当前位置:文档之家› 公路桥梁设计指导原则(常规结构)

公路桥梁设计指导原则(常规结构)

公路桥梁设计指导原则(常规结构)
公路桥梁设计指导原则(常规结构)

公路桥涵

设计文件指导原则

(暂行版)

武汉鑫九通道桥设计公司桥涵组

二〇一四年七月

一、设计依据

1、《公路工程技术标准》(JTGB01-2003);

2、《公路桥涵设计通用规范》(JTG D60-2004);

3、《公路圬工桥涵设计规范》(JTG D61-2005);

4、《公路桥涵地基与基础设计规范》(JTG D63-2007);

5、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);

6、《公路涵洞设计细则》(JTG/T D65-04-2007);

7、《公路工程基本建设项目设计文件编制办法》(2007年10月1日);

8、《公路桥梁抗震设计细则》(JTG/TB02-01-2008);

9、《公路交通安全设施设计细则》(JTG D81-2006);

10、《高速公路交通工程及沿线设施设计通用规范》(JTG D80-2006);

11、《公路工程混凝土结构防腐蚀技术规范》(JTG/TB07-01-2006);

12、《公路桥涵养护规范》(JTG H11-2004);

13、《公路桥梁加固设计规范》(JTG/T J22-2008);

14、《公路工程基桩动测技术规程》(JTG F81-01-2004)。

二、桥涵设计标准及设计指标

1、荷载等级:公路-Ⅰ级(高速公路及一级公路);公路-Ⅱ级(二级公路及

三、四级公路);四级公路以下在公路-Ⅱ级的基础上乘以0.75系数。

2、设计洪水频率:特大桥P=1/300、大、中、小桥及涵洞P=1 /100。

3、结构安全等级:特大、大桥为一级,中、小桥二级,涵洞为三级。

4、地震作用:地震动峰值加速度等于0.05g,相当于基本地震烈度为Ⅵ度,特大桥及隧道等大型或者重点工程按Ⅶ度设防。

三、设计深度

1、普通大桥、互通匝道桥及等级路分离式桥设计内容包括:

(1)、桥位平面图(分离式立交桥应包含被交路平纵数据及图纸);

(2)、桥位地质纵断面;

(3)、全桥工程数量表;

(4)、桥型布置图(绘制出结构分联示意图);

(5)、墩台基础坐标表;

(6)、梁(或板)平面布置图(含弯斜桥的布置方法示意,直线桥可无此图);

(7)、桥台一般构造及相应钢筋布置图(钢筋图包括台身、U型侧墙、承台、桩基及扩大基础;台帽、支座垫石、耳背墙、牛腿、挡块统一绘制为通用图;桥台图中应有相对应台好桥台参数及标高);

(8)、桥墩一般构造图及钢筋布置图(一般构造图应标示出控制点标高、支座垫石位置及布置大样、地面横向线;钢筋布置图包括墩柱钢筋布置图、系梁钢筋布置图、承台钢筋布置图、桩基及扩大基础钢筋布置图;墩帽、支座垫石、挡块钢筋布置图统一绘制通用图);

2、特殊大桥及匝道桥,除上述图纸外,应有:。

(1)、特殊结构相关图纸;

(2)、施工步骤示意图;

(3)、对拆除重建的桥梁要理顺新旧桥桩基础相互关系,桩基的利用原则。

3、提供非标准结构整体纵向计算及横向计算书。

4、其他详细参见《公路工程基本建设项目设计文件编制办法》。

四、设计基本要求

1、桥梁孔径、结构尽量保证类型统一、标准化。

2、通用图上部构造单位采用mm,箱梁一般构造、钢束及普通钢等单位采用cm;桥型布置图及下部结构一般构造及其钢筋布置图单位均采用cm。

3、全桥工程数量表按数量表模板执行。

4、钢筋数量表中不需另计钢筋搭接长度

5、依据提供的地质钻探资料,补充计算墩台冲刷深度,提供桥涵最小埋置深度及相应的基础形式。

6、所有桥涵构件砼保护层厚度要求如下:

五、桥面铺装

1、预制小箱梁:10cm沥青混凝土桥面铺装+防水粘结层+8~10cm C50混凝土桥面现浇层;

2、空心板及T梁:10cm沥青混凝土桥面铺装+防水粘结层+8~10cm C50混凝土桥面现浇层;

3、现浇结构: 10cm沥青混凝土桥面铺装+防水粘结层。

六、防撞设施

1、主线特大、大、中桥尾侧均采用加强型钢筋砼护栏,设计速度120Km/h 采用防撞等级为SS级,宽度为50cm,高度为110cm。其详细尺寸参见《公路交通安全设施设计细则》;

2、互通匝道桥及分离式立交跨主线桥内外侧均采用加强型钢筋砼护栏,采用防撞等级为SB级,宽度为50cm,高度为100cm。

3、上跨主线、交通量较大道路及通航河流的桥梁(含匝道上跨)一律设置加强型护栏或者组合式护栏,且外侧均应设置桥梁防护网。

4、主线桥梁桥上护栏均与路基上护栏对齐顺接。

七、桥头路基填土高度

1、新建桥桥头路基填土高度原则上控制不大于7.0m。在地质条件及原路基允许条件下,可适当提高,最高不宜大于10m。

八、桥面排水

1、主线上各类桥梁排水方式原则上采用垂直排水。桥面排水系统由排水沟、排水管等,参考公用构造中附属结构桥面排水图纸,数量计入具体桥梁中。

2、泄水管不能直接向下泄至桥下主线、互通匝道路面上或有环保要求的流域内应作桥面排水系统设计,通过纵、横管道排至预定位置净化处理。

3、为了行车安全,上跨主线如天桥、分离式立交好匝道桥等桥梁桥面排水采用封闭式排水,桥梁长度较长或跨越规划区的桥梁应适当增加排水孔。

4、桥长(跨径)>10m的桥梁桥面设泄水管,间距一般为5m。

九、桥面连续与伸缩装置

1、标准结构采用三种类型伸缩装置,分别为40型、80型、160型。

2、160型伸缩装置预留槽深度应以部颁标准图为准,异型钢单缝式伸缩装置一端沿护栏底座向上弯起做到护栏底座外缘,另一端伸入防撞护栏预留槽口10cm并向上弯起。

3、主线上单空空心板梁桥,两端设置40型伸缩装置。

4、非标准结构伸缩装置使用原则如下:

(1)、桥梁联长一般控制在100~120m,采用D80型伸缩装置;特殊桥梁依据桥长及桥长变化计算结果,选择合适的伸缩缝。

(2)、对于采用桥面连续的3~5孔一般大中桥根据实际情况在变形零点附近桥墩处合理设缝,桥台处采用桥面连续,以减少桥头跳车。

(3)、对于采用结构连续的桥梁,在桥台处设置伸缩装置。

5、平缓的盆地地形时,应尽可能控制一联长度在100m以内,采用D80型伸缩装置;地形起伏较大的山区,可依据实际墩高分布状况,合理确定过渡墩

的位置,适当增减每联桥的长度。

6、原则上主线多孔桥梁,跨径小于等于20m,桥长或联长小于100m的可采用先简支后桥面连续结构;其他情况则一般采用先简支后结构连续的方式。

十、桥梁支座及支座垫石

1、1.装配式预制空心板

板式支座组合高度:梁底预埋钢板中心外露(1.0cm)+支座(Xcm)+垫石(Xcm)=20cm;

滑板支座组合高度:梁底预埋钢板中心外露(1.0cm)+支座(Xcm)+垫石(Xcm)=20cm;

2.装配式预制小箱梁及T梁

支座组合高度:梁底预埋钢板中心外露(1.0cm)+支座(Xcm)+垫石(Xcm)=25cm;

3.现浇箱梁

支座组合高度:梁底预埋钢板中心外露(1.0cm)+支座(Xcm)+垫石(Xcm)=30cm;

2、原则上空心板采用圆板式橡胶支座,T梁、预制小箱梁采用矩形或者圆形板式支座,现浇箱梁采用盆式支座。对于支承力大≥2000KN的连续箱,宜采用球形钢盆式支座。选择时依据不同的支座反力确定不同的规格。并反映在具体设计图中。垫石长度、宽度应比支座的尺寸增加5cm。支座垫石内必须配置局部抗压钢筋网,支座垫石内布设直径8mm以上、间距50mmX50mm钢筋网,

3、原则上支座垫石高度规定如下:

10~13m空心板采用10cm支座垫石,16~20m空心板采用10cm支座垫石,16~30mT梁采用10cm支座垫石,30m以上T梁采用12cm支座垫石。并根据实际设计情况作微调。通用结构支座建议参数如下表:

4、桥面连续或结构连续的支座设置原则:结合联孔长度及桥梁纵坡在一联范围内设置1~2个墩固定支座,奇数孔设置两个墩,偶数孔设置一个墩,同时要控制支座剪切变形在允许范围内。滑板式支座应设置防尘罩。

5、当纵坡≥1%活着横坡>2%时,需要在板底设置调平块适应纵横坡度。

十一、桥头搭板

1、原则上台后填土高≤5m,搭板长6m 搭板厚30cm,受力钢筋上层采用Ф16钢筋,下层采用Ф22钢筋;台后填土高>5m,搭板长8m 搭板厚35cm,受力钢筋上层采用Ф16钢筋,下层采用Ф22钢筋。

2、当桥台处于路基填土高度≤3m时或小桥明涵及桥式通道,采用5m长搭板。

3、搭板顶面纵坡与路线纵坡一致,顺桥向近桥台端置于桥台牛腿上,其顶面与桥面防水砼层平齐,并应保证其上10cm路面厚度。横向设于路面及硬路肩的范围之内。当桥宽较宽,设置多块搭板时,搭板之间需设置连接键,搭板

