当前位置:文档之家› 铸造合金及其熔炼完整版 - 副本

铸造合金及其熔炼完整版 - 副本

铸造合金及其熔炼完整版 - 副本
铸造合金及其熔炼完整版 - 副本

铸造合金及其熔炼要点

一.铸铁

1.铸件模数:

2.可锻铸铁回火脆性

答:

对铸铁金相组织起主要决定的元素

铸铁收缩:、、

3.影响冲天炉铁液浇注温度的因素

答:

生成球墨的俩个必要条件:。

4.铸铁球墨化的种类和方法

答:①镁作为球化剂的球化处理方法:

②稀土镁合金球化剂处理方法:

5.球铁牌号与基体

答:

复合蠕化剂:

6.冷硬铸铁分类:、

7.可锻铸铁生产:

8.耐热铸铁分类:

9.衡量灰铸铁冶金质量系数

答:

品质系数HG RG Q i /

10.了解石墨形态、类型

孕育处理:

冲天炉焦炭燃烧过程

答:

冲天炉焦炭层燃烧产物成分变化规律答:

冲天炉铁液含碳变化的原因

答:

增大灰铸铁共晶过冷度的元素

11.Fe-C-Si三元相图高碳相的存在形式:

12.Fe-G-Si准二元相图中Si的作用

答:影响铸铁铸态组织的因素

答:

一般铸铁组织形成过程中关键性问题

答:

冲天炉炉气成分温度沿高度变化的曲线图,个区域热交换特点(P146图5-6)答:

强碳化物形成元素:等

13.A枝晶间残留液体成分特点:

14.炉前铁液成分检测方法

15.铸铁一次结晶过程包括和

答:

炉外脱硫法有哪几种方法(P165~167)

答:

二.铸钢

1.炼钢过程氧化期的任务是:

2.碳钢中危害最大的气体:

3.

4.沉淀脱氧:

5.富氧送风:

6.钢液脱碳反应

答:

碳钢铸件的热处理目的:

抗磨耐磨不锈钢的主要元素及作用

答:

Mn在铸钢中的作用

答:

Cr、Ni不锈钢铸态组织、性能及使用环境答:

7.如何获得不锈钢全A组织

答:

钢液炉外精炼法:

8.感应电炉电流频率与坩埚直径的关系答:

9.合金元素对低合金碳钢流动性的影响答:

什么是感应电炉熔炼:

10.钢中B元素的作用

答:

水韧处理

答:

酸性炉衬电弧炉炼钢特点

答:优点:炉衬寿命较长;冶炼时间较短;钢液中的气体和夹杂物较少。

缺点:不能脱磷和脱硫,因此必须使用低磷低硫的炉料。

酸性炉可用来冶炼碳钢、低合金钢和某些高合金钢,但不适于高锰钢(MnO为碱性氧化物,会侵蚀酸性炉衬)。

11.有利于钢液脱P的炉渣特性:高碱度、强氧化性、粘度小。

12.铸造碳钢正常的适用温度范围:-40℃~400℃

13.高Mn钢的铸造工艺特点

答:①流动性:高锰钢的导热性差,钢液凝固慢,流动性良好,适于浇注薄壁铸件和结构复杂的铸件;

②热裂倾向:高锰钢铸件线收缩大,且高温强度低,热裂倾向大,容易发生热裂。因此

应注意加强铸型和型芯的容让性,以及其他有助于防止热裂的工艺措施;

③应力:由于高锰钢的导热性差,故铸件中产生的热应力比碳钢大,特别是铸态下,由

于刚的强度较低,容易导致铸件开裂。因此高锰钢铸件应尽量少用冒口,在可能的条件下,尽量采用使铸件达到同时凝固的工艺方案,竹简上的局部热解可用外冷铁激冷,必须用冒口时,可采用易割冒口;

④粘砂:高锰钢钢液中含有较多的氧化锰(MnO),这种氧化物属碱性,采用硅砂作为

造型材料时,容易产生化学粘砂。为了避免粘砂,宜采用碱性的或中性的耐火材料作铸型和型芯的表面涂料,对于小铸件,可采用湿砂型铸造,由于钢液量少,铸件很快凝壳,故不易形成粘砂。

14.感应电炉常见炼钢方法:有芯感应电炉炼钢、无芯感应电炉炼钢、真空感应电炉炼钢。

15.国内外铸钢生产常用的炉外精炼技术

答:氩氧脱碳精炼(AOD)法、真空氩氧脱碳精炼(VOD)法、真空氩氧脱碳转炉(VODC)法

三、有色金属

1.铝液吸附原理

答:依靠精炼剂产生吸附氧化夹杂的作用同时清除氧化夹杂及表面依附的氢气,达到净化铝液的作用。

2.Al-Si合金双重变质:在Al-Si共晶、过共晶合金中同时加入Re和P、能同时细化初晶硅和共晶硅,称为“双重变质”。

3.铸铝热处理

答:T1—人工时效T2—退火T4—固溶

T5—固溶+不完全人工时效T6—固溶+完全人工时效

T7—固溶+稳定回火T8—固溶+稳定回火

4.H与铝液熔炼的关系

答:H能够大量的溶解在铝液中,铝液中氢的主要来源于铝液与炉气中水汽的反应,而铝液中的气体主要都是H。铝液中含有大量的气体会造成针孔、皮下气孔、单个大气孔等铸件缺陷。

5铝合金熔剂精炼法及对熔剂要求

答:溶剂法的机理在于通过吸附、溶解铝液中的氧化夹杂及吸附其上的氢,上浮至液面进入熔渣中,达到除渣除气的目的。

对熔剂的要求:

①不与铝液发生化学反应,也不相互溶解;

②熔点低于精炼温度、流动性好,容易在铝液表面形成连续的覆盖层保护铝

液,最好熔高于浇注温度,便于扒渣清除;

③能吸附、溶解、破碎Al2O3杂质;

④来源丰富,价格便宜。

6.α(Al )粗晶细化机理

答:异质形核。

常见的晶粒细化剂有钛、硼、锆及稀土金属等,以中间合金或盐类形式加入铝液中,形 成的化学产物等,均起到晶粒细化作用。

7.铝合金的气体精炼工艺对比

答:通氮精炼:氮气炮只能吸入越本身容积的0.1倍的氢,因此通氮精炼效果不明显。工

业上用氮气瓶中通常含有微量氧气,通氮时将生成氧化铝,降低除气效果。如果氮气瓶 中含有水分,则危害更大,必须进行严格脱水处理。

通氩精炼:工业用氩气瓶中含氧量较低,通氩精炼时,较重的氩气富集在铝熔池表面, 能保护铝液防止和炉气反应,净化效果好。且氩的价格便宜,来源丰富,为工厂所乐用。 通氯精炼:氯气不溶于铝液,但能和铝液及溶于铝液内的氢产生剧烈反应生成的HCl 和AlCl3都呈气态,且不溶于铝液,和未参加反应的氯均能起精炼作用,净化效果比通 氮、氩效果明显。通氯净化效果虽好,但是有毒,且通氯设备较为复杂,泄露的氯气严 重腐蚀厂房、设备。其次,通氯后引起合金的晶粒粗大,降低力学性能,故生产中极少 采用。

