式与筒体结合,并有一定的密闭性。管板上有许多管孔,将蒸发管插入管孔,并露出管板外,用管密封或焊接密封。管板外再盖以端盖,端盖与管板接触面有垫片充填密封,并用螺旋紧固。端盖上有分隔肋,把端盖内腔分为几个部分,一般是一分为四,这样就分成四个流程。筒体上的两端各焊接一段钢管,管口装有法兰,一遍与水管连接,铜管内装有十多块者流板,一只端盖上有进出口接管,进口小,出口大,并装有法兰,一遍与系统连接。这就是干式壳管式蒸发器的结构。

干式和满液式蒸发器的区别

干式和满液式蒸发器的区别

————————————————————————————————作者: ————————————————————————————————日期:

干式和满液式蒸发器的优缺点 满液式壳管蒸发器在管内走水,制冷剂在管簇外面蒸发,所以传热面基本上都与液体制冷剂接触。一般壳体内充注的制冷剂量约为筒体有效容积的55%~65%,制冷剂液体吸热气化后经筒体顶部的液体分离器,回入压缩机。 其优点是结构紧凑,操作管理方便,传热系数较高。其缺点是: ①制冷系统蒸发温度低于0℃时,管内水易冻结,破坏蒸发管; ②制冷剂充灌量大; ③受制冷剂液柱高度影响,筒体底部的蒸发温度偏高,会减小传热温差; ④蒸发器筒体下部会积油,必须有可靠的回油措施,否则影响系统的安全运行。 干式壳管式即非满液式蒸发器的制冷剂在管内流动,水在管簇外流动。制冷剂流动通常有几个流程,由于制冷剂液体的逐渐气化,通常越向上,其流程管数越多。为了增加水侧换热,在筒体传热管的外侧设有若干个折流板,使水多次横掠管簇流动。 其优点是: ①润滑油随制冷剂进入压缩机,一般不存在积油问题 ②充灌的制冷剂少,一般只有满液式的1/3左右; ③t0在0℃附近时,水不会冻结。 但使用这种蒸发器必须注意: ①制冷剂有多个流程,在端盖转弯处如处理不好会产生积液,从而使

进入下一个流程的液体分配不均匀,影响传热效果; ②水侧存在泄漏问题,由于折流板外缘与壳体间一般有1~3mm间隙,与传热管之间有2mm左右的间隙,因而会引起水的泄漏。实践证明,水的泄漏会引起水侧换热系数降低20%~30%,总的传热系数降低5%~15%。 一种螺旋式油分离器在满液式螺杆冷水机组中的应用研究 -李进杨 回油的原因 由于润滑油沸点远高于制冷剂的,所以润滑油随制冷剂进入蒸发器后不会同制冷剂一起蒸发,此时若不采取适当措施,润滑油势必在蒸发器中越积越多,一方面在换热器的壁面上形成一层油膜,这样就大大降低了传热效果和制冷效率;另一方面压缩机缺油,这对机组的安全高效运行极为不利。因此,需要有合适的技术措施和控制程序处理润滑油,否则不能保证满液式蒸发器传热性能,机组的安全运行也会成问题。 油分离器 当螺杆式压缩机排出的高压气体和油的混合物进入油分离器时,由于油分离器容积大,气体的流速突降,加上气体的流动方向改变,依靠惯性作用使油分离沉降下来,大量的油聚集在分离器底部。这种分离被称为一级分离。为了进一步提高分离精度,一般要进行二级分离。一级分离后,利用特制的充填物,将细小的雾状油滴通过捕集作用,使油滴聚集变大,在流经填充物时被进一步分离出来。有的高效型

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

单效蒸发及计算汇总

单效蒸发及计 算 一.物料衡算 二.能量衡算 1.可忽略溶液稀释热的情况 三.传热设备的计算 1.传热的平均温度差 四.蒸发强度与加热蒸汽的经济性 1.蒸发器的生产能力和蒸发强度 一.物料衡算(material balance) 2.溶液稀释热不可忽略的情况 2.蒸发器的传热 系数 2.加热蒸汽的经 济性 对图片5-13 所示的单效蒸发器进行溶质的质量衡算,可得 由上式可得水的蒸发量及完成液的浓度分 别为 (5- 1) (5- 2) 3.传热面积计算 式中