与填土之间应铺设C20砼及碎石垫层。

十二、桥梁斜交角度与斜角

1、桥涵斜交角度指路线前进方向顺时针旋转与水流或者涵轴线方向的夹角。

2、斜度是路线垂直方向与水流方向或涵轴线方向的夹角。为了便于通用设计,构造物选用斜度原则上为0~45°,每5°一级,可结合各种跨径的实际情况,作相应增减。

十三、锥坡及河床铺砌

1、主要工程包括:

(1)、锥坡基础,采用M7.5浆砌片石;

(2)、锥坡填心,计算范围至搭板尾端;

(3)、砂砾垫层,厚度15cm。

(4)、浆砌片石,厚度30cm。

(5)、刷坡,采用M7.5浆砌片石。

(6)、两侧边坡及台前溜坡坡度取用:1:1或者1:1.5

2、桥台耳墙后端伸入桥头锥坡顶点以内的长度为75cm。

3、桥台锥坡基础底面应埋置在一般冲刷线以下0.5~1.0m且不小于地面线以下1.5m。

4、对特大桥、大桥,当桥台冲刷深度较大时,锥坡钱要设置铁丝石笼防护,铁丝石笼的平面防护长度,一般为地面线至一般冲刷线的1.5倍,并加0.5~1.0m 的安全值,片石尺寸为30cm。

5、水流图式为自由流的小桥应在进口锥坡坡脚处2m范围内,出口锥坡坡脚外3~5加铺河底铺砌,纵坡较大时,在进、出口处设置相应的消能设施。

6、水流图式为淹没流小桥一般上、下游锥坡末端内全铺。

7、铺砌采用30cm厚片石(M7.5浆砌)+砂砾垫层10cm,在铺砌末端设宽50cm、深150cm的隔水墙,对冲刷严重的应在隔水墙前增加砌石防护。

十四、桥梁上部标准构造

1、为达到桥梁协调及外部美观及视觉舒适性,原则上要求上部构造采用带翼缘板结构结构形式。

2、装配吊装式上部结构尽量采用上部结构通用图,统一结构形式。

3、所有各类上部梁、板顶混凝土铺装层内均设置门式抗剪钢筋,采用25m 及以上跨径的简支转连续小箱梁结构时,跨中增设一道横隔板,当梁体斜置时,横隔板斜设。

十五、下部构造

1、桥台

(1)、轻型桥台分肋板式桥台与“一字型桥台”及桩接盖梁桥台。

a、肋板式为埋置型台,主要靠肋板连接台帽与基础,肋板个数依据桥宽确定,肋板横向宽度取用80~120cm,肋板侧面采用上窄下宽的结构样式,坡率采用3:1,适用于填土高5~7m,肋板上台帽为梁式结构;

b“一字型”桥台为轻型挡土式桥台,台身为“1”型竖直墙式结构,主要功能为挡土,下接基础,墙身上不再设置帽体。台身厚度在60~100cm之间,需在台身底,基础之上设置撑梁;台身厚度在100~200cm,不设置撑梁。

c、桩接盖梁桥台,其中桩基基础直接连接台帽,此类桥台适用于填土较矮的路基。

(2)、以上各类桥台均在两侧设置耳背墙,耳墙厚度为30~50cm,耳墙长度取用210~500cm,特殊梁桥再作调整,耳墙长度依据填土高度及桥长来确定。耳背墙均采用Ф16钢筋作为主筋。其他水平筋采用Ф16,拉筋采用φ10。

(3)、以上桥台中桩接盖梁与肋板式桥台均设置台帽,台帽尺寸依据台身顶尺寸每边增加10cm。由于台帽为梁式结构,钢筋布置原则上主筋选Ф25或Ф28,箍筋及腰筋选用Ф12。台帽两端均设置挡块,考虑到抗震要求,挡块宽度一般取用30cm,挡块高度依据上部结构形式而定。桥台台身主筋采用Ф22或Ф25,当肋板仅需要构造配筋时,台中肋板采用Ф22,其他的均采用Ф12或Ф16钢筋。

(4)、桥台基础分为承台桩基础或者扩大基础。

a、承台到高度一般取1.5~2m,特殊桥梁依据具体设计进行调整。承台主

筋取用Ф25或Ф28,台内撑筋采用Ф16,其他面层抗裂筋采用Ф12或Ф16。当承台下桩中距>3倍桩径时,按照规范构造要求需要设置吊筋。桩基进入承台最小厚度为10cm,在承台底面15cm内设置一层抗裂钢筋网(在桩径范围内可断开)。

b、扩大基础主要为承压构件,配筋主要作用为防止基础表面开裂,配筋原理可参照承台即可。

c、桩基础分为摩擦桩与端承桩,按照功能分类,摩擦桩主要依靠各土层自身摩阻力来约束桩基础,端承桩主要依靠持力岩层来支撑基础。

(5)、桩基础设计注意事项。

a、桩底应保留30~100 cm素砼段,依据桩长不同来取用。

b、端承桩主筋通长布置图,摩擦桩一半受力主筋宜在桩长的2/3处截断,主筋一般取用Ф25或Ф28钢筋。

c、定位钢筋采用Ф16,加强钢筋采用Ф22。

d、桩径>150cm,应在钢筋笼内加强箍筋上设置三角支撑钢筋,直径Ф22,间距200cm。

f、桩径≤120cm箍筋采用φ8HPB300钢筋,桩径>120cm及刚构下部采用φ10HPB300钢筋。

g、桩基础应按《公路工程基桩动测技术规程》JTG/T F81-01-2004进行动测检验桩身完整性。对于桩径<150cm,同时桩长小于40m钻孔灌注桩采用低应变反射法检测。对于桩径≥150cm或者桩长>40m钻孔灌注桩,采用埋置声测管进行超声波检测。桩径≥150cm时,每根桩通长布置4根声测管,桩径小于150cm 时,每根桩通长布置3根声测管。管口高出桩顶面30cm,管底封闭。声测管采用焊接钢管,钢管壁厚3mm,设计可按内径65mm计算工程量。

h、钢护筒的设置:高出地面0.3m或者围堰顶面1m,埋置深度宜为3~5m,特殊地质条件下另行考虑。

(6)、工程数量及控制指标。

a、桥台钢筋图中,桥台各部位的工程数量应分开计列,并给出该处结构个数及总计数量,以方便汇总。钢筋数量表中同时应计入该结构的砼数量。

b、各部分构造体积含筋量参考指标:

台帽:120~140kg/m3;摩擦桩:65~75kg/m3。

台身:100~120kg/m3;

承台:100~110kg/m3;

端承桩:75~85kg/m3;

(7)、结构构造措施。

上述桥台中构件均为钢筋砼结构,下部结构主要为偏压构件,其中最小配筋率应满足一下条款。

其构造要求还应满足《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中9.6条要求。

(8)、重力式桥台:重力式桥台主要用于填土过高的路基,利用台身自重来平衡土压力荷载和其他荷载产生的效应。重力式桥台主要为U型台,设计时需要在前墙与侧墙外侧设置抗裂钢筋,钢筋直径采用Ф12@15X15cm。

2、桥台及台后路基的处理原则。

(1)、对于重力式桥台及埋置式桥台开挖基坑要求回填满足路基填筑的颗粒性

材料,同时要求填料压实度在92%以上,并给出相应挖方和填方数量。台后填筑透水性砂砾材料,填筑范围在台后路基设计图中应明确。

(2)若桥台采用的形式需要开挖较大时(填土较高的桥台),需要对台后进行加固处理,或采用安全可靠、可行性的支护措施(如桥台注浆、打钢板桩等),以免开挖、施工过程中出现路基及锥坡塌方现象,影响正常通车。加固措施应补充相应图纸说明。

3、桥墩

(1)、桥墩分为柱式墩、板式墩、空心薄壁墩及重力式桥墩。

a、柱式墩较为常见,一般为双柱式墩或多柱式墩,墩顶接盖梁或者直接支撑上部结构;对于高度小于20m桥墩宜采用该类型桥墩,桥墩截面可以采用圆形或者矩形。渡河桥梁一般采用圆形截面。柱高(不含盖梁高)在7m以上的大中桥,需在地面或者常水位线以上设置横系梁;当墩身高度大于16m 时,在墩身中增设一道系梁,对于桥梁斜交角度≥30°时,可采用3柱(肋)式墩台结构。路线交叉中跨线桥,可采用独柱墩及其他样式。其中花瓶墩也是柱式墩的一种,花瓶墩墩帽与墩身采用曲线过渡,整体性好,墩帽与普通盖梁受力不同,其为拉压杆受力结构。

b、板式墩较柱式墩的横向刚度大,平面抗扭转的性能较多柱式墩好,一般用于重要桥梁及交叉工程。

c、空心薄壁桥墩及重力式桥墩主要用于墩高>20m桥梁。

d、对于基础距地面较浅、地基土质较好且地基承载力较高的情况下、可采用天热扩大基础。对于土层较厚,基岩距地面较深情况下、可采用桩基础。

(2)、桥墩盖梁钢筋布设参考桥台台帽钢筋的布设原则,盖梁两侧均设置30cm厚挡块。原则上盖梁为普通钢筋砼结构,横向跨度较大盖梁可考虑设计为预应力结构。

(3)、墩柱配筋原则,主筋宜采用Ф25或Ф28,箍筋采用φ10。在墩柱交接处、连接盖梁及连接承台处,考虑抗震需要,需进行箍筋加密,加密间距为10cm,范围为1m~2m。墩柱主筋分别要插入盖梁及基础相应锚固长度。

