当前位置:文档之家› 数学思想方法之转化与化归思想

数学思想方法之转化与化归思想

数学思想方法之转化与化归思想
数学思想方法之转化与化归思想

第4讲 转化与化归思想

(推荐时间:60分钟)

一、填空题

1.(2012·南京模拟)已知数列{a n }的前n 项和为S n ,且a n =S n ·S n -1 (n ≥2),a 1=29

,则a 10=________.

2.定义运算:(aD ○+b )D ○×x =ax 2+bx +2,若关于x 的不等式(aD ○+b )D ○×x <0的解集为{x |1

3.函数f (x )=x +1-x 的值域为________.

4.(2012·淮安模拟)对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是______________.

5.已知函数f (x )=-sin 2x +sin x +a ,若1≤f (x )≤174

对一切x ∈R 都成立,则参数a 的取值范围为____________.

6.(2012·秦皇岛模拟)设函数f (x )=x 3+sin x ,若0≤θ≤π2

时,f (m cos θ)+f (1-m )>0恒成立,则实数m 的取值范围是____________.

7.(2012·六安模拟)抛物线y =x 2中的所有弦都不能被直线y =m (x -3)垂直平分,则常数m 的取值范围是____________.

8.设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.

9.已知函数f (x )=x 3+2x 2-ax +1.若函数g (x )=f ′(x )在区间(-1,1)上存在零点,则实数a 的取值范围是______________.

二、解答题

10.(2012·镇江模拟)设f (x )是定义在R 上的单调增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,求x 的取值范围.

11. 在数列{a n }中,a 1=1,a n +1=????1+1n a n +n +12n . (1)设b n =a n n

,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .

12.(2012·洛阳模拟)已知奇函数f (x )的定义域为实数集R ,且f (x )在[0,+∞)上是增函数,

当0≤θ≤π2

时,是否存在这样的实数m ,使f (cos 2θ-3)+f (4m -2m cos θ)>f (0)对所有的θ∈???

?0,π2均成立?若存在,求出所有适合条件的实数m ;若不存在,请说明理由.

答 案

1. 463

2. ?

???-∞,-23∪(1,+∞) 3.[1,2]

4.(-∞,-1)∪(3,+∞)

5.[3,4]

6.(-∞,1)

7. ???

?-12,+∞ 8. 2105

9. ???

?-43,7 10.解 ∵f (x )在R 上是增函数,

∴由f (1-ax -x 2)≤f (2-a ),

可得1-ax -x 2≤2-a ,a ∈[-1,1].

∴a (x -1)+x 2+1≥0,对a ∈[-1,1]恒成立.令g (a )=(x -1)a +x 2+1.

则当且仅当g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0,解之,得x ≥0或x ≤-1. 故实数x 的取值范围为x ≤-1或x ≥0.

11.解 (1)由已知得b 1=a 1=1,

且a n +1n +1=a n n +12

n , 即b n +1=b n +12n ,从而b 2=b 1+12

, b 3=b 2+122,…,b n =b n -1+12n -1 (n ≥2). 于是b n =b 1+12+122+…+12n -1 =2-12n -1 (n ≥2). 又b 1=1,满足b n =2-1

2n -1,

故所求的通项公式b n =2-1

2n -1. (2)由(1)知a n =2n -n 2n -1,故

故S n =(2+4+…+2n )-(1+22+322+423+…+n 2

n 1). 设T n =1+221+322+423+…+n 2

n -1,① 则12T n =12+222+323+…+n -12

n -1+n 2n ,② ①-②得,12T n =1+12+122+123+…+12n -1-n 2n =1-12n 1-12

-n 2n =2-22n -n 2n , ∴T n =4-n +22

n -1. ∴S n =n (n +1)+n +22

n -1-4. 12.解 因为f (x )在R 上为奇函数,又在[0,+∞)上是增函数,故f (x )在R 上为增函数,且

f (0)=0.

由题设条件可得,f (cos 2θ-3)+f (4m -2m cos θ)>0.