F———原料液量,kg/h ; W———水的蒸发量,kg/h ; L———完成液量,kg/h ; x0———料液中溶质的浓度,质量分率; x1———完成液中溶质的浓度,质量分率。 二.能量衡算(energy balance) 仍参见图片(5-13) ,设加热蒸汽的冷凝液在饱和温度下排出,则由蒸发器的热量衡算得 (5-3) 或(5-3a ) 式中 D———加热蒸汽耗量,kg/h ; H———加热蒸汽的焓,kJ/kg ; h0———原料液的焓,kJ/kg ; H'———二次蒸汽的焓,kJ/kg ; h1———完成液的焓,kJ/kg ; hc ———冷凝水的焓,kJ/kg ; QL———蒸发器的热损失,kJ/h ; Q———蒸发器的热负荷或传热速率,kJ/h 。 由式5-3 或5-3a 可知,如果各物流的焓值已知及热损失给定,即可求出加热蒸汽用量D 以及蒸发器的热负荷Q

溶液的焓值是其浓度和温度的函数。对于不同种类的溶液,其焓值与浓度和温度的这种函数关系有很大的差异。因此,在应用式5-3 或5-3a 求算D 时,按两种情况分别讨论:溶液的稀释热可以忽略的情形和稀释热较大的情形。 1.可忽略溶液稀释热的情况 大多数溶液属于此种情况。例如许多无机盐的水溶液在中等浓度时,其稀释的热效应均较小。对于这种溶液,其焓值可由比热容近似计算。若以0℃的溶 液为基准,则 (5-4) (5-4a ) 将上二式代入式5-3a 得 (5-3b) 式中 t0———原料液的温度,℃; t1———完成液的温度,℃; C0———原料液的比热容,℃; C1———完成液的比热容,℃ ; 当溶液溶解的热效应不大时,其比热容可近似按线性加合原则,由水的比热容和溶质的比热容加合计算,即 (5-5) (5-5a) 式中 CW———水的比热容,℃;

MVR蒸发器工艺介绍[最新]

MVR蒸发器工艺介绍[最新] MVR蒸发结晶器 一、MVR工艺介绍 1、MVR原理 MVR是蒸汽机械再压缩技术,(mechanical vapor recompression )的简称。MVR蒸发器是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术。 MVR其工作过程是将低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。除开车启动外,整个蒸发过程中无需生蒸汽从蒸发器出来的二次蒸汽,经压缩机压缩,压力、温度升高,热焓增加,然后送到蒸发器的加热室当作加热蒸汽使用,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。这样原来要废弃的蒸汽就得到充分的利用,回收潜热,提高热效率,生蒸汽的经济性相当于多效蒸发的30效。为使蒸发装置的制造尽可能简单和操作方便,可使用离心式压缩机、罗茨式压缩机。这些机器在1:1.2到1:2压缩比范围内其体积流量较高。蒸发设备紧凑占地面积小所需空间也小。又可省去冷却系统。对于需要扩建蒸发设备而供汽,,场地不够的现有工厂供水能力不足,特别是低温蒸发需要冷冻水冷凝的场合,可以收到既节省投资又取得较好的节能效果。 2、MVR工艺流程 系统由单效或双效蒸发器、分离器、压缩机、真空泵、循环泵、操作平台、电器仪表控制柜及阀门、管路等系统组成,结构简单,操作维护方便。