(4)、承台及扩大基础配筋原则:参考桥台承台及扩大基础配筋。

(5)、桩基础配筋原则:参考桥台配筋原则。

(6)、工程数量及控制指标。

a、桥墩钢筋图中,桥台各部位的工程数量应分开计列,并给出该处结构个数及总计数量,以方便汇总。钢筋数量表中同时应计入该结构的砼数量。

b、各部分构造体积含筋量参考指标:

盖梁:120~140kg/m3;摩擦桩:65~75kg/m3。

墩身:100~120kg/m3;

承台:100~110kg/m3;

端承桩:75~85kg/m3;

(7)、结构构造措施。

参考桥台构造措施遵循规范。

(8)、重力式桥墩:设计时需要在桥墩外表面设置抗裂钢筋,钢筋直径采用Ф12@15X15cm。

(9)、每个标段内,大中桥桥梁结构形式尽可能统一,同一座桥梁内下部结构尺寸应尽量统一,以方便施工。

十六、桥型布置图

1、具体内容及格式参见《公路工程基本建设项目设计文件编制办法》中的规定。

2、跨越河流、水库及道路的桥梁桥型布置图的平、纵面应表示出河流及道路的宽度、高度、规划及走向。

3、桥型布置图需包括:设计标高、地面高程、坡度(%)/坡长、里程桩号、直线及平曲线。

4、作图比例:特大桥、大桥1:1000,中小桥、通道1:500.

5、附注要求及格式如下:

注:

1、本图尺寸以厘米计,桩号、高程以米计;

2、荷载等级:公路-Ⅰ级(或公路-Ⅱ级);

3、本桥平面位于半径R-XXXXm的左/右偏圆曲线上(缓和曲线上),纵

面R-XXXXm的凹/凸型竖曲线上(±0.00%的单/双向坡上);

4、本桥平面布置采用弦线法[平分中矢],具体布置见《T梁/预制板平面

布置图》。

5、本桥上部构造采用00m预应力混凝土空心板(T梁),先简支后桥面

连续或先简支后结构连续,具体图纸参见《00m预应力混凝土空心板》

(第XX册);跨径组合为:0X00+0X00+...;下部构造采用双柱墩、U

型桥台、扩大基础以及钻孔灌注桩基础。

6、本桥跨越XX河和XX国道,XX河[为X级航道],交叉桩号为K00+000,

交角为00°。通航净空:BXH=0X0m。最高通航水位:00.00m,最低

通航水位:00.00m,设计水位00.0m。

7、本桥下部XX岸兼XX通道。

8、在桥上下游两侧00范围内河槽侧壁需进行铺砌防护,防护数量计入

《全桥工程数量表》。

9、(另附其他特殊说明,如加宽方式等)。

十七、涵洞设计

1、涵洞形式的选择在地基承载力满足要求的情况下优先选择盖板涵,地

基土质较差再设置箱涵,地基承载力应≥200Kpa。

2、暗涵最小填土高度0.5m,最大斜度不宜超过45°。

3、涵洞(排水)涵底纵坡不宜小于5‰,特殊情况下,涵底坡可以零坡。

4、涵底纵坡一般不宜大于5%;如果涵底纵坡大于5%,其与基础做成台阶,每3~5m基础设防滑隔墙或把基础做成阶梯形,涵身做成梯形(不等高);涵底纵坡大于10%,涵洞洞身及基础应分段做成阶梯形,同时前后两节盖板的搭接高度不小于其厚的1/4。

5、斜盖板暗涵中段盖板可采用正做形式,进出口作一段斜盖板,斜盖板短边宽不宜超过中板宽。

6、盖板涵台身宽度依据跨径、涵顶填土高度、涵墙高及地基承载力等综合确定。

7、盖板涵台每4~6m设置沉降断缝(正缝)一道。

8、盖板涵涵墙高≤4.5m时:分离基础做单层60cm高,整体基础做单层80cm高。

9、明箱涵顺中央分隔带设一道沉降缝,暗箱涵垂直箱体设置一道沉降缝。

10、圆管涵洞身及基础构造要求(互通匝道)

(1)、圆管涵预制管节中节长2.0m/节,端管节0.5m/节。

(2)、1.5m管涵壁厚18cm,1.25m管涵壁厚16cm,1.00m管节壁厚14cm。

(3)、管涵基础采用120度管基形式。

11、涵洞的洞口铺砌采用30cm厚片石(M7.5浆砌)+砂砾垫层10cm,在铺砌末端一般设宽50cm、深150cm的隔水墙,对冲刷严重的应在隔水墙前增加砌石防护。涵洞孔径≥3.0m时,上游延长铺砌3.0m,下游延长铺砌5.0m。涵洞孔径<3.0m时,上游铺砌不延长,下游延长铺砌3.0m。

十八、主线及互通匝道箱梁桥(含分离立交及地方路高架桥)

1、为提高结构耐久性,跨径>20m的箱梁原则上采用预应力混凝土结构,

桥梁内半径小于240m的弯梁桥需设跨间横隔板并在腹板内设置防崩钢筋。

2、跨径≥40m的现浇箱梁,宜采用预应力混凝土变高度连续梁结构。

3、等截面连续箱梁梁高建议取值为(配跨需根据主跨及方便邻跨衔接而

定):20m跨h=1.4m;25m跨h=1.5m;30m跨h=1.8~2.0m;35m跨h=2.0~2.1m,40~45m跨,h=2.2~2.5m;同时匝道桥需兼顾上构线条美观要求。

4、箱梁断面细部尺寸统一制定,根据桥梁宽度确定悬臂板长度及箱室宽度,原则上要求悬臂板长度取2.0~2.5m,箱室宽度取4.0m左右,否则需要考虑顶板张拉顶板横向预应力。

5、小跨径连续箱梁纵向预应力钢束布置时需考虑横梁钢筋的布置,单箱多室时尽量减少顶底板,通长束的布设,可以通过调整横梁中钢束到底板的距离来调整横梁附近下缘应力水平。

6、有特殊要求的箱梁下部结构需要单独验算设计(如采用花瓶型桥墩)。

7、弯道内桥梁须注意桥墩偏心值的取用,并通过计算确定。

8、箱梁桥建议一般100m左右为一联。在一联的变形零点附近位置根据墩柱高度设置固定支座或者墩梁固结(墩柱高度大于15m考虑墩梁固结,小于15m设固定支座)。变形零点附近设固定支座或固结的桥墩个数,视情况可以1个或者多个。采用双支座的弯箱梁桥固定支座设置在半径较小的内弧侧,另外一

侧采用横桥向布置的单向支座。其余桥墩如独柱墩则采用顺桥向单向支座,如双柱墩,则曲线外侧(即长弧边)采用顺桥向单向支座,曲线内侧(即短弧边)采用双向支座。设固定支座或者墩梁固结的桥墩宜有一定的刚度,故建议采用直径较大的桥墩或双柱墩。具体布置图如下:

9、箱梁施工方法;一般情况下,采用搭设满堂支架现浇施工,受交通组

织制约时可以考虑悬浇施工。

10、原则上变宽箱梁的纵向预应力应依据每条腹板的构造长度,给出对应腹板的钢束长度。

11、预应力钢筋砼箱梁结构,纵向钢筋取用Ф16,箱室内纵筋采用Ф12,箍筋采用Ф16,顶板下缘钢筋采用Ф20,悬臂根部采取补充短直筋加强。纵向顶底板变厚段箍筋加密,加密间距为10cm,其他采用15cm。一联梁端横向钢筋采用双肢布置。横梁主筋采用Ф25或Ф28,箍筋采用Ф16,其他钢筋采用Ф12。

12、预应力钢筋砼结构的经济指标:预应力体积含筋量为35~42kg/m3;

普通钢筋体积含筋量为160~200 kg/m3。

十八、材料

1、护栏混凝土采用C30,桥面现浇层混凝土与主梁混凝土强度等级一致。

2、上部构造钢筋混凝土结构,混凝土强度等级采用C40。

3、10m、13m空心板采用C40砼,16m、20m空心板采用C50 砼;16mT

梁采用C40砼,20m以上T梁采用C50砼;现浇预应力混凝土结构,混凝土强度等级采用C50;封锚混凝土采用同标号。

4、支座垫石混凝土强度等级统一采用C40。

5、桥台台帽、耳背墙、抗震挡块、桥墩帽梁、墩柱、墩柱系梁、承台等

构件混凝土等级均采用C30。

6、配筋扩大基础采用C25,桩基础采用C30水下混凝土。

7、U台侧墙、前墙、不配筋扩大基础等构件采用C25片石混凝土。

8、桥台搭板采用C30混凝土。

9、桥梁用钢材,支座钢板,声测管等钢材采用Q235,有特殊要求的钢结

构采用Q345,预应力结构钢绞线采用Фs15.2。钢筋采用HRB400及HPB300两种。

十九、其他注意事项

1、设计过程中需要加强技术资料、竣工图的搜集,尤其要摸清旧桥的实际情况,避免设计与实际情况不符而带来的不必要的变更。通过技术资料、竣工图还无法弄清楚的桥梁信息,需要现场调查。