又由f (x )为奇函数,可得

f (cos 2θ-3)>f (2m cos θ-4m ).

∵f (x )在R 上为增函数,∴cos 2θ-3>2m cos θ-4m ,

即cos 2θ-m cos θ+2m -2>0.

令cos θ=t ,∵0≤θ≤π2

,∴0≤t ≤1. 于是问题转化为对一切0≤t ≤1,

不等式t 2-mt +2m -2>0恒成立.

∴t 2

-2>m (t -2),即m >t 2-2t -2恒成立. 又∵t 2-2t -2=(t -2)+2t -2

+4≤4-22,∴m >4-22, ∴存在实数m 满足题设的条件,且m >4-2 2.

转化与化归思想方法

转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使 之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将 难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题. 转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归, 如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问 题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中. 1.转化与化归的原则 (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决. (2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂 问题的目的,或获得某种解题的启示和依据. (3)直观化原则:将比较抽象的问题化为比较直观的问题来解决. (4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解. 2.常见的转化与化归的方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况 转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有 效策略,同时也是成功的思维方式.常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、 不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题. 随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标 的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数 学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转 化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化 的过程,同时在生活中许许多多的事情也需要往已知的方面转化,把事情简单化, 这对以后学生的能力与德育方面有很大的帮助.化归与转化的思想是解决数学问 题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆

五年级上册数学思想方法的梳理

人教版五年级上册数学思想方法的梳理 一、教材内容与思想方法的梳理: 序号内容页码蕴含数学思想方法 1 小数乘整数、乘小数:P2-5 转化思想、对比思想 2 整数乘法运算定律推广到小数:P12 类比思想、比较思想 3 循环小数:P33 极限思想 4 用字母表示数:P52-54 符号化思想 5 用字母表示数量关系:P52 对应思想、函数思想 6 方程的意义:P62 数形结合思想 7 等式的基本性质:P64 数形结合思想、变中抓不变思想 8 解简易方程:P67 数形结合思想 9 稍复杂的方程:P69 假设思想、整体思想 10 平行四边形的面积:P87 转化思想 11 三角形的面积:P91 转化思想 12 梯形的面积:P95 转化思想 13 数字编码:P134 符号化思想 二、各部分内容思想方法渗透的教学建议: 1.小数乘整数、乘小数:教材创设学生喜欢的”买风筝、放风筝“情景,引入小数乘整数的学习。转化思想的渗透:选择“进率是10的常见量”作为素材引入,利于学生根据熟悉的“元、角、分”之间的进率,将3.5元×3转化为“35角×3”来计算。比较思想的渗透:处理积中小数点的位置问题。教材在例3、例4中,均采用对比的方

法,引导学生分别观察因数和积中小数的位数,找出它们之间的关系,然后利用这一关系,准确找到小数点的位置。 2.整数乘法运算定律推广到小数:类比思想的渗透:在复习整数乘法运算定律的铺垫上,举出P12的例子,看看每组算式两边的结果是不是相等,与之前复习的知识进行类比,你能发现什么规律?从而得出整数的运算定律对于小数也适用。 3.循环小数:这是一个新知识,内容概念较多,比较抽象,是教学中的一个难点。极限思想的渗透:教学时,可以先让学生计算,多除出几位小数,让学生观察竖式看发现了什么。学生会发现商的小数部分总是不断商3,如果继续除下去能不能除尽?使学生注意到因为余数总是重复出现25,所以商就重复3,总也除不尽,体会3是无穷尽的极限思想。 4.用字母表示数:对于小学生来说,是比较抽象的内容。符号化思想的渗透:在教学中,要通过一系列的教学活动,让学生感受字母代数的优点。比如通过用字母表示运算定律,感受到数学的符号语言比文字语言更为简洁明了。 5.用字母表示数量关系:对应思想的渗透:首先引导学生完成个别情况,如小红1岁时,爸爸是1+30=31岁,小红2岁时,爸爸2+30=32岁,依次类推……让学生体会到小红和爸爸的年龄在任何一年都有一一对应的关系。函数思想的渗透:通过前面环节,由个别到一般的归纳得出a+30表示任何一年爸爸的年龄,然后再让学生代入求值,由一般到个别,进一步理解a是一个具体的岁数,a+30也是一