8.杂质Fe 元素对Al-Si 合金组织与性能的影响

答:Fe 在Al-Si 合金中以)(229Si Fe Al Si 形式出现,既硬又脆,呈粗大片状,冷速越小,

组织越粗大,削弱铝基体,使合金变脆,破坏铝铸件表面氧化膜的连续性,降低合金的 耐蚀性,不能进行表面阳极氧化。

9.如何防止Al-Si 合金渗Fe

答:措施:①控制炉料中的含铁量,采用等级较高的铝锭;

②在坩埚、工具上涂覆涂料;

③铝液避免在铁介质坩埚中长期保温、跑温。

10.铝合金熔炼可简单概括为防排溶

11.铝合金熔炼原则

答:①化学成分符合国家标准,合金液成分均匀;

②合金液纯净,气体、氧化夹杂、熔剂夹杂含量低;

③需要变质处理的合金液,变质良好。

12.铝合金变质处理分类细化晶粒处理;共晶体变质;改善夹杂相的组织或消除易熔夹杂相。

13.锡青铜结晶特点及改善

答:锡青铜的结晶温度范围很宽,凝固速度较缓慢时,容易形成缩松,导致锡青铜铸件渗漏。 进行均匀化退火后,α枝晶消失,能防止铸件渗漏。

锡青铜呈糊状凝固,枝晶发达,很快就在铸件内形成晶体骨架,开始了线收缩,此时凝 固层较薄,高温强度低,因此铸件容易开裂。

由于锡青铜结晶温度范围宽,枝晶发达,反偏析是锡青铜中常见的缺陷。防止反偏析措

施:

①放置冷铁,提高冷却速度,出现层状凝固;

②调整化学成分,如加入锌,缩小结晶温度范围;

③采用有效的精炼除气措施,减少合金中的含气量。

14.锡青铜中Pb 的作用

答:Pb 的作用有三:

①铅以细小分散的颗粒均匀分布在合金基体上,具有良好的自润滑作用,能降低摩擦系 数,提高耐磨性;

②在最后凝固阶段铅填补可α(Cu )枝晶空隙,有助于消除显微缩松,提高耐水压性能;

③孤立分散的铅粒破坏了合金基体的连续性,切削加工时切削易断,可改善切削加工性 能。

15.铝青铜的缓冷脆性

答:在缓冷条件下,共析分解式2565γαβ+??→?℃的产物2γ相呈网状在α相晶上析出,形成隔离晶体联结的脆性硬壳,使合金发脆。

16.铜合金熔炼的氧化与脱氧

答:铜合金熔炼的氧化:铜合金熔化后,在高温下容易被炉气中的氧所氧化,生成氧化亚 铜Cu2O ,其熔点为1235℃。当温度低于熔点时时固态,呈黑色的致密覆盖膜,对钢 液有保护作用。温度高于Cu2O 的熔点时,呈液态,对铜液失去保护作用;Cu2O 溶于 铜液中,随温度下降,Cu2O 与α相在1066℃时形成α+Cu2O 共晶体。由于熔点低,会 引起热脆;如果吸入氢气,凝固后在铸件中生成气孔;Cu2O 有很高的分解压力。 铜合金熔炼的脱氧:Cu2O 的分解压力高,能溶于铜液中,往铜液候总加入与氧的亲 和力比铜与氧的亲和力大的元素,还原出Cu 。

脱氧方法:沉淀脱氧,脱氧剂本身能溶于铜液中,脱氧反应在整个熔池内进行,有点 事脱氧速度快,脱氧彻底;扩散脱氧,脱氧剂本身不溶于铜液中,覆盖在铜液表面, 脱氧仅在表面进行,借助Cu2O 不断向液面扩散才能不断脱氧。缺点是脱氧速度较低, 受Cu2O 的扩散速度所控制,但对铜液成分无影响,不会污染合金;沸腾脱氧,将新 鲜树干插入铜液中,由于燃烧不完全,产生大量的CO 及碳化物n m H C ,上浮时引起 铜液翻腾,Cu2O 被清除,反应产物CO2呈气泡上浮,起精炼作用。

17.黄铜锌当量

答:[][]

)(/)(∑∑?++?+=i i i i C B A C A X ηη X —锌当量; A —多元黄铜中的含锌量

B —多元黄铜中的含铜量i

C —合金元素含量i η—合金元素锌当量系数

18.铸镁主要合金元素

答:Al 、Zn 、Mn 、Re (Al 、Zn 固溶强化,Re 改善铸造性能和焊接性)

19.Mg-Zn-Zr 合金中Zr 的作用

答:Zr 在镁合金中为辅助元素,在Mg-Zn 合金中加Zr 能显著缩小合金的结晶温度范围,使 流动变好;加Zr 能细化晶粒,在镁液冷凝过程中,起到非自发形核的作用;Zr 能够大 大降低镁液中的氢浓度,由于减轻缩松;Zr 还能与杂质铁生成ZrFe3以及ZrFe2,这些

化合物密度大,能下沉到坩埚底部,提高合金的纯度,消除铁对镁合金抗蚀性的不利影响。

20.耐热镁合金中稀土元素的作用

答:①Mg-RE系中α固溶体及化合物稳定性较高;

②Mg-RE系的共晶温度比Mg-Al及Mg-Zn高的多;

③在200~300℃使用温度下,原子扩散速度较低;

④镁中加入三价的稀土元素,提高了电子浓度,增加了原子间的结合力;

⑤镁与稀土元素生成的化合物本身具有高的热稳定性;

⑥Mg-RE系合金在200~300℃固溶度变化较小,时效析出相均匀,相界面附近浓度梯

度较低。

21.消除ZA27铸件底缩

答:①加速冷却,顺序凝固:采用石墨,锆砂等高导热性铸型材料,加速铸件凝固速度,同时合理设计浇、冒口及冷铁布置,形成顺序凝固条件。

②加大压力:采用挤压铸造。

22.锌合金老化的原因

答:铅、锡、镉是锌合金中的有害杂质,他们在锌中的溶解度极微,吸附于晶界上,构成众多的微电池,在合适的温度、湿度下,加速电化学腐蚀过程,使晶界结合松弛,强度、硬度下降。另外,锌压铸件中的α、β相均为过饱和态,在使用过程中,相继脱溶,加上晶界上腐蚀产物的体积也比基体金属大,于是在力学性能明显下降的同时,铸件尺寸长大,引起“老化”。