2、设计时充分理解设计意图,结合实际情况,选择合理、可行的设计方

案,以方便施工,减少施工变更

3、为尽事宜,设计过程中需要加强沟通,及时发现问题,及时解决问题。

混凝土结构设计原理课后答案

绪论 0-1:钢筋和混凝土是两种物理、力学性能很不相同的材料,它们为什么能结合在一起工作? 答:其主要原因是:①混凝土结硬后,能与钢筋牢固的粘结在一起,相互传递内力。粘结力是两种性质不同的材料能共同工作的基础。②钢筋的线膨胀系数为1.2×10-5C-1,混凝土的线膨胀系数为1.0×10-5~1.5×10-5C-1,二者的数值相近。因此,当温度变化时,钢筋与混凝土之间不会存在较大的相对变形和温度应力而发生粘结破坏。 习题0-2:影响混凝土的抗压强度的因素有哪些? 答: 实验方法、实验尺寸、混凝土抗压实验室,加载速度对立方体抗压强度也有影响。 第一章 1-1 混凝土结构对钢筋性能有什么要求?各项要求指标能达到什么目的? 答:1强度高,强度系指钢筋的屈服强度和极限强度。采用较高强度的钢筋可以节省钢筋,获得较好的经济效益。2塑性好,钢筋混凝土结构要求钢筋在断裂前有足够的的变形,能给人以破坏的预兆。因此,钢筋的塑性应保证钢筋的伸长率和冷弯性能合格。3可焊性好,在很多情况下,钢筋的接长和钢筋的钢筋之间的链接需通过焊接,因此,要求在一定的工艺条件下钢筋焊接后不产生裂纹及过大的变形,保证焊接后的接头性能良好。4与混凝土的粘结锚固性能好,为了使钢筋的强度能够充分的被利用和保证钢筋与混凝土共同作用,二者之间应有足够的粘结力。 1-2 钢筋冷拉和冷拔的抗压、抗拉强度都能提高吗?为什么? 答:冷拉能提高抗拉强度却不能提高抗压强度,冷拉是使热轧钢筋的冷拉应力值先超过屈服强度,然后卸载,在卸载的过程中钢筋产生残余变形,停留一段时间再进行张拉,屈服点会有所提高,从而提高抗拉强度,在冷拉过程中有塑性变化,所以不能提高抗压强度。冷拨可以同时提高钢筋的抗拉和抗压强度,冷拨是将钢筋用强力拔过比其径小的硬质合金拔丝模,钢筋受到纵向拉力和横向压力作用,内部结构发生变化,截面变小,而长度增加,因此抗拉抗压增强。

结构设计的四项原则

结构设计的“四项基本原则” 刚柔相济,多道防线,抓大放小,打通关节 1、刚柔相济 合理的建筑结构体系应该是刚柔相济的。结构太刚则变形能力差,强大的破坏力瞬间袭来时,需要承受的力很大,容易造成局部受损最后全部毁坏;而太柔的结构虽然可以很好的消减外力,但容易造成变形过大而无法使用甚至全体倾覆。结构是刚多一点好,还是柔多一点好?刚到什么程度或柔到什么程度才算合适呢?这些问题历来都是专家们争论的焦点,现今的规范给出的也只是一些控制的指标,但无法提供“放之四海皆准”的精确答案。最后,专家们达成难以准确言传的共识:刚柔相济乃是设计者的追求。道也许都是相通的。 想想看,人应该是刚多一点好还是柔多一点好呢?思考的哲人们对此各抒已见,力求给出处世的灵丹妙方。总的来讲,做人太刚和太柔都不受推崇。过份刚强者,应变能力差,难以找到共同受力的合作者,便要我行我素,要鹤立鸡群,即使面对任何突然袭来的恶势力,亦敢于硬顶硬撞而不留变通的余地,这种时候必须有足够的刚度才能立于不败,否则一旦后继乏力,油尽灯枯就会发生脆性破坏,导致伤痕累累、体无完肤的灭顶之灾。在盛赞这种刚

气之余,却鲜有人能够或者愿意完全去做到,英雄的眼泪大抵只有英雄自己能体味。人们唯有感叹道:精神可嘉,方法难取! 世人处世多以“柔”为本,退一步海阔天空,和为贵。柔者易于找到共同受力的构件以协同消化和抵抗外力。但过柔亦为人所不耻。因为“柔”必然产生变形以适应外力,太柔的结果必然是太大的变形,甚至会导致立足不稳而失去根本。处世极为圆滑者,八面玲珑,见风使舵,整日上窜下跳,左右逢源,活得游刃有余,这种柔得无形,表面上着实不容易受到伤害,骨子里却难免有“似我非我”的疑问,弄不好会个性丧失、面目全非,可能还免不了要背上奴颜婢膝的骂名。 所以古人在长期的实践后发现了中庸之道最适合生存。用现代的话来讲大意是做人最好既有原则性又有灵活性,也就是刚柔相济。刚是立足之本,必要刚度不能少,如此方能控制变形在可以忍受的范围内,才不会失掉本质的东西;柔为护身之法,血肉之躯刚度毕竟有限,要学会以柔克刚,不断提高消化转换外力的能力,有时候,牺牲一点变形来抵抗突然到来的摧毁力是必要的,也是值得的,但应以不失去自我为度。 只可惜“道可道,道难行”。不是想刚就能刚,想柔便得柔的,刚柔相济只是理想中的“模糊结构”,每个人的组成材料千差万别,生存的地基也不尽相同,所受的外力更难统一定性。如此的差异下,企望哲人们找到统一的、万无一失的处世良方实在勉为其难。不过,每个人如果都能给自己多一点时间,去思考一下适合于自身的结构体系,想必这世界会有另一番光景。

设计组织架构需要遵循基本原则

设计组织架构需要遵循 基本原则 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

设计组织架构需要遵循基本原则西方管理学家总结的基本原则: 在长期的企业组织变革实践活动中,西方管理学家曾提出过一些组织设计基本原则,如管理学家厄威克曾比较系统地归纳了古典管理学派泰罗、法约尔、马克斯·韦伯等人的观点,提出了8条指导原则:目标原则、相符原则、职责原则、组织阶层原则、管理幅度原则、专业化原则、协调原则和明确性原则。 美国管理学家孔茨等人,在继承古典管理学派的基础上,提出了健全组织工作的l5条基本原则:目标一致原则、效率原则、管理幅度原则、分级原则、授权原则、职责的绝对性原则、职权和职责对等原则、统一指挥原则、职权等级原则、分工原则、职能明确性原则、检查职务与业务部门分设原则、平衡原则、灵活性原则和便于领导原则。 国内管理专家总结的基本原则: ①战略匹配原则 一方面,战略决定组织结构,有什么样的战略就有什么样的组织结构;另一方面,组织结构又支持战略实施,组织结构是实施战略的一项重要工具,一个好的企业战略要通过与企业相适应的组织结构去完成方能起作用。实践证明,一个不适宜的组织结构必将对企业战略产生巨大的损害作用,它会使良好的战略设计变得无济于事。因此,企业组织结构是随着战略而定的,它必须根据战略目标的变化而及时调整。通常情况下企业根据近期和中长期发展战略需要制订近期和中远期组织结构。

②顾客满意原则 顾客是企业赖以生存和发展的载体,企业设计的组织架构和业务流程必须是以提高产品和服务,满足顾客需求为中心的。要确保设计的组织架构和流程能够以最快捷的速度提供客户满意的产品的服务,组织中各部门的工作要优质、高效达到始于顾客需求,终于顾客满意的效果。 ③精简且全面原则 精简原则是为了避免组织在人力资源方面的过量投入,降低组织内部的信息传递、沟通协调成本和控制成本,提高组织应对外界环境变化的灵活性;对于非核心职能,可能的话应比较自建与外包的成本,选择成本最低的方案。全面原则则是体现麻雀虽小,五脏俱全的思想,即组织功能应当齐全,部门职责要明确、具体,这样即使出现一人顶多岗的情况,也能使员工明确认知自身的岗位职责。 ④分工协作原则 如果组织中的每一个人的工作最多只涉及到单个的独立职能,或者在可能的范围内由各部门人员担任单一或专业化分工的业务活动,就可提高工作效率,降低培训成本。分工协作原则不仅强调为了有效实现组织目标而使组织的各部门、各层次、各岗位有明确的分工。还强调分工之后的协调。因此在组织机构设计时,必须强调职能部门之间、分子公司之间的协调与配合,业务上存在互补性或上下游关系时,更需要保持高度的协调与配合,以实现公司的整体目标。 ⑤稳定与灵活结合原则

公路桥涵设计通用规范2015

公路桥涵设计通用规范JTGD60-2015 1总则 1.0.1为规范公路桥涵设计,按照安全、耐久、适用、环保、经济和美观的原则,制定本规范。 1.0.2本规范适用于新建和改建各等级公路桥涵的设计。 1.0.3公路桥涵结构的设计基准期为100年。 1.0.4公路桥涵主体结构和可更换部件的设计使用年限不应低于表1.0.4的规定。 1.0.5特大、大、中、小桥及涵洞按单孔跨径或多孔跨径总长分类规定见表1.0.5。 注:1.单孔跨径系指标准跨径。

2.梁式桥、板式桥的多孔跨径总长为多孔标准跨径的总长;拱式桥为两端桥台内起拱线间的距离;其他形式桥梁为桥面系行车道长度。 3.管涵及箱涵不论管径或跨径大小、孔数多少,均称为涵洞。 4.标准跨径:梁式桥、板式桥以两桥墩中线间距离或桥墩中线与台背前缘间距为准;拱式桥和涵洞以净跨径为准。 1.0.6公路桥涵应进行抗风、抗震、抗撞等减灾防灾设计。 1.0.7公路桥涵设计应满足环境保护和资源节约的有关要求。 1.0.8公路桥涵设计除应符合本规范的规定外,尚应符合国家和行业现行有关标准的规定。 2术语和符号 2.1术语 2.1.1设计基准期designreferenceperiod为确定可变作用等的取值而选用的时间参数。 2.1.2设计使用年限designworking/servicelife在正常设计、正常施工、正常使用和正常养护条件下,桥涵结构或结构构件不需进行大修或更换,即可按其预定目的使用的年限。 2.1.3极限状态limitstates整个结构或结构的一部分超过某—特定状态就不能满足设计规定的某一功能要求,此特定状态为该功能的极限状态。 2.1.4承载能力极限状态ultimatelimitstates对应于结构或结构构件达到最大承载力或不适于继续承载的变形的状态。