在教学中渗透转化与化归数学思想方法的实践意义

在教学中渗透转化与化归数学思想方法的实践意义 开封市第二十五中学杨瑞 【关键词】数学思想方法转化与化归解决问题数学的实践应用【摘要】对于高中学生来说,数学的学习一直都应是一种思维方式的训练,甚至也会是生活态度的学习,因此教师在数学教学中要渗透的就应该是数学思想方法,而不仅仅是知识的传授。 【正文】新课程改革后的人教版教材一直想传达给学生这样一种思想:数学是有用的,数学的学习可以提高能力。一直以来,都有一种数学无用论的声音,很多人觉得生活不需要数学,数学学得好远没有背几首诗词或者读几篇历史故事更能吸引别人的眼光,甚至不如懂得一些物理化学知识来得实用,这已成为数学教师的尴尬,仿佛教学仅仅是为了那张卷子上的一个分数。 实际上,学数学的人都知道在实践中,在理论中,在物质世界中,在精神世界中,数学处处都有。生活处处蕴含着数学的魅力。基本无论大到宇宙星系,小至生物微粒及人类所处事宜都散发着数学的气息。因此高中数学的教学活动中,教师就不能仅仅局限于推导数学公式,掌握公式的使用,教学中渗透思想方法会对学生进行思维方式的训练,甚至也会是生活态度的学习,因为,数学是科学的语言,是思考和解决问题的工具。 在教学中渗透化归与转化这一最重要的数学思想就对学生的思维方式和解决问题的能力有着巨大作用。高中学生要在高中阶段实现由经验型逻辑思维向理论型逻辑思维转化,最终初步形成辩证思维能力。而转化与化归思想的渗透恰恰可以在培养学生逻辑思维能力方面发挥作用。同学们都有这样的经验,解某些数学问题时,如果直接求解较为困难,可通过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将原问题转化为一个新问题,通过对新问题的求解,达到解决原问题的目的,这一思想方法称之为“转化与化归思想”。转化是将数学命题由一种形式向另一种形式的转换过程;化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。这种数学思想方法不仅可以解决数学问题,显然在生

转化与化归思想方法

转化与化归思想方法,就就是在研究与解决有关数学问题时采用某种手段将问题通过变换使 之转化,进而得到解决得一种方法、一般总就是将复杂得问题通过变换转化为简单得问题, 将难解得问题通过变换转化为容易求解得问题,将未解决得问题通过变换转化为已解决得问题、 转化与化归思想在高考中占有十分重要得地位,数学问题得解决,总离不开转化与化归,如 未知向已知得转化、新知识向旧知识得转化、复杂问题向简单问题得转化、不同数学问题 之间得互相转化、实际问题向数学问题转化等、各种变换、具体解题方法都就是转化得手段,转化得思想方法渗透到所有得数学教学内容与解题过程中、 1、转化与化归得原则 (1)熟悉化原则:将陌生得问题转化为熟悉得问题,以利于我们运用熟知得知识、经验来解决、 (2)简单化原则:将复杂问题化归为简单问题, 通过对简单问题得解决,达到解决复杂问题 得目得,或获得某种解题得启示与依据、 (3)直观化原则:将比较抽象得问题化为比较直观得问题来解决、 (4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题得反面,设法从问题得反面去探讨,使问题获解、 2、常见得转化与化归得方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况 转化到另一种情形,也就就是转化到另一种情境使问题得到解决,这种转化就是解决问题得 有效策略,同时也就是成功得思维方式、常见得转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题、 (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂得函数、方程、不等式问题转化为易于解决得基本问题、 (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得 转化途径、 (4)等价转化法:把原问题转化为一个易于解决得等价命题,达到化归得目得、 (5)特殊化方法:把原问题得形式向特殊化形式转化,并证明特殊化后得问题、结论适合原问题、 随着国家经济得发展,科技得发达,人才得需求,中国教育得改革,数学新课 标得出现,在对学生得知识与技能,数学思想及情感与态度等方面得要求,学生在数学得学习方法也应该要相应改变了,要满足社会得需要、化归与转化思想得实 质就是揭示联系,实现转化、除极简单得数学问题外,每个数学问题得解决都就是通过转化为已知得问题实现得、从这个意义上讲,解决数学问题就就是从未知向 已知转化得过程,同时在生活中许许多多得事情也需要往已知得方面转化,把事情简单化,这对以后学生得能力与德育方面有很大得帮助、化归与转化得思想就是 解决数学问题得根本思想,解题得过程实际上就就是一步步转化得过程、数学