铝合金的熔炼与浇铸

铝合金的熔炼与浇铸 6.5.1铝合金的性能及应用 铝合金是比较年轻的材料,历史不过百年,铝合金以比重小,强度高著称,可以说没有铝合金就不可能有现代化的航空事业和宇航事业,在飞机、导弹、人造卫星中铝合金所占比重高达90%,是铸造生产中仅次于铸铁的第二大合金,其地壳含量达7.5%,在工业上有着重要地位。 铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如燃机的汽缸盖和活塞等,也适于用铝合金来制造。 铝合金具有良好的铸造性能。由于熔点较低(纯铝熔点为660℃,铝合金的浇注温度一般约在730~750℃左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的在质量、尺寸精度和表面光洁程度以及生产效率。铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,其流动性良好,有利于铸造薄壁和结构复杂的铸件。 铸造铝合金的分类、牌号: 铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、铸造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。表1中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。 6.5.2 铝合金的熔炼设备

铸造合金及其熔炼铸铁部分复习题

第一篇铸铁及其熔炼 1、按石墨形态的不同,铸铁分为灰口铸铁;球墨铸铁;蠕墨铸铁。 2、在Fe-G-Si相图中,硅的作用 (1)共晶点和共析点含碳量随硅量的增加而减少; (2)共晶转变和共析转变出现三相共存区; (3)改变共晶转变温度范围;提高共析转变温度; (4)减小奥氏体区域。 3、只考虑Si、P等元素对共晶点实际碳量影响的计算公式为CE=C+1/3(Si+P); 4、亚共晶铸铁凝固特点:凝固过程中,共晶体不是在初析树枝晶上以延续的方式在结晶前沿形核并长大,而是在初析奥氏体晶体附近的枝晶间、具有共晶成分的液体中单独由石墨形核开始;石墨作为领先相与共晶奥氏体共生生长; 5、过共晶铸铁的凝固特点:凝固过程则由析出初析石墨开始,到达共晶温度时,共晶石墨在初析石墨上析出,共晶石墨与初析石墨相连。 6、石墨的晶体结构是六方晶体。 7、如图所示,形成片状石墨的晶体生长是A向占优,而球状石墨是C向生长占优, 8、F、C型石墨属于过共晶成分铸铁中形成的石墨 A型B型D型F型 9、球状石墨形成的两个必要条件:铁液凝固时必须有较大的过冷度;铁液与石墨间较大的表面张力。 10、球墨铸铁的球状石墨的长大包括两个过程:石墨球在熔体中直接析出并长大;形成奥氏体外壳,在奥氏体外壳包围下长大。 11、由于球状石墨的生长是在共晶成分下形成的石墨和奥氏体分离长大,因此其共晶过程又称之为离异共晶; 12、灰铸铁的金相组织由金属基体和片状石墨组成,基体的主要形式有珠光体、铁素体、珠光体加铁素体。 13、普通铸铁中除铁以外,五大基本元素包括碳、硅、锰、硫、磷,其中碳、硅是最基本的成分,磷、硫是杂质元素,因此加以限制。 14、在铁碳双重相图中,稳定系和亚稳定系的共晶反应温度差别形成了共晶温度间隔,对于Ni、Si、Cr、S这四种元素来说,促进合金液在冷却过程中按稳定系转变的元素有Ni、Si,按亚稳定系转变的元素有Cr、S。 15、Cr元素在铸铁中的作用: (1)反石墨化元素,珠光体稳定元素;

铝合金铸造工艺简介

铝合金铸造工艺简介 一、铸造概论 在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在

铸造合金及熔炼思考题要点

第一篇铸造有色合金及其熔炼思考题及参考答案 1.基本概念:屈服强度、抗拉强度、固溶强化、时效强化 屈服强度就是指金属对起始塑性变形的抗力;抗拉强度是代表最大均匀塑性变形抗力的指标;固溶强化是指形成固溶体使合金强化的方法;时效强化是指通过热处理利用合金的相变产生第二相微粒,造成的强化。 2.金属材料的强化机制主要有哪些,对强度和塑性有什么影响? 晶界强化、固溶强化、分散强化、形变强化、复合强化。形变强化与粒子强化在强度提高时,塑性会显著降低;固溶强化在强度提高时塑性还能保持较好的水平;晶界强化时,细化晶粒提高强度也改善塑性。 3.铸造合金的使用性能有哪些? 机械性能、物理性能和化学性能 4.铸造合金的工艺性能有哪些? 铸造性能、熔炼性能、焊接性能、热处理性能、机加工性能 5.基本概念:变质处理、机械性能的壁厚效应 所谓变质处理是在熔融合金中加入少量的一种或几种元素(或加化合物起作用而得),改变合金的结晶组织,从而改善合金机械性能。这种随铸件壁厚增加而使机械性能下降的现象,称为机械性能的壁厚效应。 6.铝硅合金进行变质处理的原因及方法? 原因:铝硅合金中的硅相在自发非控制生长条件下会长成粗大的片状,这种形态的脆性相严重割裂基体,大大降低合金的强度和塑性,为了改变这种状况,必须进行变质处理。方法:生产上常在合金液中加入氟化纳与氯盐的混合物来进行变质处理,加入微量的纯钠也有同样效果。 7.镁、铜、铁和锰对铝硅合金组织和性能的影响? 1)镁:少量的镁,即能大大提高抗拉和屈服强度,随着镁量增加,强化效果不断增大,强度急剧上升,而塑性下降;2)铜:使铝硅合金强度显著增加,但伸长率下降,提高合金的热强性;3)铁:恶化了合金的机械性能,特别是塑性,