普通乘用车白车身防腐蚀设计规范

《普通乘用车白车身防腐设计指导规范》编制说明 (标准送审稿) a.工作简况 1、任务来源 本标准依据中国汽车工程学会2014年12月12日印发中汽学函[2014]73号《中国汽车工程学会技术规范起草任务书》/任务书编号2014-3制定,标准名称《普通乘用车白车身防腐设计指导规范》。本标准主要完成单位:华晨汽车集团控股有限公司、江淮汽车集团股份有限公司、长城汽车股份有限公司、北京新能源汽车股份有限公司、奇瑞汽车股份有限公司、上海格麟倍信息科技有限公司、一汽-大众汽车有限公司、重庆长安汽车股份有限公司、上海汽车集团股份有限公司乘用车公司、中国第一汽车有限公司天津技术开发分公司、上汽通用五菱汽车股份有限公司、河北红星汽车制造有限公司。 2、主要工作过程 2015年12月由华晨汽车集团控股有限公司、江淮汽车集团股份有限公司向中国汽车工程学会(以下简称中汽学会)提出制定《普通乘用车白车身防腐设计指导规范》标准的申请,2016年1月成立了标准工作组,提出撰写思路并进行分工。 标准工作组于2016年3月在上海召开了标准启动会,会议确认了标准工作计划、撰写大纲、章节目录和工作分工。 2016年5月标准稿(标准框架编制)沟通(重庆) 2016年12月标准稿(第一阶段草稿)沟通(成都) 2017年5月标准稿组内评审(邮件形式) 2017年5月标准稿(第二阶段草稿)评审会议(柳州) 2017年9月标准稿定稿评审会议(沈阳) 2017年10 月向中国汽车工程学会提交标准送审稿 2017年11 月单项标准终审会议(北京) 2018年01月标准发布 3 、主要参加单位和工作组成员及主要工作 本标准负责起草单位:华晨汽车集团控股有限公司、江淮汽车集团股份有限公司。 本标准参加起草单位:长城汽车股份有限公司、北京新能源汽车股份有限公司、奇瑞汽车股份有限公司、上海格麟倍信息科技有限公司、一汽-大众汽车有限公司、重庆长安汽车股份有限公司、上海汽车集团股份有限公司乘用车公司、中国第一汽车有限公司天津技术开发分公司、上汽通用五菱汽车股份有限公司、河北红星汽车制造有限公司。 本标准主要起草人:李婷婷、金超、吴卫枫、张朋伟 本标准参加起草人:李鹏飞、王鹏、朱迎五、王官府、宁小岳、韩银江、杨锐、金喆民、宗建启、向雪兵、刘飞、洪子文、潘镱、唐玉刚、刘强强、冯昌川 华晨汽车集团控股有限公司,李婷婷、金超。组建标准工作组,编写规范总体框架,编写标准目录中第1章(范围),第2章(规范性引用文件),第3章(术语和定义),第4章中4.1白车身防腐设计,4.2.1涂装结构设计,4.2.2.1白车身常见密封形式与典型部位,见表2;4.3 白车身制造的腐蚀防护简述,4.4 材料,收集标准工作组意见反馈并修改及工作汇报,并对标准内容进行审核和修订。 江淮汽车集团股份有限公司,吴卫枫、张朋伟。组建标准工作组,编写规范总体框架,第1章(范围),第2章(规范性引用文件),第3章(术语和定义),第4章中4.1白车身防腐设计,4.2.1涂装结构设计,4.2.2.1白车身常见密封形式与典型部位,见表2;4.3 白车

(完整word版)《结构设计原理》复习资料.docx

《结构设计原理》复习资料 第一篇钢筋混凝土结构 第一章钢筋混凝土结构的基本概念及材料的物理力学性能 三、复 (一)填空 1、在筋混凝土构件中筋的作用是替混凝土受拉或助混凝土受。 2、混凝土的度指有混凝土的立方体度、混凝土心抗度和混凝土抗拉度。 3、混凝土的形可分两:受力形和体形。 4、筋混凝土构使用的筋,不要度高,而且要具有良好的塑性、可性,同要求与混凝土有好的粘性能。 5、影响筋与混凝土之粘度的因素很多,其中主要混凝土度、筑位置、保厚度及筋距。 6、筋和混凝土两种力学性能不同的材料能有效地合在一起共同工作,其主要原 因是:筋和混凝土之具有良好的粘力、筋和混凝土的温度膨系数接近和混凝土筋起保作用。 7、混凝土的形可分混凝土的受力形和混凝土的体形。其中混凝土的徐 属于混凝土的受力形,混凝土的收和膨属于混凝土的体形。 (二)判断 1、素混凝土的承能力是由混凝土的抗度控制的。????????????【×】 2、混凝土度愈高,力曲下降愈烈,延性就愈好。?????????【×】 3、性徐在加荷初期增很快,一般在两年左右以定,三年左右徐即告基本 止。????????????????????????????????????【√】 4、水泥的用量愈多,水灰比大,收就越小。???????????????【×】 5、筋中含碳量愈高,筋的度愈高,但筋的塑性和可性就愈差。????【√】 (三)名解 1、混凝土的立方体度────我国《公路》定以每150mm的立方体件,在 20℃± 2℃的温度和相湿度在90%以上的潮湿空气中养28 天,依照准制作方法 和方法得的抗极限度(以MPa)作混凝土的立方体抗度,用符号f cu表示。 2、混凝土的徐────在荷的期作用下,混凝土的形将随而增加,亦即在力不的情况 下,混凝土的随增,种象被称混凝土的徐。 3、混凝土的收────混凝土在空气中硬体减小的象称混凝土的收。 第二章结构按极限状态法设计计算的原则 。

组织结构设计的基本原则

组织结构设计,指对企业的组织等级、运营结构及管理模式等进行再造的过程,EMBA、MBA等常见经营管理教育均组织结构设计方法有所探究。 一、定义 组织结构设计,是通过对组织资源(如人力资源)的整合和优化,确立企业某一阶段的最合理的管控模式,实现组织资源价值最大化和组织绩效最大化。狭义地、通俗地说,也就是在人员有限的状况下通过组织结构设计提高组织的执行力和战斗力。 企业的组织结构设计是这样的一项工作:在企业的组织中,对构成企业组织的各要素进行排列、组合,明确管理层次,分清各部门、各岗位之间的职责和相互协作关系,并使其在企业的战略目标过程中,获得最佳的工作业绩。 从最新的观念来看,企业的组织结构设计实质上是一个组织变革的过程,它是把企业的任务、流程、权力和责任重新进行有效组合和协调的一种活动。根据时代和市场的变化,进行组织结构设计或组织结构变革(再设计)的结果是大幅度地提高企业的运行效率和经济效益。 二、目的

创建柔性灵活的组织,动态地反映外在环境变化的要求,并在组织成长过程中,有效地积聚新的组织资源,同时协调好组织中部门与部门之间的关系,人员与任务间的关系,使员工明确自己在组织中应有的权力和应承担的责任,有效地保证组织活动的开展。 三、主要内容 1、职能设计 职能设计是指企业的经营职能和管理职能的设计。企业作为一个经营单位,要根据其战略任务设计经营、管理职能。如果企业的有些职能不合理,那就需要进行调整,对其弱化或取消。 2、框架设计 框架设计是企业组织设计的主要部分,运用较多。其内容简单来说就是纵向的分层次、横向的分部门。 3、协调设计

协调设计是指协调方式的设计。框架设计主要研究分工,有分工就必须要有协作。协调方式的设计就是研究分工的各个层次、各个部门之间如何进行合理的协调、联系、配合,以保证其高效率的配合,发挥管理系统的整体效应。 4、规范设计 规范设计就是管理规范的设计。管理规范就是企业的规章制度,它是管理的规范和准则。结构本身设计最后要落实并体现为规章制度。管理规范保证了各个层次、部门和岗位,按照统一的要求和标准进行配合和行动。 5、人员设计 人员设计就是管理人员的设计。企业结构本身设计和规范设计,都要以管理者为依托,并由管理者来执行。因此,按照组织设计的要求,必须进行人员设计,配备相应数量和质量的人员。 6、激励设计 激励设计就是设计激励制度,对管理人员进行激励,其中包括正激励和负激励。正激励包括工资、福利等,负激励包括各种约束机制,也就是所谓的奖惩制度。激励制度既有利于调动管理人员的积极性,也有利于防止一些不正当和不规范的行为。