3、MVR技术特点 ※MVR节能蒸发器仅需要极少量生蒸汽,极大地降低企业运行成本,减少 环境污染。没有废热蒸汽排放,节能效果十分显著。 ※由于采用压缩机提供热源,和传统蒸发器相比,温差小得多,能够达到温和蒸发,极大地提高产品质量、降低结垢。 ※无需冷凝器,结构与流程非常简单,全自动操作,可连续运行,安全可靠。 ※设备内配CIP清洗管路,可实现就地清洗,整套设备操作方便,无死角。没有废热蒸汽排放,节能效果十分显著 ※该蒸发器是物料在低温、且不产生泡沫的状态下进行蒸发,料液均匀,不跑料,不易结焦。 ※采用低温负压蒸发(32-85?),有利于防止被蒸发物料的高温变性。 ※凡单效及多效蒸发器适用的物料,均适合采用MVR蒸发器,在技术上具有完全可替代性,并具有更优良的环保与节能特性。 二、MVR经济和社会效益

多效蒸发过程分析(新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 多效蒸发过程分析(新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

多效蒸发过程分析(新版) 根据加料方式的不同,多效蒸发操作的流程可分为3种,即并流、逆流和平流。下面以三效蒸发为例,分别介绍这3种流程。 (1)并流(顺流)加料蒸发流程如图13—3所示,这是工业上最常用的一种方法。原料液和加热蒸汽都加入第1效蒸发,溶液顺序流过第1、Ⅱ、Ⅲ效,从第Ⅲ效取出完成液。加热蒸汽在第1效加热室中被冷凝后,经冷凝水排除器排出。从第1效出来的二次蒸汽进入第Ⅱ效加热室供加热用;第Ⅱ效的二次蒸汽进入第Ⅲ效加热室;第Ⅲ效的二次蒸汽进入冷凝器中冷凝后排出。 顺流加料流程的优点是:各效的压力依次降低,溶液可以自动地从前一效流人后一效不需用泵输送;各效溶液的沸点依次降低,前一效蒸发的溶液进入后一效蒸发时将发生自蒸发而蒸发出更多的二次蒸汽。缺点是:随着溶液的逐效增浓,温度逐效降低,溶液的

黏度则逐效增高,使传热系数逐效降低。因此,顺流加料不宜处理黏度随浓度的增加而迅速加大的溶液。 (2)逆流加料蒸发流程图13—4是逆流加料的蒸发流程。原料液从末效蒸发加入,然后用泵送人前一效,最后从第1效取出完成液。蒸汽的流向则顺序流过第Ⅰ、Ⅱ、Ⅲ效,料液的流向与蒸汽的流向相反。 逆流加料的优点是:浓的溶液在最高的温度下蒸发,各效溶液的黏度相差不致太大,传热系数不致太小,有利于提高整个系统的生产能力;末效的蒸发量比顺流加料时少,减少了冷凝器的负荷。缺点是效与效之间必须用泵输送溶液,增加了电能消耗,使装置复杂化。 (3)平流加料蒸发流程图13—5是平流加料的蒸发流程。每一效蒸发时都送入原料液,放出完成液。这种加料主要用在蒸发过程中有晶体析出的场合。 云博创意设计 MzYunBo Creative Design Co., Ltd.

(完整版)MVR蒸发器工艺介绍

江苏赛格尔环保工程有限公司专业从事MVR蒸发器、罗茨、离心蒸气压缩机等核心成套设备的研发、设计、制造。集聚了在节能环保蒸发器领域的专家和科技人才,组成了MVR高效节能蒸发器及蒸汽压缩机的设计和制造精英团队,致力于成为一流的蒸发浓缩结晶的工艺设计者,设备制造者,运行管理服务提供者,节能技术领跑者。公司致力于高浓度高盐废水处理及资源化利用,立志成为该领域的先锋。公司开发的MVR蒸发器具有应用领域宽广、高效节能、全自动无人值守和组态实时监控等特点,可广泛应用在环保、制糖、制药、化工、食品、等节能减排和环境保护领域,为企业和城市环境提供了真正实现“零排放”的全套技术解决方案。 ※公司愿景 永恒节能,永恒环保。 ※公司理念 责任:对社会负责、对企业负责、对客户负责、对员工负责。 创新:持续不断地进行技术创新、经营创新、管理创新。 精神:认真负责、追求卓越。 ※公司目标 打造卓越品质,成就行业品牌。 三、MVR工艺介绍