数学的转化思想方法

数学的转化思想方法 数学的转化思想方法 特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和 方法,进而推广到一般,从而使问题顺利求解。常见情形为:用字 母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。 整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需 要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。用整体思想解题时,是 把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理, 一定要善于把握求值或求解的问题的内在结构、数与形之间的内在 结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把 注意力和着眼点放在问题的整体上。常见的情形为:整体代入;整 式约简;整体求和与求积;整体换元与设元;整体变形与补形;整 体改造与合并;整体构造与操作等。分类讨论的数学思想:也称分 情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时, 我们就需要对这一问题进行必要的分类。将一个数学问题根据题设 分为有限的若干种情况,在每一种情况中分别求解,最后再将各种 情况下得到的答案进行归纳综合。分类讨论是根据问题的不同情况 分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类 的标准。分类讨论的原则是:(1)完全性原则,就是说分类后各子 类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不 能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一 性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。分类的方法是:明确讨论的对象,确定对象

转化与化归思想

专题三:转化与化归思想 【考情分析】 转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中。数学问题解答题离不开转化与化归,它即是一种数学思想又是一种数学能力,高考对这种思想方法的考查所占比重很大,是历年高考考查的重点。 预测2012年高考对本讲的考查为: (1)常量与变量的转化:如分离变量,求范围等。 (2)数与形的互相转化:若解析几何中斜率、函数中的单调性等。 (3)数学各分支的转化:函数与立体几何、向量与解析几何等的转化。 (4)出现更多的实际问题向数学模型的转化问题。 【知识交汇】 转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题。从某种意义上说,数学题的求解都是应用已知条件对问题进行一连串恰当转化,进而达到解题目的的一个探索过程。 1.转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。 2.常见的转化方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式。常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题; (2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题; (3)参数法:引进参数,使原问题的变换具有灵活性,易于转化; (4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题; (5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径; (6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径; (7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题; (8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化;

人教新版化归与转化的思想方法(教案)

化归与转化的思想方法(教案) 课题:化归与转化的思想方法专题 延寿一中吴东鹏 一、教学目标: 1、知识目标:⑴理解并掌握化归与转化的思想方法; ⑵用哲学观点认识化归与转化的思想方法。 2、能力目标:⑴能运用“化归与转化的思想方法”解决具体条 件下的数学问题; ⑵培养学生观察、分析、处理问题的能力,提高 思维品质; ⑶形成运动变化,对立统一的观点。 3、情感目标:在解题中,让学生体会熟悉化,简单化,和谐化,直 观化,正难则反的数学妙味. 二、教学重点、难点 教学重点:对“化归与转化的思想方法”的理解及运用 教学难点:“化归与转化的思想方法”的运用 三、教法、学法指导 教法:四环递进教学法 学法指导:⑴培养敏锐的洞察能力,类比能力; ⑵找准目标模型,将待解决问题转化为目标模型; ⑶学会用化归与转化的思想方法处理高中数学的 问题;