铸造合金及其熔炼复习思考题

铸造合金及其熔炼复习思考题 铸铁及其熔炼 1.什么是Fe-C双重相图,那一个相图是热力学稳定的,如何用双重相图来解释 同一化学成分的铁水在不同的冷却速度下会得到灰口或白口,硅、铬对双重相图共晶临界点各有何影响? 2.什么是碳当量、共晶度,有何意义。 3.分析片状石墨、球状石墨、蠕虫状石墨与奥氏体的共晶结过程和形成条件。 4.铸铁固态相变有那些,对铸铁最终组织有何影响? 5.冷却速度、化学成分(C、Si、Mn、 Cr、Cu等)对铸铁的一次结晶和二次结 晶有何影响? 6.灰铸铁中石墨的分布形态有那几种,对铸铁的性能有何影响,从化学成分、 冷却速度及形核等方面说明其形成条件。 7.灰铸铁的基体和非金属夹杂物有那些类型,对铸铁的性能有何影响? 8.灰口铸铁的性能有何特点?与其组织有何关系?汽车上那些铸件采用灰口铁 生产? 9.影响灰铸组织、性能的因素有那些,根据组织与性能的关系分析提高灰铸铁 性能的途径和措施。 10.灰铸铁孕育处理的目的是什么,有那些作用,孕育铸铁化学成分的选择原则 是什么,提高孕育效果有那些途径和措施? 11.说明球墨铸铁生产的工艺过程,其化学成分选择的原则是什么,与灰口铸铁 有何不同? 12.球墨铸铁的球化剂和球化处理方法有那些? 13.球铁凝固组织中为何易于出现自由渗碳体,如何消除自由渗碳体? 14.根据铸铁组织形成原理分析在铸态下获得高韧性、高强度球墨铸铁的途径与 措施。 15.球墨铸铁比灰口铸铁易出现缩孔、缩松缺陷,分析其原因和防止措施。 16.铸铁的热处理有何特点,生产上球墨铸铁采用那些热处理工艺? 17.蠕墨铸铁有何性能特点? 18.蠕墨铸铁的化学成分选择与灰铁和球铁有何不同,蠕化剂和蠕化处理工艺有 那些? 19.简述可锻铸铁生产工艺过程,化学成分选择原则,为何对于薄壁小件采用可 锻铸铁生产有优越性? 20.减摩铸铁与抗磨铸铁的组织要求有何不同,常用减摩铸铁和抗磨铸铁有那 些? 21.提高铸铁的耐热性能的途径和措施有那些?常用耐热铸铁有那些? 22.提高铸铁的耐蚀性能的途径和措施有那些,硅、铭、铬三元素在耐热铸铁及 耐蚀铸铁中的作用是什么? 23.简述冲天炉的结构与熔炼的一般过程。 24.简述冲天炉内炉气和温度的分布,影响铁液温度的主要因素。 25.冲天炉内铁液成分变化的一般规律?

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺 规范与流程 Revised by Chen Zhen in 2021