1、MVR原理 MVR是蒸汽机械再压缩技术,(mechanical vapor recompression )的简称。MVR 蒸发器是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术。 MVR其工作过程是将低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。除开车启动外,整个蒸发过程中无需生蒸汽从蒸发器出来的二次蒸汽,经压缩机压缩,压力、温度升高,热焓增加,然后送到蒸发器的加热室当作加热蒸汽使用,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。这样原来要废弃的蒸汽就得到充分的利用,回收潜热,提高热效率,生蒸汽的经济性相当于多效蒸发的30效。为使蒸发装置的制造尽可能简单和操作方便,可使用离心式压缩机、罗茨式压缩机。这些机器在1:1.2到1:2压缩比范围内其体积流量较高。蒸发设备紧凑占地面积小所需空间也小。又可省去冷却系统。对于需要扩建蒸发设备而供汽,,场地不够的现有工厂供水能力不足,特别是低温蒸发需要冷冻水冷凝的场合,可以收到既节省投资又取得较好的节能效果。 2、MVR工艺流程 系统由单效或双效蒸发器、分离器、压缩机、真空泵、循环泵、操作平台、电器仪表控制柜及阀门、管路等系统组成,结构简单,操作维护方便。 3、MVR技术特点 ※MVR节能蒸发器仅需要极少量生蒸汽,极大地降低企业运行成本,减

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一《食品工程原理》课程设计任务书 (1) (1) ........................................................................................................................................... .设计课题 (2) (2) ........................................................................................................................................... .设计条件 (2) (3) ........................................................................................................................................... .设计要求 (2) (4) ........................................................................................................................................... .设计意义 (2) (5) ........................................................................................................................................... .主要参考资料.. (3) 二设计方案的确定 (3) 三设计计算 (4) 3.1. ......................................................................................................................................... 总蒸发水量 (4) 3.2. ......................................................................................................................................... 加热面积初算. (4) ( 1)估算各效浓度 (4) ( 2)沸点的初算 (4) ( 3)温度差的计算 (5) (4)计算两效蒸发水量V,V2及加热蒸汽的消耗量S (6) (5)总传热系数K的计算 (7) ( 6)分配有效温度差,计算传热面积 (9) 3.3. ............................................................................................................................................ 重算两效传热面积.. (10) ( 1)第一次重算 (10) 3.4 计算结果 (11) 四蒸发器主要工艺尺寸的计算 (13)

多效蒸发器设计计算

多效蒸发器设计计算 Prepared on 22 November 2020

多效蒸发器设计计算(一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮 膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所 求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即

(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'

蒸发基本原理

蒸发的基本原理 前言 使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作称为蒸发,所采用的设备称为蒸发器。蒸发操作广泛应用于化工、石油化工、制药、制糖、造纸、深冷、海水淡化及原子能等工业中。 蒸发操作中的热源厂采用新鲜的饱和水蒸汽,又称生蒸汽。从溶液中蒸出的蒸汽称为二次蒸汽,以区别于生蒸汽。在操作中一般用冷凝方法将二次蒸汽直接冷凝,而不利用其冷凝热的操作称为单效蒸发。若将二次蒸汽引到下一效蒸发器作为加热蒸汽,以利用其冷凝热,这种串联蒸发操作称为多效蒸发。 蒸发操作可以在加压、常压或减压下进行,工业上的蒸发操作经常在减压下进行,这种操作称为真空蒸发。真空蒸发的特点在于:1. 减压下溶液的沸点下降,有利于处理热敏性物料,且可利用低压强的蒸汽或废蒸汽作为热源。2. 溶液的沸点随所处的压强减小而降低,故对相同压强的加热蒸汽而言,当溶液处于减压时可以提高传热总温度差;但与此同时,溶液的粘度加大,使总传热系数下降。3. 真空蒸发系统要求有造成减压的装置,使系统的投资费用和操作费用提高。 一般情况下,经浓缩后的液体为产品,二次蒸汽冷凝液则被排除;蒸发过程的实质是传热壁面一侧的蒸汽冷凝与另一侧的溶液沸腾间的传热过程,溶剂的汽化速率由传热速率控制,故蒸发属于热量传递过程,但又有别于一般传热过程,因为蒸发过程具有以下特点: 1)传热性质传热壁面一侧为加热蒸汽进行冷凝,另一侧为溶液进行沸腾,故属于避免两侧流体均有相变的恒温传热过程。 2)溶液性质有些溶液在蒸发过程中有晶体析出、易结垢和生泡沫、高温下易分解和聚合;溶液的粘度在蒸发过程中逐渐增大,腐蚀性逐渐增强。 3)溶液沸点的改变含有不挥发溶质的溶液,其蒸汽压较同温度下溶剂(即纯水)的为低,换言之,在相同压强下,溶液的沸点高于纯水的沸点,故当加热蒸汽一定时,蒸发溶液的传热温度差要小于蒸发水的温度差。溶液浓度越高这种现象越显著。 4)泡沫夹带二次蒸汽中常夹带大量液沫,冷凝前必须设法除去,否则不但损