高速公路互通立交景观设计规范标准

高速公路互通立交景观设计规 一、国法规 鉴于互通立交桥在高速公路建设中的特殊重要地位,各国十分重视高速公路互通立交桥的景观设计。我国国家交通部1998年关于发布《公路环境保护设计规》(JTJ/T006--98),下面摘录关于互通立交桥景观设计的几条规定: 条文6.2.2.1公路上的桥梁、互通式立交、隧道和服务区、管理设施等作为一个景点,设计时应使构造物本身各部位比例协调。 条文6.2.2.2各景点设计路段应充分结合工程和自然景观,宜具有一定风格,且与地域景观协调一致。各景观设计路段之间的过渡应自然。 条文6.3.4.4互通式立交区及服务区围,有条件时宜作景观绿化设计。 二、设计手法 公路互通立交桥景观环境要素包罗万象,但我们不应将精力集中在耗费大量人力、物力、财力的人造景观上,而应重点体现对原有的建筑景观资源的保护、利用和开发,以及公路主体与原有自然及社会环境的相融--“不破坏就是最大的保护”。 从互通立交桥景观设计入手,例如通过植物高低的变化引导视线,构造景观的节奏感;从互通立交桥线形入手,优化平纵组合、改善线形,使其流畅连续,确保车辆快速安全通过,提供舒适的行车条件,营造出“车在路上走、人在画中游”的优美的公路交通环境; 从互通立交桥结构入手,要求边坡以曲线柔美自然流畅的曲面为主,挡墙由高至低或由低至高渐变且与路线线形吻合为主要造型,边沟以隐蔽、宽浅或远离路基为首选。 互通立交桥周围的山岭、坡地、河流,构成美丽的风景,千变万化的植被体现出一种自然美。互通立交桥作为一种构造物,既要满足车辆通行的基本要求,又要达到自然景观与再造景观的和谐统一。 互通立交桥匝道大量曲线的设置,使公路线形能更好地适应地形,增加了互通立交桥的曲线美,给人以幽静和耐人寻味的感觉。曲线丰富的变化和节奏感,驾驶员行驶在上面,眼睛左右移动,不断扫视整个视域,并把视线引向远方,避免了驾驶员遇到紧急情况而手慌脚乱。

结构设计原理 第二章 混凝土 习题及答案

第二章混凝土结构的设计方法 一、填空题 1、结构的、、、统称为结构的可靠性。 2、当结构出现或或或状态时即认为其超过了承载力极限状态。 3、当结构出现或或或 状态时即认为其超过了正常使用极限状态。 4、结构的可靠度是结构在、、完成的概率。 5、可靠指标 = ,安全等级为二级的构件延性破坏和脆性破坏时的目标可靠指标分别是和。 6、结构功能的极限状态分为和两类。 7、我国规定的设计基准期是年。 8、结构完成预定功能的规定条件是、、。 9、可变荷载的准永久值是指。 10、工程设计时,一般先按极限状态设计结构构件,再按 极限状态验算。 二、判断题 1、结构的可靠度是指:结构在规定的时间内,在规定的条件下,完成预定功能的概率值。 2、偶然作用发生的概率很小,持续的时间很短,但一旦发生,其量值可能很大。 3、钢筋强度标准值的保证率为%。HPB235级钢筋设计强度210N/mm2,意味着尚有%的钢筋强度低于210N/mm2。 4、可变荷载准永久值:是正常使用极限状态按长期效应组合设计时采用的

可变荷载代表值。 5、结构设计的基准期一般为50年。即在50年内,结构是可靠的,超过50年结构就失效。 6、构件只要在正常使用中变形及裂缝不超过《规范》规定的允许值,承载力计算就没问题。 7、某结构构件因过度的塑性变形而不适于继续承载,属于正常使用极限状态的问题。 8、请判别以下两种说法的正误:(1)永久作用是一种固定作用;(2)固定作用是一种永久作用。 9、计算构件承载力时,荷载应取设计值。 10、结构使用年限超过设计基准期后,其可靠性减小。 11、正常使用极限状态与承载力极限状态相比,失效概率要小一些。 12、没有绝对安全的结构,因为抗力和荷载效应都是随机的。 13、实用设计表达式中的结构重要性系数,在安全等级为二级时,取 00.9 γ=。 14、在进行正常使用极限状态的验算中,荷载采用标准值。 15、钢筋强度标准值应具有不少于95%的保证率。 16、结构设计的目的不仅要保证结构的可靠性,也要保证结构的经济性。 17、我国结构设计的基准期是50年,结构设计的条件:正常设计、正常施工、正常使用。 18、结构设计中承载力极限状态和正常使用极限状态是同等重要的,在任何情况下都应计算。 19、结构的可靠指标β愈大,失效概率就愈大;β愈小,失效概率就愈小。 20、(结构的抗力)R

塑料件结构设计基本原则

塑料件结构设计基本原则

可怜的机械狗之塑料件结构设计基本原则(一) 一,产品结构设计前言 正式进入话题之前,咱先抱怨两句,机械工程的待遇可真不咋地,奉劝想要进入机械行业的童鞋们三思后行。待遇低,工作环境差就算了,可美女咋也凤毛麟角呢!都说机械好就业,工作稳定,可那初始工资真是没得说,就说自己刚毕业时,每月2000块,去厂房里做装配工,铁块在手里滚来滚去,整天脏兮兮的,还累的跟狗一样。可相比较其他呢,那些学计算机的,学财务,学管理的,那待遇真是没法比,想我当时就是因为看这个专业名字好听,就跳坑里了。虽然这个说,可梦想仍在,咱还是要向着那里走着,一点一点地走。 进入正题,在玩具,消费类电子产品,大小家电,汽车等相关行业中,都离不开产品的结构设计,各种有形的产品,配件等都必须先确定其外形,所以是产品结构设计是产品研发阶段的核心之一。就拿消费类电子产品来说,结构,硬件,软件是产品研发的三个主要工作团体,而硬件与结构又是结合最紧密的。 一般公司要研发一款产品,首先是市场部签

发开发指令,经过部门评审后,研发部开始进行结构外观建模,然后再进行建模评审,评审通过后,才开始内部的结构设计,然后才是做手板,开模,试模,试产,量产等。而其中的内部结构设计就是产品结构设计师最主要的工作内容。在我国,工业外观设计跟结构设计是分开的,就是说决定产品初步外观的并不是机构工程师,而是工业设计师,他们会依照市场调差和基本的性能需要去绘制产品的外观,这个当然需要一定绘画艺术和审美能力。可怜大多说人都怀疑作为理工科的结构工程师欠缺这些细胞,可事实好像也是这样。最近接手国外的一个充电器产品,是他们已经做好了3D图,要我们来开模生产,可是拿到手后根本开不了膜,不符合开模要求,当然做个样品可以用3D打印做出来,可想要大批量的还是要靠传统模具。这体现了结构工程师的作用了,尽可能保证产品用料,外观,性能,工艺,装配的最佳化,就是在各个环节省钱省时省力,想想就够累的啊! 二,塑料件料厚 我们接触的很多产品是塑料件,其大部分塑料件都是通过塑胶模具注塑成型,而料厚是塑料

公路桥梁扩建设计规范

公路桥梁扩建设计规范 一、概述 近年来,随着我国公路交通运输的发展,早期修建的高速公路通行能力日趋饱和,部分四车道的高速公路已不能满足交通量的增长需求,因此对其进行改扩建,由四车道加宽为六车道或八车道,提高其通行能力已成为当务之急。桥梁在现代高速公路中占有较大比重,加上桥梁加宽存在技术复杂、实施难度高、对现状交通影响大的特点,因此桥梁加宽设计成为高速公路改扩建工程的重点。本文重点探讨高速公路桥梁改扩建设计中的若干问题,分析了桥梁拼接加宽设计的几种主要方式和连接部构造处理,为类似工程提供参考。 二、桥梁改扩建的设计原则 根据现有道路构造物的特点、改扩建的整体要求及桥涵结构物加宽加固的特殊性,重点提出以下设计原则: 1.首先收集旧桥的设计、竣工资料和地质资料,对全线原有桥梁构造物进行归类分析和现场调查,进行必要的研究、论证,以选择合理可行的建设方案。 2.桥涵构造物的改扩建,本着“安全、适用、经济、美观和有利环保”的原则,因地制宜,尽量利用原有构造物,灵活运用新、旧桥梁设计规范。桥梁的拼接加宽宜采用与原桥同跨径、同结构型式,力求标准化、装配化、外观一致性。 3.对现有老桥逐一进行检测、验算、分析归类,合理确定加固利用方案,提高其承载能力。 4.在确定桥涵构造物加宽加固方案的过程中,应充分注重结构的耐久性和可靠性要求,同时考虑施工的可实施性和方便性,降低后期养护成本。 5.在研究桥梁改、扩建方案时,应将拟实施的技术方案与施工期的交通组织统筹考虑,做到技术方案与交通组织方案的协调统一,努力实现“施工过程不中断交通”的目标,将施工期对现有交通的影响程度降到最低。 6.桥梁、涵、通的改、扩建应充分考虑沿线群众对通行的净空要求,了解沿线城镇发展和交通规划情况,做好沟通协调工作,促进社会、经济的和谐发展。通过顶升、下挖、拆除重建等方式,适当提高净空标准,方便群众生活和促进地方经济发展,努力提高人民群众的满意度,降低改扩建的实施难度。 7.部分路段沿线城镇化水平较高,从减少拆迁占地、降低工程造价和可持续发展理念出发,充分做好桥梁改扩建方案的比选论证,注重提升土地和城市空间利用率。 8.强调桥梁的美学和环保要求:老桥的加宽应考虑与原桥的外观一致性;跨线桥和分离式立交在拆除重建的过程中,应注意桥梁结构型式与周围景观的协调性;距居民区较近的