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》

铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。

铸造合金熔炼考试题

第一章 1 为什么有双重相图的存在?双重相图的存在对铸铁件生产有何实际意义?硅对双重相图的影响又有何实际意义?答:1>从热力学观点看,在一定条件下,按Fe-Fe3C相图转变亦是有可能的,因此就出现了二重性2>通过双重相同,可以明显的看出稳定平衡在发生共晶转变及共析转变时,其温度要比介稳定平衡发生时的温度高,而发生共晶、共析转变时所需含C量,以及转变后的r中的含碳量,稳定平衡要比介稳定平衡低。依此规律,就可以通过控制温度成分来控制凝固后的铸铁组织。3>硅元素的作用:a:共晶点和共析点含碳量随硅量的增加而减少b:硅的加入使相图上出现了共晶和共析转变的三重共存区c:共晶和共析温度范围改变了,含硅量越高,稳定系的共晶温度高出介稳定系的共晶温度越多d:硅量的增加,缩小了相图上的奥氏体区 2 分析讨论片状石墨、球状石墨、蠕虫状石墨的长大的过程及形成条件。答:片状石墨:按晶体生长理论,石墨的正常生长方式沿基面择优生长,形成片状组织。实际石墨晶体中存在多种缺陷,螺旋位错缺陷能促进片状石墨的形成。螺旋位错为石墨的生长提供a、c两个互相垂直的两种生长方向,当a方向的生长速度大于c方向的生长速度时,便行程片状石墨。球状石墨:石墨晶体中的旋转晶界缺陷可促进球状石墨的形成,此外,在螺旋位错中,当c 向的生长速度大于a向的生长速度时就会形成球状石墨。球状石墨的形成一般先有钙、镁的硫化物及氧化物组成的晶核开始,经球化处理后,还有利于向球状石墨生长。球状石墨的生长有两个必要条件:较大的过冷度和较大的铁液与石墨间的界面张力。蠕虫状石墨:有两种形成过程:1>小球墨→畸变球墨→蠕虫状石墨2>小片状石墨→蠕化元素局部富集→蠕虫状石墨 3 试讨论磷共晶的分类、析出过程以及如何控制磷共晶体的形态(粗细)及数量。答:按照组成不同可将磷共晶分为二元磷共晶及三元磷共晶。磷共晶的形成,是由于磷的偏析造成的,磷属于正偏析元素先析出的部分含P量较少,P不断富集,含量高到一定程度时便形成磷共晶。实践证明:若铸铁的石墨化能力较强或冷却速度较低,就形成稳定系三元磷共晶,形式与二元磷共晶相似,反之则形成亚稳定系三元磷共晶,在灰铸铁中,主要是稳定系元磷共晶。 5 碳当量:根据各元素对共晶点实际碳量的影响,将这些元素的量折算成碳量的增减。(CE=C+1/3(Si+P))共晶度:用铸铁的实际含碳量和共晶点的实际含碳量的比值 6 偏析:合金中各组成元素在结晶时分布不均匀的现象称为偏析。奥氏体直径偏析特点:在初析奥氏体中有硅的富集,猛则较低,而在枝晶间的残存液体中则是碳高、锰高、硅低 分配系数:Kp=元素在奥氏体中的浓度xA/元素在铁液中的平均浓度xI(相间不均)偏析系数:Kl=元素在奥氏体枝晶心部的浓度/元素在奥氏体边缘的浓度(相内不均) 7 共晶团:以每个石墨核心为中心所形成的这样一个石墨-奥氏体两相共生生长的共晶晶粒 8球状石墨的结构特征及形成条件:球状石墨具有多晶体结构,从核心向外辐射状生长,每个放射角皆由垂直于球的径向而呈相互平行的石墨面堆积而成,石墨球就是由大约20~30个这样的锥体状的石墨单晶体组成。条件:铁液凝固时必须有较大的过冷度和较大的铁液与石墨间的界面张力。 第二章 1 灰铸铁的金相组织及性能的特点是什么?答:灰铸铁的金相组织由金属基体和片状石墨组成。金属基体形成有珠光体、铁素体及珠光体加铁素体三种。石墨的形状、大小数量及分布是决定灰铸铁性能的主要因素:1>强度性能较差2>硬度特点,同一强度,硬度有一范围,同一硬度3>较低的缺口敏感性4>良好的减震性5>良好的减摩性6>良好的铸造性7>良好的切削加工型 2 冷却速度是如何对铸铁组织发生影响的?答:冷却速度增加,铁液过冷度增大,共晶反应平台离莱氏体共晶线的距离越来越近,易生成白口,若过冷温度低于莱氏体共晶线的距离越来越近,易生成自由状共晶渗碳体,再考虑偏析因素,凝固后期碳化形成元素富集,莱氏体共晶温度提高,也会增加白口倾向。 3 品质系数:品质系数Qi是成熟度RG与硬化度HG之比。成熟度RG是直径为30mm的试棒测得的抗拉强度与由共晶度算出的抗拉强度之比。在1.15~130为佳,适当过热与孕育处理能提高RG值。若RG<1表明孕育不良,生产水平低,未能发挥材质的潜力。硬化度是测得的硬度与由共晶度算出的硬度之比。HG越低表明灰铁强度高,硬度低,有良好切削性。它为何能衡量铸铁的冶金质量?答:Qi值越高,说明冶金效果越好,在0.7~1.5之间波动,>1为佳。 4 提高灰铸铁性能的主要途径是什么?答:1>合理选定化学成分。2>进行孕育处理。3>低合金化 5 常见气体对铸铁石墨化的影响答:氢:能使石墨形状变得较粗,同时都有强烈稳定渗碳体和阻碍石墨析出的能力。此外,还有形成反白口的倾向。氢量增加时,铸铁的力学性能和铸造性能皆会恶化。氮:阻碍石墨化,稳定渗碳体,促进D型石墨的形成,还能促进形成蠕虫状石墨。氮有稳定珠光体的作用,因而可以提高铸铁的强度。氧:阻碍石墨化,增高白口倾向,含氧增加,铸铁的断面敏感性增大,氧增高时,容易在铸件中产生气孔,增加孕育剂及变质剂的消耗量。 6 孕育处理的目的、孕育效果如何评价答:目的在于,促进石墨化,降低白口倾向,降低断面敏感性,控制石墨形态,消除过冷石墨,适当增高共晶团数和促进细片状珠光体的形成。 第三章 1 分析球墨铸铁比灰铸铁对切口的敏感性较强,而减震性和导热性较差的原因?铸铁的敏感性、减震性、导热性取决于金属基体和石墨的组织形态。灰铸铁内有大量片状石墨,等于在内部存在大量的缺口,因而减少了对外缺口对力学性能敏感性,同样的大量片状石墨割裂了基体,组织了震动的传播,并能转化成热能而发散,因而具有良好的减震性。而球墨铸铁的组织是金属基体和细小圆整的石墨,石墨均与对金属基体没有破坏作用因而比灰铸铁缺口敏感性强减震性差。同理由于石墨的导热性好,灰铸铁大量石墨片状,有利于热的传递,而球墨铸铁圆整球状,没有片状传递好,所以球墨比灰铸铁导热性差。 2球墨铸铁生产时化学成分的选择原则是?他和灰铸铁有何不同?选择既要有利于石墨的球化获得满意的基体,又要使铸铁具有较好的铸造性能,对于灰铸铁在碳当量保持不变的条件下适当提高Si/C比(如由0.5-0.75) 3 球化处理过程中球化元素镁的主要去向哪几个方面?如何提高镁的吸收率?镁的去向-脱硫、去氧——对铁液的球化作用——烧损上浮气化。方法自建压力加镁法、转动包法、镁合金法。 4 试分析奥氏体——贝氏体球墨铸铁的热处理中,变更加热温度和等温淬火温度对生成组织及性能的影响、(1)要想获得贝氏体组织需要对球墨铸铁进行等温淬火处理。低温等温淬火可得下贝氏体,高温等温淬火得奥氏体和上贝氏体组织。(2)奥氏体——贝氏体组织还受等温温度的影响。等温温度高于330~350(一般为350~370)基体组织主要为上贝氏体和奥氏体,强度和硬度有损失,而且耐磨性好,此外等温温度的不同还会使基体中残余奥氏体的数量不同。 5试分析可锻铸铁孕育处理的目的与灰铸铁和球墨铸铁有何不同?灰铸铁的孕育处理的目的;促进石墨化,降低白口倾向,降低断面敏感度,控制石墨形态,消除过冷石墨,适当增高共晶团数和促进细片珠光体的形成。球墨铸铁的孕育目的:消除过冷倾向,促进石墨球化,减小晶间偏析。可锻铸铁的孕育处理目的:希望铁液在一次结晶时促进形成渗碳体组织,而在随后的石墨化退火过程中对石墨的形成没有影响或促进石墨形成。其最大的不同之处是可锻铸铁在第一次结晶时期望得到渗碳体而不是石墨。 6 强韧铸铁?分类?强韧铸铁是球墨铸铁和蠕墨铸铁,可锻铸铁的总称 7球铁的几种组织?生产环节?球铁的正常组织是细小圆整的石墨球加金属基体,在铸态,金属基体通常是铁素体与珠光体的混合组织。生产环节:熔炼合格的铁液、(成分和温度)球化处理、孕育处理、炉前检验,浇注铁件,清理及热处理,铸件质量检验。 8 对球墨铸铁的熔炼要求,常用球化剂,球化处理方法?对熔炼的要求优质的铁液应该是高温,低硫、低磷含量和低的杂质含量(如氧及反球化元素含量)。球化剂我国常用稀土镁合金,国外大都采用镁合金和纯镁球化剂。球化处理方法(1)镁作为球化剂,自建压力加镁法、转动包法、镁合金法(2)稀土镁合金冲入法、型内球化法。 9 生产球墨铸铁为什么要孕育处理?目的消除结晶过冷倾向,促进石墨化,减小晶间偏析 10 球墨铸铁凝固特点1具有较宽的共晶凝固温度范围2糊状凝固特性3较大的共晶膨胀 11 球墨铸铁的常见缺陷?常见缺陷缩孔缩松、夹渣、皮下气孔、石墨漂浮及球化衰退等。 12 球化衰退的主要原因及采取措施原因镁、稀土元素不断由铁液中逃离有关,逃逸通常经过氧化损失,回硫及燃烧损失等等,另外和孕育作用的不断衰退有关。 13 措施1铁液中保持足够的球化元素含量2降低原铁液中的含硫量并防止铁液氧化3缩短铁液经球化处理后的停留时间4铁液经球化处理并扒渣后,为防止镁及稀土元素逃离,可用覆盖剂将铁液表面覆盖隔绝空气以减少逃离。 14 蠕墨铸铁的性能特点及常用于哪里?性能特点1强度性能:蠕墨铸铁的抗拉强度对碳当量变化的敏感性比普通灰铸铁小得多,2韧性及伸长率:蠕墨铸铁的冲击韧性及伸长率均较球墨铸铁低而高于灰铸铁,蠕化率低或基体中铁素体含量高,则韧性及伸长率高,3导热性蠕墨铸铁的导热性主要取决于石墨的形状,当蠕化率高时导热性基本与灰铸铁相当,当较低时又接近于球墨铸铁。4铸造性能具有良好的流动性。应用1由于强度高对断面的敏感性小,铸造性能好因而可用来制造复杂的大型零件如变速箱箱体2由于蠕墨铸铁具有较高的力学性能还具有良好的导热性,因而常用来制造在热交换以及有较大温度梯度下工作的零件如汽车制动盘。 15 可锻铸铁的分类,可锻铸铁的成分选择原理。分类铁素体可锻铸铁,珠光体可锻铸铁,白心可锻铸铁。化学成分决定可锻铸铁力学性能和热处理时间的主要因素。选定原理1)在保证铸件整个断面上在铸态时能得到全白口,没有麻点否则会明显降低力学性能。2)石墨化过程要快,以保证在尽可能短的时间内完成石墨化退火,缩短生产周期3)有利于提高力学性能保证得到优质产品。4)在保证力学性能的前提下,具有较好的铸造性能,以利于得到健全铸件。