四、教学过程 1、知识整理 提出问题:结合以前解有关化归与转化题目方面的经验或体会,能否谈谈化归与转化的思想方法: ⑴、在运用已学知识解答一类问题时,不同问题要求运用不同知识,这就要求人们运用类比法,找准某一数学模型为目标模型,通过恰当的手段把问题化归为目标模型,再运用目标模型的内在数学规律,使问题获解,其思维程序是客观问题经抽象数学化→数学问题,经类比化归,找准目标模型把问题转化成模型→数学模型,经求解,运用模型→得解。 ⑵、实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,也可以变换问题的外部形式,从宏观上可以实现学科间的化归,也可以调动各种方法与技术,从微观上解决多种具体问题,在解题中可以多次使用化归,使问题逐次达到规范化、模式化。 ⑶、解题的过程就是化归的过程,不断地改变你的问题,重新叙述它,变换它,直到最后成功地找到某些能用的东西,解决问题为止。 2、范例选讲 例1:设4()42x x f x =+,求122006()()()200720072007 f f f +++L 解:1144()(1)4242 a a a a f a f a --+-=+++Q 4442424 a a a =+++?

常见的数学思想方法——转化思想

1 A F E B P C 图甲 D D (1) (2) A B D Q C E A B C D E M 常见的数学思想方法——转化思想 班级 姓名 学号 一、学习目标:了解转化思想的概念,能用转化思想解决有关问题. 二、内容解读: 1、遇到问题时,在作细微观察的基础上,展开联想,以唤起对有关旧知识的回忆,把待解决或未解决的问题,通过某种转化过程归结到已经能解决或比较容易解决的问题中去,最终求得原问题的解决,将这种过程称为化归思想或转化思想. 2、转化思想的三个基本要求:(1)化归对象——把什么元素进行化归;(2)化归目标——化归到何处去;(3)化归途径——化归的方法. 3、转化思想的途径:(1)运用联想类比实现转化;(2)利用“换元”、“添线”进行构造变形实现转化;(3)数形结合实现转化;(4)简化条件实现转化;(5)把实际问题转化为数学问题. (6)、构造基本图形实现转化 三、例题分析: (一)运用联想类比实现转化 例1、三个同学对问题“若方程组?? ?=+=+222111,c y b x a c y b x a 的解是???==,4, 3y x 求方程组???=+=+2 22111523,523c y b x a c y b x a 的 解.”提出各自的想法.甲说:“这个题目好像条件不够”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是____________. 练习:关于x 和y 的方程组???????-=++=---=+-=+9 )210(5108)8(965543y n m x y x m n y x y x 有解,求2 2n m +的值. 例2、如图甲,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F . (1)说明:①AN=BM ; ②△CEF 是等边三角形; (2)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图乙中补出符合要求的图形,并判断第①、②两小题结论是否仍然成立(不要求说明理由). (3)把△ACM 和△CBN 改成等腰直角三角形,其中∠ACM=∠BCN=90°,其余条件不变,还有类似的结 论吗? 练习:(1)如图,四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°,证明:BC+DC=AC . (2)如图,四边形ABCD 中,AB=BC ,∠ABC=60°,P 为四边形ABCD 内一点,且∠APD=120°, 说明:PA+PD+PC ≥BD . (二)利用“换元”、“添线”进行构造变形实现转化 例3、解方程组???? ???=---=-+-01 21221136311 y x y x . 例4、如图,在五边形ABCDE 中,∠B=∠E ,∠C=∠D ,BC=DE ,M 为CD 中点, 说明:AM ⊥CD . 练习(1)、如图,已知:△ABC 中,AB=AC ,在AB 上取一点D ,又在AC 的延长线上取一点E ,使CE=BD , 连结DE 交BC 于Q .试说明:DQ=QE . 练习(2)、如图,在等腰Rt △ABC 中,P 是斜边BC 的中点,以P 为顶点的直角的两边分别与边AB ,AC 交于点E ,F ,连接EF .当∠EPF 绕顶点P 旋转时(点E 不与A ,B 重合),△PEF 也始终是等腰直 角三角形,请你说明理由.