汽车车身设计的现状与趋势

汽车车身设计的现状与趋势 【摘要】造型是工业设计永恒的主题。汽车作为对人类生活影响极大的所谓"第一商品", 其造型也必然受到各方面因素的影响,并且反过来影响人类的各个层面,汽车设计也呈现出多种概念型设计发展趋势。经济的迅速发展和汽车工业的突飞猛进为工业设计带来了前所未有的发展机遇。 【关键字】汽车造型设计内部设计概念设计 1.车身外部造型设计 1.1 中国汽车造型设计与民族风大致经历了3个阶段: 1.1.1 第1阶段是将有中国特色的具像元素或图腾直接应用到汽车车身造型的演变设计上。从19 世纪末到20 世纪初期,汽车设计师把主要精力都扬名国际。这种将中国特色元素作为设计元素的必须要有一定的设计素养,才能驾驭这些强烈的元素而不至于“流俗”。这一阶段的设计也是风格外国人最容易识别和认知“中国”设计的方式。 1.1.2 第2阶段是研究及理解中国人的特殊人文风俗习惯及地域环境造成的特殊性。针对这些中国人的特殊性而设计出适合中国人使用的器物。例如神龙富康刚刚进入中国市场时,推出了一款无后尾的车型,刚一上市即被打入“冷宫”。究其原因,是因为违背了中国的传 统观念“无后为大”。 1.1.3 第3阶段是对中国文化有深刻的认知。将中国文化的精髓透过合理的设计表现出兼具中国特色又能被世界认同的设计。到目前为止这样的设计还很少。北京申奥的LOGO 是个比较好的代表。它将中国打太极拳的动感和奥运的五环标志完美地结合,既有中国特色又有世界观。这是将中国固有的世界大同观和奥运精神结合的一种极致表现。

1.2 今天的车身外部造型设计, 在国外专业人员中被称作“流线形设计”。按照造型师们的新理念,。汽车外形的连续完整性不应再依靠挺拔的棱角去表现, 而是要由各种曲面光滑的连接以及微妙的光学效果与视觉效果显示出来。 2.车身内部设计从“舒适”到“愉快” 力求精致、考究、装备齐全、内饰设计从强调舒适到重视驾乘的“愉快”、“享受”是近年来车身内部设计的特点。大量采用柔性的内饰设计。内饰装备和覆盖物的造型都比较圆滑恰好与外形发展的趋势相呼应。面料和座椅软垫一体化成型的座椅整体模塑成型的仪表板和复合材料饰板给人以精致、明快的感觉而内饰面料触感柔软则给人以和谐舒坦的视觉效果。总之软化的内饰不仅是舒适的需要而且也是安全的需要。 3.良好的安全性 车身碰撞安全性显得愈来愈重要。这是因为, 目前世界上每年不少人在汽车碰撞事故中丧生而且这个数字在逐年增加。因此无论是设计师或是消费者都把安全性作为衡量汽车优劣的重要依据。 主要防护原则是周边柔软而客舱刚硬, 即白车身的刚性由周边至乘员舱逐渐增大。这样在车碰撞时车身的周边产生一定的损坏和变形以便吸收碰撞能量, 但尽量使乘员舱不变形和完好无损。依据这个刚度分配原则近年来国外厂商对白车身的结构进行了大力研发。例如日本的日产和丰田公司采用了局部加强的方法对前风窗支柱侧围上边梁、后门后支柱等拐角部位均增添了加强板以确保在车身轻量化的前提下使白车身刚度分配更趋合理。 梅赛德斯-奔驰公司在各种轿车的转向盘中都装备了发全气囊在前后排各个座椅上都配备了三点式安全带。安全气囊和安全带均由同一套电子装置控制。在汽车发生碰撞时,安全气囊充气,安全带自动张紧以起到应有的保护作用。为了使乘客在座椅各种不同的调节位置都能正确地佩带安全带该公司把安全带插扣设计在座椅上。此外依据车身内部安全防护原则在车

结构设计的基本原则

结构设计的“四项基本原则” (2007-03-30 15:07:49) 转载 标签: 结构设计 刚柔相济,多道防线,抓大放小,打通关节 1、刚柔相济 合理的建筑结构体系应该是刚柔相济的。结构太刚则变形能力差,强大的破坏力瞬间袭来时,需要承受的力很大,容易造成局部受损最后全部毁坏;而太柔的结构虽然可以很好的消减外力,但容易造成变形过大而无法使用甚至全体倾覆。结构是刚多一点好,还是柔多一点好?刚到什么程度或柔到什么程度才算合适呢?这些问题历来都是专家们争论的焦点,现今的规范给出的也只是一些控制的指标,但无法提供“放之四海皆准”的精确答案。最后,专家们达成难以准确言传的共识:刚柔相济乃是设计者的追求。道也许都是相通的。 想想看,人应该是刚多一点好还是柔多一点好呢?思考的哲人们对此各抒已见,力求给出处世的灵丹妙方。总的来讲,做人太刚和太柔都不受推崇。过份刚强者,应变能力差,难以找到共同受力的合作者,便要我行我素,要鹤立鸡群,即使面对任何突然袭来的恶势力,亦敢于硬顶硬撞而不留变通的余地,这种时候必须有足够的刚度才能立于不败,否则一旦后继乏力,油尽灯枯就会发生脆性破坏,导致伤痕累累、体无完肤的灭顶之灾。在盛赞这种刚气之余,却鲜有人能够或者愿意完全去做到,英雄的眼泪大抵只有英雄自己能体味。人们唯有感叹道:精神可嘉,方法难取!世人处世多以“柔”为本,退一步海阔天空,和为贵。柔者易于找到共同受力的构件以协同消化和抵抗外力。但过柔亦为人所不耻。因为“柔”必然产生变形以适应外力,太柔的结果必然是太大的变形,甚至会导致立足不稳而失去根本。处世极为圆滑者,八面玲珑,见风使舵,整日上窜下跳,左右逢源,活得游刃有余,这种柔得无形,表面上着实不容易受到伤害,骨子里却难免有“似我非我”的疑问,弄不好会个性丧失、面目全非,可能还免不了要背上奴颜婢膝的骂名。 所以古人在长期的实践后发现了中庸之道最适合生存。用现代的话来讲大意是做人最好既有原则性又有灵活性,也就是刚柔相济。刚是立足之本,必要刚度不能少,如此方能控制变形在可以忍受的范围内,才不会失掉本质的东西;柔为护身之法,血肉之躯刚度毕竟有限,要学会以柔克刚,不断提高消化转换外力的能力,有时候,牺牲一点变形来抵抗突然到来的摧毁力是必要的,也是值得的,但应以不失去自我为度。只可惜“道可道,道难行”。不是想刚就能刚,想柔便得柔的,刚柔相济只是理想中的“模糊结构”,每个人的组成材料千差万别,生存的地基也不尽相同,所受的外力更难统一定性。如此的差异下,企望哲人们找到统一的、万无一失的处世良方实在勉为其难。不过,每个人如果都能给自己多一点时间,去思考一下适合于自身的结构体系,想必这世界会有另一番光景。 2、多道防线 安全的结构体系是层层设防的,灾难来临,所有抵抗外力的结构都在通力合作,前仆后继。这时候,如果把“生存”的希望全部寄托在某个单一的构件上,是非常非常危险的。多肢墙比单片墙好,框架剪力墙比纯框架好等等,就是体现了多道防线的设计思路。也许我们会自信计算的正确性,但更要牢记绝对安全的防备构件是不存在的,还是应该多多考虑:当第一道防线跨了,

车身地板设计规范

XXXX有限公司 车身地板设计规范 编制: 校对: 审核: 批准: 2017- - 发布 2017- - 实施 XXXX有限公司发布

前言 编制本规范的目的是规范前地板设计流程,清楚设计要点,规避设计风险,为后续新车型的地板设计做参考。 1 范围 1.1 本规范适用XXXX有限公司研究院各项目组。 1.2 本规范适用于XXXX有限公司(以下简称XXXX)。 2 规范性引用文件 无 3 术语和定义 无 4 设计规范 4.1 概述 车身设计是一个复杂的系统并行设计过程,要摒弃孤立地单个零件设计方法,任何一个零件只是其所处在的分总成的一个零件。不管是在铸件数模阶段和工艺数模设计阶段,设计时均应考虑其与周边相关零部件的相互关系,以获取相应的设计硬点进行设计。设计过程中要考虑单个零件的冲压工艺性、在分总成中的焊接工艺性、车身附件的装配工艺性以及维修时的拆装工艺性。对于一个分总成,还要考虑其涂装工艺性。另外还要考虑轻量化原则,最大强度,最大刚度原则,用料率最高原则等等。 4.2地板总成设计 地板总成主要设计硬点: a)电池、后悬架、换挡操纵机构、手制动机构等底盘系统的安装空间和安装位 置; b)安全气囊ECU、手制动开关等电器装置; c)座椅总成、安全带安装点等车身附件的安装空间及人机工程。 下车体尺寸、面积较大,大模具难以加工,也难以实现冲压,因此在满足设计硬点的基础上,地板总成按照分块设计,一般可以分为前地板、中地板、后地板等几个分总成来进行设计。 对于白车身内部的结构设计来说,地板在设计过程中主要考虑的是与前围、侧围、后围零件的搭边关系。由于地板位置的特殊性,地板的设计过程中首先应该考虑的是密封性和刚度。 地板上一个很重要的结构特征就是筋。有的筋是为了结构需要,实现如座椅等附件的功能,但多数筋的结构是为了增加刚度。地板上筋的深度一般在5-10mm之间,可以最大限