(工艺流程)铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔 炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制 品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体

2013-2014-(1)铸造合金及其熔炼试题与答案

成都理工大学2013-2014学年 第一学期《铸造合金及其熔炼》试卷答案(A) 一、名词解释 1)HT200 是指抗拉强度不低于200Mpa的灰口铸铁; 2)QT500-7是指抗拉强度不小于500MPa,伸长率不小于7的球墨铸铁。 3)ZL201:铸造铝铜合金ZAlCu5Mn,是重要的耐热高强度铸铝合金,成份Cu 4.5~5.3%,Mn 0.6%~1.0%,Ti 0.15~0.35%,其余为Al。 4)孕育处理:铸铁铁液在浇注前,在一定的温度和成分下,加入一定量的孕育剂如硅铁等,改变铁液的凝固过程,改善铸态组织,从而达到提高铸件性能为目的的处理方法,谓之孕育处理。 5)球化处理:向铁水中加入稀土镁合金(球化剂)。(其中镁是具有很强球化能力的元素)。球化剂的作用是使石墨呈球状析出。我国应用最广的球化剂是稀土镁合金。 6)铝合金的吸附精炼:是指在铝合金熔炼时通入不溶气体或加入精炼剂产生不溶于铝液的气体,在上浮的过程中吸附氧化夹杂,同时清除氧化夹杂及其表面依附的H2,达到净化铝液的方法。(3分) 7)水韧处理:高锰钢的含碳量一般在0.9~1.4%,属于高碳钢,铸态组织为奥氏体和碳化物以及少量的珠光体组成,为了消除碳化物,铸件加热至奥氏体化温度,保温至组织全部奥氏体化后,淬火得到单一的奥氏体组织,从而提高铸件的韧性,这一处理成为水韧处理。 8)时效强化(沉淀强化):时效处理,又称低温回火。时效强化是指在网溶度随温庋降低而减少的合金系中,当合金元素含量超过一定限量后,淬火可获得过饱和固溶体。在较低的温度加热(时效),过饱和固溶体将发生分解并析出弥散相,引起合金强度、硬度升高而塑性下降的过程。它也被称为沉淀强化。 9)T4 固溶处理:将铸件加热至固相线附近,使强化相溶入α(Al)中,在淬入冷却介质中获得过饱和的α(Al)固溶体,提高铸件的强度和塑性的一种热处理工艺。 10)吹氩精炼:利用氩是惰性气体,既不溶于钢液中,又不合钢液中的元素反应,因此向钢包内的钢液中吹氩,氩气泡在缓慢上升过程中吸附非金属夹杂和溶解在钢液中的气体,达到净化作用;同时由于氩气泡内CO的分压力为0,因此[C]和[O]在氩气泡和钢液界面上发生反应形成CO进入氩气泡,从而达到脱氧的目的。 二、填空(20分) 1、石墨形态的不同,铸铁分为灰口铸铁;球墨铸铁;蠕墨铸铁。 2、球状石墨形成的两个必要条件:铁液凝固时必须有较大的过冷度;铁液与石墨间较大的表面张力。 3、不锈钢中铬的主要作用,其作用包括:(1)在铸件表面形成致密的氧化膜;(2)提高铁素体的电极电位。 4、铸钢件断面典型的晶粒分布如图所示,包括三个区域:1—表面细晶区;2—柱状晶区;3—中间等轴晶区。 5、碳钢铸件热处理的目的是细化晶粒,消除魏氏体(或网状组织)和消除铸造应力。热处理方法有退火、正火或正火加回火。 6、铝合金的变质处理包括三类:(1)α(Al)的晶粒细化处理;(2)初晶Si的细化处理; (3)共晶硅的变质处理。(3分) 7、铸造黄铜是以Zn为主加元素的铜合金,铸造性能好表现在:(1)结晶温度范围小,充型能力强;(2)锌的沸点低,有自发除气作用。 8、木炭是熔炼铜合金时应用的覆盖剂,主要作用是防氧化、脱氧和保温。 三、简答(40) 1、影响铸铁石墨化程度的主要因索? 答:(1)、化学成分 1)碳和硅:碳是形成石墨的元素,也是促进石墨化的元素。含碳愈高,析出的石墨愈多、石墨片愈粗大。硅是强

合金熔炼知识点总结

合金熔炼知识点总结 1.铸造性能:流动性,充型能力,收缩性,偏析。气体及夹杂物等 2.合金的流动性与充型能力的区别 1)充型能力是液态金属充满型腔获得形状完整,轮廓清晰铸件的能力 流动性是指液态铸造合金本身的流动能力。 2)流动性好的合金,其充型能力强 3)流动性影响因素:合金的种类,化学成分及结晶特点 3.收缩性:铸造合金从液态冷却到室温的过程中,其体积和尺寸缩减的现象称为收缩性。1)收缩的三个阶段;液态收缩阶段,凝固收缩阶段,固态收缩阶段。 2)收缩方法:体收缩,线收缩 3)影响收缩的因素:化学成分,浇注温度,铸件结构与铸型条件 4)收缩对铸件质量的影响:产生缩松和缩孔[主要原因是液态收缩和凝固收缩] 防治措施:调整化学成分,降低浇注温度和减少浇注速度,增加补缩能力,增加铸型激冷能力。 6.铸造应力:铸件在凝固冷却的过程中因温度的下降而产生收缩使铸件和长度发生变化,若这些变化受到阻碍便会在铸件中产生应力称为铸造应力。 1)铸造应力按其产生的原因可分为三种:热应力,固态相变应力,收缩应力 2))铸造应力的防止和消除措施:采用同时凝固的原则提高铸型温度改善铸型和型芯的退让性进行去应力退火 7.铸铁:铸铁是一系列主要由铁、碳和硅组成的合金的总称[铁,碳,硅,锰,磷,硫及其其他合金元素] 1)铸铁中的碳以化合态渗碳体和游离态石墨形式存在