转换与化归思想

浅谈转换与化归思想 转化思想是数学中的一种基本却很重要的思想。深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。 一、 转换思想 (1)转换思想的内涵 转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。 (2)转换思想在同一学科中的应用 转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。 比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。 看这样一个问题: 已知:11122=-+-a b b a ,求证:12 2=+b a 。 [分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点 令人望而生畏。 再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。 [解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα 化简得1cos cos sin sin =+αααα 所以0sin ≥=αa ,0cos ≥=αb 则 1cos sin 2 222=+=+ααb a [小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现 三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。 转换思想对思维要求确实很高,但这一点还是能够做到的。因为各学科都有对知识模块的介绍,同时也有对各知识模块之间横向纵向的对比联系的研究。典型的例子就是数与形之间的思维转换,因为学生已经在初中老师的指导下

初中数学思想方法大全.

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

化归与转化思想在解题中的重要性

化归与转化思想在解中学数学习题时的重要性 大理一中雷蕾摘要:“数学是使人变聪明的一门学科”.数学思想方法是数学的灵魂,是数学精神和科学世界观的重要组成部分,而化归与转化思想又是数学思想的核心和精髓,真正的数学高手过招,比拼的往往就是数学思想.本文根据前人的研究成果,首先概述了化归与转化思想的含义、联系、区别,使用化归与转化思想所遵循的原则、及化归与转化的几种常见形式;然后结合自己的实习经验探讨怎样实施化归与转化思想在教学中的渗透,最后通过例题分析浅谈自身学习化归与转化思想的经验. 关键词:数学思想;化归与转化;化归与转化思想;化归思想;转化思想 1引言 数学思想方法是数学知识在更高层次上的抽象和概括,它蕴涵于知识的发生、发展和应用的过程,是知识转化为能力的桥梁,是在研究和解决数学问题的过程中所采用的手段、途径和方式.数学思想和数学方法是密不可分的.化归与转化思想方法是最基本、最常用的两大数学思想方法之一. 1.1化归与转化的含义 转化思想是指在研究和解决数学学问题时由一种教学对象转化为另一种数学对象时所采用的数学方法的指导思想.转化有等价转化和非等价转化. 化归是“转化归结”的简称,是转化的一种.简单的化归思想就是把那些陌生的或不易解决的问题转化成熟悉、易解决的问题的思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,遵循简单化、熟悉化、具体化、和谐化的原则选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题是上去,最终解决原问题的解决问题的思想,称为化归思想. 两者基本上是同一个东西,只是侧重点有一些细微的差异而已.化归是把未解决问题转化归结到已经解决的问题上去,而转化一般是把较难解决的问题转化为相对比较容易解决的问题上去.化归是找到我们研究的问题是属于哪一类型,属于哪一个知识范围.转化是我们找到解题的思路之后所进行的有目的的一项工作. 化归与转化思想是解决数学问题的基本且典型的数学思想.解题的过程实际上就是化归与转化的过程.几乎所有问题的解决都离不开化归与转化,我认为运用化归与转化的思想,有这样的三个问题必须明确:(1) 化归的对象:解题中需要变更的部分;(2) 化归的目标:把化归的对象化为熟知的问题,规范性的

高中数学思想----转化与化归思想

转化与化归思想 [思想方法解读] 转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性. 转化与化归思想的原则 (1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决. (2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据. (3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决. 体验高考 1.(2016·课标全国乙)已知等差数列{a n}前9项的和为27,a10=8,则a100等于() A.100B.99C.98 D.97 答案C 解析由等差数列性质,知S9=9(a1+a9) 2=错误!=9 a5=27,得a5=3,而a10=8,因此公差d =\f(a10-a5,10-5)=1, ∴a100=a10+90d=98,故选C. 2.(2016·课标全国丙)已知 421 353 2,4,25, a b c ===则( ) A.b<a