结构设计的原则

结构设计的原则 1强柱弱梁 强柱弱梁(strong column and weak beam)指的是使框架结构塑性铰出现在梁端的设计要求。用以提高结构的变形能力,防止在强烈地震作用下倒塌。“强柱弱梁”不仅是手段,也是目的,其手段表现在人们对柱的设计弯矩人为放大,对梁不放大。其目的表现在调整后,柱的抗弯能力比之前强了,而梁不变。即柱的能力提高程度比梁大。这样梁柱一起受力时,梁端可以先于柱屈服。 强柱弱梁是一个从结构抗震设计角度提出的一个结构概念。就是柱子不先于梁破坏,因为梁破坏属于构件破坏,是局部性的,柱子破坏将危及整个结构的安全---可能会整体倒塌,后果严重。要保证柱子更“相对”安全,故要“强柱弱梁”。 二十世纪70年代后期,新西兰的T.Paulay和R.Park提出了保证钢筋混凝土结构具有足够弹塑性变形能力的能力设计方法。该方法是基于对非弹性性能对结构抗震能力贡献的理解和超静定结构在地震作用下实现具有延性破坏机制的控制思想提出的,可有效保证和达到结构抗震设防目标,同时又使设计做到经济合理。 能力设计方法的核心是,(1)引导框架结构或框架-剪力墙(核心筒)结构在地震作用下形成梁铰机构,即控制塑性变形能力大的梁端先于柱出现塑性铰,即所谓“强柱弱梁”;(2) 避免构件(梁、柱、墙)剪力较大的部位在梁端达到塑性变形能力极限之前发生非延性破坏,即控制脆性破坏形式的发生,即所谓“强剪弱弯”;(3)通过各类构造措施保证将出现较大塑性变形的部位确实具有所需要的非弹性变形能力。 到二十世纪80年代,各国规范均在不同程度上采用了能力设计方法的思路。 能力设计方法的关键在于将控制概念引入结构抗震设计,有目的的引导结构破坏机制,避免不合理的破坏形态。该方法不仅使得结构抗震性能和能力更易于掌握,同时也使得抗震设计变得更为简便明确,即后来在抗震概念设计中提出的主动抗震设计思想。 第一,楼板的作用,在我们的结构设计中一般都是不考虑楼板参与整体计算的,大部分情况下是直接将荷载倒算的梁上,而在计算水平荷载(地震跟风荷载)的时候考虑楼板对梁刚度的提高作用,用一个中梁刚度放大系数(及边梁刚度放大系数)来考虑楼板的作用,但梁配筋的时候又只考虑矩形截面,这样一来形成了本来是T型梁承受荷载,钢筋却完全集中在矩形截面中,而T型截面的翼缘也没有少陪钢筋(因为板中钢筋不能少配),这从无梁楼盖的配筋形式中可以发现我们现阶段采用的设计方法一方面是非常费,另一方面还吃力不讨好,对抗震规范的基本要求“强柱弱梁”没有任何好处(其实还起到坏处)。所以,在以后的设计中应加强对楼板的利用,让楼板参与计算必将是大势所趋。 第二,程序计算过程中没有考虑柱刚域的影响,在实际设计过程中对梁支座钢筋的超配,支座处裂缝验算对支座钢筋的加大(说明:楼板及其配钢筋对裂缝大有帮助)等都是造成“强梁弱柱”的罪魁祸首。

景观设计坡度规范大全

一些关于坡度的资料 来源:徐姝妮的日志 道路 8.0.3 居住区内道路纵坡规定,应符合下列规定: 8.0.3.1 居住区内道路纵坡控制指标应符合表8.0.3规定; 居住区内道路纵坡控制指标(%)表8.0.3 道路类别最小纵坡最大纵坡多雪严寒地区最大纵坡 机动车道≥0.3 ≤8.0 L≤200m ≤5 L≤600m 非机动车道≥0.3 ≤3.0 L≤50m ≤2 L≤100m 步行道≥0.5 ≤8.0 ≤4 注:L为坡长(m)。 8.0.3.2机动车与非机动车混行的道路,其纵坡宜按非机动车道要求,或分段按非机动车道要求控制。 8.0.4 山区和丘陵地区的道路系统规划设计,应遵循下列原则: 8.0.4.1 车行与人行宜分开设置自成系统; 8.0.4.2 路网格式应因地制宜; 8.0.4.3 主要道路宜平缓; 8.0.4.4路面可酌情缩窄,但应安排必要的排水边沟和会车位,并应符合当地城市规划管理部门的有关规定。 8.0.5居住区内道路设置,应符合下列规定: 8.0.5.1小区内主要道路至少应有两个出入口;居住区内主要道路至少应有两个方向与外围道路相连;机动车道对外出入口数应控制,其出入口间距不应小于150m。 沿街建筑物长度超过160m时,应设不小于4m×4m消防车通道。人行出口间距不宜超过80m,当建筑物长度超过80m时,应在底层加设人行通道; 8.0.5.2居住区内道路与城市道路相接时,其交角不宜小于75 ;当居住区内道路坡度较大时,应设缓冲段与城市道路相接; 8.0.5.3进入组团的道路,既应方便居民出行和利于消防车、救护车的通行,又应维护院落的完整性和利于治安保卫; 8.0.5.4在居住区内公共活动中心,应设置为残疾人通行的无障碍通道。通行轮椅车的坡道宽度不应小于2.5m,纵坡不应大于2.5%; 8.0.5.5居住区内尽端式道路的长度不宜大于120m,并应设不小于12m×12m的回车场地; 8.0.5.6当居住区内用地坡度大于8%时,应辅以梯步解决竖向交通,并宜在梯步旁附设推行自行车的坡道; 8.0.5.7在多雪严寒的山坡地区,居住区内道路路面应考虑防滑措施;在地震设防地区,居住区内的主要道路,宜采用柔性路面; 8.0.5.8 居住区内道路边缘至建筑物、构筑物的最小距离,应符合表8.0.5规定; 道路边缘至建、构筑物量小距离(m)表8.0.5 道路级别与建、构筑物关系居住区道路小区路组团路及宅间小路建筑物面向道路无出入口高层5 多层3 3 3 2 2 有出入口- 5 2.5 建筑物山墙面向道路高层4 多层2 2 2 1.5 1.5 围墙面向道路1.5 1.5 1.5 注:居住区道路的边缘指红线;小区路、组团路及宅间小路的边缘指路面边线。当小区路设有人行便道时,其道路边缘指便道边线。 8.0.5.9 居住区内宜考虑居民小汽车和单位通勤车的停放。 九竖向 9.0.1居住区的竖向规划,应包括地形地貌的利用、确定道路控制高程和地面排水规划等内容。

第二章 混凝土结构设计原理

第2章混凝土结构材料的物理力学性能 2.1 混凝土的物理力学性能 2.1.1 单轴向应力状态下的混凝土强度 虽然实际工程中的混凝土结构和构件一般处于复合应力状态,但是单轴向受力状态下混凝土的强度是复合应力状态下强度的基础和重要参数。 混凝土试件的大小和形状、试验方法和加载速率都影响混凝土强度的试验结果,因此各国对各种单轴向受力下的混凝土强度都规定了统一的标准试验方法。 1 混凝土的抗压强度 (1) 混凝土的立方体抗压强度f cu,k和强度等级 我国《混凝土结构设计规范》规定以边长为150mm的立方体为标准试件,标准立方体试件在(20±3)℃的温度和相对湿度90%以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为“N/mm2”。 用上述标准试验方法测得的具有95%保证率的立方体抗压强度作为混凝土的强度等级。《混凝土结构设计规范》规定的混凝土强度等级有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。例如,C30表示立方体抗压强度标准值为30N/mm2。其中,C50~C80属高强度混凝土范畴。 图2-1 混凝土立方体试块的破坏情况 (a)不涂润滑剂;(b) 涂润滑剂 (2) 混凝土的轴心抗压强度 混凝土的抗压强度与试件的形状有关,采用棱柱体比立方体能更好地反映混凝土结构的实际抗压能力。用混凝土棱柱体试件测得的抗压强度称为轴心抗压强度。 图2-2 混凝土棱柱体抗压试验和破坏情况

我国《普通混凝土力学性能试验方法标准》(GB/T 50081—2002)规定以 150mm×150mm×300mm 的棱柱体作为混凝土轴心抗压强度试验的标准试件。 《混凝土结构设计规范》规定以上述棱柱体试件试验测得的具有95%保证率的抗压强度为混凝土轴心抗压强度标准值,用符号f ck 表示,下标c 表示受压,k 表示标准值。 图2-3 混凝土轴心抗压强度与立方体抗压强度的关系 考虑到实际结构构件制作、养护和受力情况等方面与试件的差别,实际构件强度与试件强度之间将存在差异,《混凝土结构设计规范》基于安全取偏低值,轴心抗压强度标准值与立方体抗压强度标准值的关系按下式确定: k cu c c ck f f ,2188.0αα= 1c α为棱柱体抗压强度与立方体抗压强度之比,对混凝土强度等级为C50及以下的取0.76,对C80取0.82,两者之间按直线规律变化取值。 2c α为高强度混凝土的脆性折减系数,对C40及以下取1.00,对C80取0.87,中间按直线规律变化取值。 0.88为考虑实际构件与试件混凝土强度之间的差异而取用的折减系数。 国外常采用混凝土圆柱体试件来确定混凝土轴心抗压强度。例如美国、日本和欧洲混凝土协会(CEB)都采用直径6英寸(152mm)、高12英寸(305mm)的圆柱体标准试件的抗压强度作为轴心抗压强度的指标,记作f′c 。 对C60以下的混凝土,圆柱体抗压强度f′c 和立方体抗压强度标准值fcu,k 之间的关系可按下式计算。当f cu,k 超过60N/mm 2后随着抗压强度的提高,f′c 与f cu,k 的比值(即公式中的系数)也提高。CEB-FIP 和MC-90给出:对C60的混凝土,比值为0.833;对C70的混凝土,比值为0.857;对C80的混凝土,比值为0.875。 k cu c f f ,,79.0= 2 混凝土的轴心抗拉强度

相关主题
文本预览
相关文档 最新文档