2).影响铸铁组织和性能的因素: a.碳和硅[铸铁中碳、硅含量均高时,析出的石墨就愈多、愈粗大] b.硫[强烈阻碍石墨化,增加热脆性,恶化铸铁铸造性能硫含量限制在0.1-0.15%以下] c.锰[弱阻碍石墨化,具有提高铸铁强度和硬度的作用锰含量控制在0.6~1.2%之间] d.磷[对铸铁的石墨化影响不显著。含磷过高将增加铸铁的冷脆性磷含量限制在0.5%以下] 8.铸铁分类: 1)按碳存在形式分:白口铸铁,灰口铸铁,麻口铸铁 2)按石墨存在形式分:灰铸铁,可锻铸铁,球墨铸铁,蠕墨铸铁 3)按化学成分分:普通铸铁,合金铸铁 4)按性能分:耐热铸铁,耐磨铸铁,耐腐蚀铸铁 9.灰铸铁(HT):指碳主要以片状石墨形式出现的铸铁,断口呈灰色。它是工业中应用最广的铸铁。 1)灰口铸铁的组织:铁素体+片状石墨铁素体.珠光体+片状石墨珠光体+片状石墨2)灰铸铁的性能特点:抗拉强度,塑性韧性均不如钢属于脆性材料; 铸造性能较好; 具有良好的减振性; 耐磨性好缺口敏感性低. 3)灰铸铁的孕育处理目的:消除白口、细化组织,改善石墨形态,提高组织均匀性 4)灰铸铁孕育处理工艺过程:在浇注前往铁水中加入硅铁(FeSi75)和硅钙合金。等孕育剂,使铁水产生大量均匀分布晶核,使石墨片及基体组织得到细化 5)灰铸铁孕育剂:硅铁(FeSi75)和硅钙合金。 6)孕育铸铁特点:强度和韧性优于普通灰铸铁组织较均匀,性能基本一致 9)灰铸铁炉前检验方法:试样冷却至暗红色(600-700度)淬水打断测量试样白口宽度,观察截面组织。[白口宽度大,碳当量低,断口发暗,硅量低,发亮则硅量合适,发黑,则

铸造铝合金熔炼工艺

铸造铝合金熔炼工艺 1工艺适用范围本熔炼工艺适用于砂型和金属型铸造ZL101A 合金的熔炼,可针对于重力铸造、低压铸造、倾转浇注、调压铸造等成型工艺使用。 本工艺可作为ZL101A 合金熔炼的母工艺,针对某一特定的成型工艺,如需特殊指出,可在此工艺基础上形成相应熔炼工艺,但不允许与母工艺相互冲突。 2工艺文件的抄报与保存工艺文件抄报、抄送范围:总师、副总师、技术部、质量部。工艺文件保存范围:电子文件备份和纸质文件送档案室保存,技术部、质量部各存一份使用文件。 3工艺详细内容 3.1熔炼设备、工具的选择及对后续熔炼质量的影响 3.1.1铝合金料熔化设备规定使用熔炼设备范围为:坩埚电阻炉,燃气连续熔化炉。对于金属型铸造可采用两种熔炼设备,使用燃气连续熔化炉熔化铝液,然后转包到坩埚电阻炉进行后续处理(精炼及变质);也可使用坩埚电阻炉熔化铝液及进行后续处理(精炼及变质)。 如采用金属型低压铸造、调压铸造成型工艺,可使用侧面开口注入铝液的机下炉进行连续生产。 采用坩埚电阻炉熔化铝液,铝液温度控制750℃以下,熔化过程的铝液吸气较少;采用燃气连续熔化炉熔化铝液,铝液温度控制容易超750℃,熔化过程的铝液吸气倾向较大。

3.1.2熔炼工具的选择及准备 熔炼前熔炼工具的准备对铝液熔炼质量影响较大,坩埚采用石墨及SiC 材质,使用前需进行预热烘干,烘干工艺如图1;如采用金属材质坩埚,最好选用不锈钢材质,如选用铸铁材质坩埚,以合金球墨铸铁为好。常用的浇包、浇勺等多采用不锈钢制作。 及工具进行喷砂处理,去除表面的铁锈及污物,然后预热到120~180 ℃,逐层喷涂,浇包、浇勺的涂料厚度0.3~0.8mm 为宜,坩埚涂料可稍厚一些。涂料最好选用专用的金属型非水基涂料,也可自行配制,基本配方如表1 所示,使用前涂料需预热到50~90 ℃。 表1 涂料配方 3.1.3炉料的存放与处理, 熔炼所使用的炉料需存放在干燥、不易混淆和污染的地方,铝