浅谈数学思想方法在小学数学教学中的渗透

浅谈数学思想方法在小学数学教学中的渗透 太原市尖草坪区实验小学王军 所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。 重视思想方法的教学是以人为本的教育理念下培养学生素养为 目标的需要。正如布鲁纳所说“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。”理论研究和人才成长的轨迹也都表明,数学思想方法在人的能力培养和素质提高方面起着重要作用。 正是由于数学思想方法是如此的重要,数学教学不能单纯只教给学生它的概念、公式、定理、法则,更重要的要教给学生这些内容反映出来的数学思想方法。 接下来就如何在日常教学中渗透数学想方法的教学,谈谈本人粗浅的看法: 一.小学数学教学中渗透数学思想方法的必要性 小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。 在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。 数学知识本身是非常重要的,但它并不是唯一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向

转化与化归的思想方法巩固练习

转化与化归的思想方法(3) --巩固练习 1. 若函数是奇函数,则常数a的值为(). 2.. 7封不同的信发往7处不同地址,由于装信封时未经仔细检查,信收到后发现有3封的内容和地址错位,发生这种错误的可能情形种数为(). A. 35B. 70 C. 105D. 175 3. 在球面上有4个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,那么这个球面的面积是(). 4. 若函数在区间(-∞,2]上有意义,则实数m的取值范围 是. 5. f(x)是R上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于() A. 0.5 B. -0.5 C. 1.5 D. -1.5 6.设f(x)=3x-2,则f-1[f(x)]等于() A. x+8 9 B. 9x-8 C. x D. 1 32 x- 7. 若m、n、p、q∈R且m2+n2=a,p2+q2=b,ab≠0,则mp+nq的最大值是() A. a b + 2 B. ab C. a b 22 2 + D. ab a b + 8. 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值为() A. 1 B. 2 C. 2 D. 5

9. 设椭圆y a 2 2 + x b 2 2 =1 (a>b>0)的半焦距为c,直线l过(0,a)和(b,0),已知原点到1 的距离等于221 7 c,则椭圆的离心率为() A. 1 4 B. 1 2 C. 3 3 D. 2 2 10. 已知三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB的中点,E为AC的中点,则四棱锥S-BCED的体积为() A. 15 2 B. 10 C. 25 2 D. 35 2 11. 已知函数 (1)求f(x)的反函数f -1(x); (2)数列{a n}中,a1=1,a n=f -1(an-1)(n∈N+,n≥2). 如果求数列{b n}的通项公式b n及前n项和Sn; (3)如果g(n)=2S n-17n,求g(x)(x∈R)在区间[t,t+2]上的最小值. 12. (x+2)10(x2-1)的展开式中x10的系数为.(用数字解答) 13. 设a、b是两个实数, 的点的集合,讨论是否存在a和b,使得:(1)A∩B≠(2)(a,b)∈C同时成立. 14. 证明不等式2(n∈N+). 15. 已知椭圆的一个顶点为A(0,-1),焦点在x轴上,且右焦点到直线x-y+2=0的距离为3,试问能否找到一条斜率为k(k≠0)的直线l,使l与已知椭圆交于不同的两点M、N.且满足,并说明理由. 16. 已知两点M(1,)、N(-4、-),给出下列曲线方程: ①4x+2y-1=0 ②x2+y2=3 ③+y2=1 ④-y2=1 在曲线上存在点P满足MP=NP的所有曲线方程是(). A. ①③B. ②④ C. ①②③D. ②③④

数学总复习之数学思想《转化与化归》

数学总复习之数学思想《转化与化归》 一.转化与化归的原则: (1)熟悉化原则;(2)简单化原则;(3)直观化原则;(4)正难则反原则. 二.常见的转化方法:直接转化法,换元法,数形结合法,等价转化法,特殊化方法,构造法,坐标法,类比法,参数法,补集法. 探究一、高维与低维的转化 【例1】已知实数c b a ,,满足1,02 22=++=++c b a c b a ,则a 的最大值是______. . 探究二、正面与反面的转化 【例2】函数14)(2+-=ax x x f 在(0,1)内至少有一个零点,求a 的取值范围. 探究三、特殊与一般的转化 【例3】 已知?ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,且满足 ()OH m OA OB OC =++,则实数m = . 探究四、抽象与具体的转化 【例4】等差数列{a n }的公差d ≠0,且a 1、a 3、a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10 = . 探究五、数学语言(文字、符号、图形)的转化 【例5】记,max{,},x x y x y y x y ≥?=?