蒸发器尺寸设计

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .21000 2.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

多效蒸发器设计计算

多效蒸发器设计计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

多效蒸发器设计计算(一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮 膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所 求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即

(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'

蒸发器原理结构简介

蒸发器主要由加热室及分离室组成。按加热室的结构和操作时溶液的流动情况,可将工业中常用的间接加热蒸发器分为循环型(非膜式)和单程型(膜式)两大类。 一、循环型(非膜式)蒸发器 这类蒸发器的特点是溶液在蒸发器内作连续的循环运动,以提高传热效果、缓和溶液结垢情况。由于引起循环运动的原因不同,可分为自然循环和强制循环两种类型。前者是由于溶液在加热室不同位置上的受热程度不同,产生了密度差而引起的循环运动;后者是依靠外加动力迫使溶液沿一个方向作循环流动。 (一)中央循环管式(或标准式)蒸发器 中央循环管式蒸发器,加热室由垂直管束组成,管束中央有一根直径较粗的管子。细管内单位体积溶液受热面大于粗管的,即前者受热好,溶液汽化得多,因此细管内汽液混合物的密度比粗管内的小,这种密度差促使溶液作沿粗管下降而沿细管上升的连续规则的自然循环运动。粗管称为降液管或中央循环管,细管称为沸腾管或加热管。为了促使溶液有良好的循环,中央循环管截面积一般为加热管总截面积的40%一100%。管束高度为1—2m;加热管直径在25~75mm之间、长径之比为20~40。 中央循环管蒸发器是从水平加热室、蛇管加热室等蒸发器发展而来的,相对于这些老式蒸发器而言,中央循环管蒸发器具有溶液循环好、传热效率高等优点;同时由于结构紧凑、制造方便、操作可靠,故应用十分广泛,有“标准蒸发器”之称。但实际上由于结构的限制,循环速度一般在~/s以下;且由于溶液的不断循环,使加·热管内的溶液始终接近完成液的浓度,故有溶液粘度大、沸点高等缺点;此外,这种蒸发器的加热室不易清洗。 中央循环管式蒸发器适用于处理结垢不严重、腐蚀性较小的溶液。 (二)悬筐式蒸发器

多效蒸发器设计计算(精制甲类)

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强 及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有 效总温差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相 等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; )11 0x x F W -=(n W W i = i i W W W F Fx x Λ---= 210n p p p k '-= ?1p ?

蒸发器尺寸设计

蒸发器尺寸设计 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m; L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则

所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。 管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。我们选用的设计管心距是: 确定加热室内径和加热管数的具体做法是:先计算管束中心线上管数nc,管子安正三角形排列时,nc=1.1* ;其中n为总加热管数。初步估计加热室 Di=t(nc-1)+2b’,式中b’=(1—1.5)d0.然后由容器公称直径系列,试选一个内径作为加热室内径并以该内径和循环管外景作同心圆,在同心圆的环隙中,按加热管的排列方式和管心距作图。所画的管数n必须大于初值n’,若不满足,应另选一设备内径,重新作图,直至合适。

相关主题
文本预览
相关文档 最新文档