初中数学思想方法主要有哪些

初中数学思想方法主要有哪些 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.基本方法主要指待定系数法、消元法、配方法、换元法、图象法等。由于数学方法在教材中大都有具体陈述,而数学思想却是隐含在知识系统之中,这为强化数学思想方法带来了一定困难。为此,下面我想谈谈转化、分类讨论、数形结合等数学思想在初中数学中的表现。 1、转化思想 所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维 方式。转化思想是数学思想方法的核心,其它数学思想方法都是转化的手段或策略。初中数学中运用转化思想具体表现在以下三个方面:(l)把新问题转化为原来研究过的问题,如有理数减法转化为加法,除法转化为乘法等(2)把复杂的问题转化为简单的问题,新问题用已有的方法不能或难以解决时,建立新的研究方式如引进负数,建立数轴;变利用逆运算的性质解方程为利用等式的性质解方程,等等。 2、分类讨论思想 所谓分类讨论是指对于复杂的对象,为了研究的需要,根据对象本质属性 的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而 认识整体的性质的思想方式。在分类讨论中要注意标准的同一性,即划分始终 是同一个标准,这个标准必须是科学合理的;分域的互斥性,即所分成的各类 既要互不包含,又要使各类总和等于讨论的全集;分域的逐级性,有的问题分 类后还可在每类中继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化,并逐步形成一个完整的知识结构网

络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现三个方面:(1)有的数学概念、定理的论证包含多种情况,这类问题需要分类讨论。如平面几何中三角形的分类、四边形的分类、角的分类、圆周角定理、弦切角定理等的证明,都涉及到分类讨论;(2)解含字母参数或绝对值符号的方程、不等式,讨论二次函数中二次项系数与图象的开口方向等,由于这些参数的取值不同或要去掉绝对值符号就有不同的结果,这类问题就需要分类讨论;(3)有的数学问题,虽结论惟一但导致这结论的前提不尽相同,这类问题也要分类讨论。 3、数形结合思想 所谓数形结合是指抽象的数学语言与形象直观的图形结合起来,从而实现由抽象向具体转化的一种思维方式。著名数学家华罗庚说过:“数缺形时不直观,形少数时难入微”。有些数最关系,借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计算和分析得以严谨化。在初中阶段,数形结合的“形”可以是数轴、函数的图象和几何图形等等,它们都具有形象化的特点。数形结合思想在初中数学中主要表现在以下两个方面:(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元二次方程的根以及讨论一元一次不等式等等;(2)以数助形,帮助学生简化解题方法。 4、函数与方程思想 函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.

转化与化归思想

高三数学思想、方法、策略专题 第三讲 转化与化归思想 一.知识探究: 等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。 1.转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能带来思维的闪光点,找到解决问题的突破口。 2.常见的转化方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题; (2)换元法:运用“换元”把非标准形式的方程、不等式、函数转化为容易解决的基本问题; (3)参数法:引进参数,使原问题的变换具有灵活性,易于转化; (4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题; (5)坐标法:以坐标系为工具,用代数方法解决解析几何问题,是转化方法的一种重要途径; (6)类比法:运用类比推理,猜测问题的结论,易于确定转化的途径; (7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题; (8)一般化方法:若原问题是某个一般化形式问题的特殊形式且有较难解决,可将问题通过一般化的途径进行转化; (9)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的; (10)补集法:(正难则反)若过正面问题难以解决,可将问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集A C U 获得原问题的解决。 3.化归与转化应遵循的基本原则: (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决; (2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据; (3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律; (4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;

相关主题
文本预览
相关文档 最新文档