铸造合金及其熔炼复习总结1

1、计算下列灰铸铁的碳当量及共晶度,并简述各铸铁的一次结晶过程。 (1)C:3.1%;Si:1.6%;Mn:0.6%;P:0.08%;S:0.08%; (2)C:3.6%;Si:2.6%;Mn:0.5%;P:0.06%;S:0.08%; 碳当量:将元素对共晶点实际碳量的影响折算成碳量的增减称为碳当量。 CE=C+1/3(Si+P) 共晶成分=4.26% 过共晶>4.26% 亚共晶<4.26% 共晶度:铸铁的实际含碳量和共晶点的实际含碳量比值,表示铸铁偏离共晶点的程度。 S c=C铁/[4.26%-1/3(Si+P)] 过共晶>1 共晶=1 亚共晶<1 答:(1)碳当量CE=C+1/3(Si+P)=3.2%+1/3(1.5%+0.08%)=3.73% 共晶度S c=C铁/[4.26%-1/3(Si+P)]=3.2%/[4.26%-1/3(1.5%+0.08%)]=0.86 CE<4.26%为亚共晶成分,其一次结晶过程为:铁液冷却时,先遇到液相线,在一定的过冷下析出初析奥氏体并逐渐长大,当进入共晶阶段后,开始形成共晶团。 (2)碳当量CE=C+1/3(Si+P)=3.6%+1/3(2.7%+0.06%)=4.52% 共晶度S c=C铁/[4.26%-1/3(Si+P)]=3.6%/[4.26%-1/3(2.7%+0.06%)]=1.08 CE>4.26%为过共晶成分,其一次结晶过程为:铁液冷却时,先遇到液相线,在一定的过冷下析出初析石墨的晶核,并在铁液中逐渐长大,当进入共晶阶段后,开始形成共晶团。 2、试分析为什么灰铸铁一般不能通过热处理提高其性能,而球墨铸铁可以通过热处理来提高其性能。 答:在灰铁件的生产中,之所以不能通过热处理大幅度提高其性能,其主要原因是由于灰铸铁的组织是有片状石墨和基体组成,并且片状石墨的数量、分布、状态和尺寸大小对灰铸铁和性能影响极大,对其性能起着关键的作用。而热处理只能改变基体,基本不能改变片状石墨的数量、分布、形态和大小,因此在灰铸铁的生产中难以通过热处理大幅度改善和提高其力学性能。 而球墨铸铁中石墨呈球状,对基体的切割和缩减作用大大降低。基体的机械性能对球墨铸铁的性能起决定性作用。通过热处理可以改善其基体组织,从而提高机械性能。因此在球墨铸铁的生产中可以通过热处理来提高其力学性能。 3、简述其碳当量、冷却速度对灰铸铁组织和性能的影响。 答:当冷却速度一定时,碳当量越大,析出的铁素体越少,石墨越多,粗大,并且分布不均匀;灰铸铁的强度、硬度减小,塑性、韧性增大。碳当量越小,则反之。当碳当量一定时,随着冷却速度的增加,铁液的过冷度增大,灰铸铁的白口倾向越来越大,析出的铁素体增加,石墨减少,但石墨数量多,细小,并且分布均匀,灰铸铁的硬度、强度增大,塑性、韧性下降。随着冷却速度的减小,则反之。 4、简述灰铸铁与球墨铸铁在化学成分、金相组织及力学性能方面的主要差别。 答:灰铸铁和球墨铸铁在化学成分方面的差别是:灰铸铁碳量、硅量偏低,锰量、硫量、磷量偏高,而球墨铸铁碳量、硅量偏高,锰量、硫量、磷量较低,并含镁和稀土球化元素;二者在组织上的差别是:灰铸铁金相组织:片状石墨+珠光体+少量铁素体+极少量磷共晶和渗碳体,球墨铸铁的金相组织:球状石墨+基体(珠光体+铁素体)+极少量渗碳体(或没有);二者在性能上的差别:灰铸铁强度低(σb=100~400MPa),且是脆性性材料。球墨铸铁强度较高(σb=400~800MPa),且具有良好的塑性、韧性(延伸率=2~20%),依据不同比例的基体种类,可实现强度和塑、韧性的匹配。 5、分析在球墨铸铁生产中,为什么必须进行孕育处理。(简述球墨铸铁孕育处理的作用或目的) 答:1)消除结晶过冷倾向,球墨铸铁加入了Mg,RE等球化剂,共晶转变温度降低,结晶过冷倾向大,易形成白口组织。孕育处理可以消除结晶过冷倾向,避免按介稳定系凝固。 2)促进石墨化,球铁铁液经球化净化了体系,形核率降低。加入孕育剂,增加了石墨核心,细化球状石墨,提高球状石墨生长的稳定性,提高了石墨球的圆整度。 3)减小晶间偏析,球铁共晶团生长过程中,结晶前沿富集了正偏析元素,并产生脆性相,降低了铸铁的塑韧性,孕育处理能够使共晶团细化,减小晶间偏析,提高铸铁的塑性和韧性。 6、为什么铸态球墨铸铁组织中易出现少量渗碳体?如何避免和消除? 答:球墨铸铁铁液的结晶过冷倾向较灰铸铁大,并且球墨铸铁的结晶过冷倾向不随铁液硅含量的高低而变化,因此尽管球墨铸铁的碳硅含量比一般灰铸铁高,但人有较大的白口倾向,在球墨铸铁组织中常发现在共晶团边界上有少量渗碳体析出。若冷却较快,会形成局部或全部白口组织。所以在球化处理后,必须进行有效的孕育处理,以消除过冷倾向,避免铁液按介稳定系凝固。

铝合金熔炼与铸造工艺规范与流程

铝合金熔炼与铸造工艺规范与流程 资料来源:全球铝业网铝业知识频道一、铝合金熔炼规范 (1)总则 ①按本文件生产的铸件,其化学成分和力学性能应符合GB/T 9438-1999《铝合金铸件》、JISH 5202-1999《铝合金铸件》、ASTM B 108-03a《铝合金金属型铸件》、GB/T 15115-1994《压铸铝合金》、JISH 5302-2006《铝合金压铸件》、ASTM B 85-03《铝合金压铸件》、EN1706-1998《铸造铝合金》等标准的规定。 ②本文件所指的铝合金熔炼,系在电阻炉、感应炉及煤气(天然气)炉内进行。一般采取石墨坩埚或铸铁坩埚。铸铁坩埚须进行液体渗铝。 (2)配料及炉料 1)配料计算 ①镁的配料计算量:用氯盐精炼时,应取上限,用无公害精炼剂精炼时,可适当减少;也可根据实际情况调整加镁量。 ②铝合金压铸时,为了减少压铸时粘模现象,允许适当提高铁含量,但不得超过有关标准的规定。 2)金属材料及回炉料 ①新金属材料 铝锭:GB/T 1196-2002《重熔用铝锭》 铝硅合金锭:GB/T 8734-2000《铸造铝硅合金锭》 镁锭: GB 3499-1983《镁锭》 铝铜中间合金:YS/T 282-2000《铝中间合金锭》 铝锰中间合金:YS/T 282-2000《铝中间合金锭》 各牌号的预制合金锭:GB/T 8733-2000《铸造铝合金锭》、JISH 2117-1984《铸件用再生铝合金锭》、ASTM B 197-03《铸造铝合金锭》、JISH 2118-2000《压铸铝合金锭》、EN1676-1996《铸造铝合金锭》等。 ②回炉料 包括化学成分明确的废铸件、浇冒口和坩埚底剩料,以及溢流槽和飞边等破碎的重熔锭。 回炉料的用量一般不超过80%,其中破碎重熔料不超过30%;对于不重要的铸件可全部使用回炉料;对于有特殊要求(气密性等)的铸件回炉料用量不超过50% 。 3)清除污物 为提高产品质量,必须清除炉料表面的脏物、油污、废铸件上的镶嵌件,应在熔炼前除去(可用一个熔炼炉专门去除镶嵌件)。 4)炉料预热 预热一般为350~450℃下保温2~4h。Zn、Mg、RE在200~250℃下保温2~4h。在保证坩埚涂料完整和充分预热的情况下,除Zn、Mg、Sr、Cd及RE等易燃材料外的炉料允许随炉预热。 (3)精炼剂准备 ①铝合金的精炼一般采用六氯乙烷、DSG铝合金除渣除气剂、铝精炼剂ZS-AJ 01C等精炼剂。 ②六氯乙烷使用前,置于熔炉旁预热。

铸造合金原理及熔炼

铸造合金原理及熔炼 一、名词解释 l.铸铁:的铁碳合金。 2.白口铸铁:少数C固溶于铁素体,其他以碳化物存在。 3.灰口铸铁:c主要结晶成石墨,并呈片状形式存在于铸铁中,断口为暗灰色。 4.球墨铸铁:铁水在浇注前经球化和孕育处理,C主要以球状形式存在于铸铁中。 5.球化处理:向铁水中加入稀土镁合金(球化剂)。(其中镁是具有很强球化能力的元素)。球化剂的作用是使石墨呈球状析出。我国应用最广的球化剂是稀土镁合金。 6.孕育处理:向铁水中加入硅铁合金(孕育剂)颗粒。孕育剂的作用是促进铸铁石墨化,防止产生白口,细化石墨。常用的孕育剂为硅的质量分数75%硅铁。 7.蠕墨铸铁;是液态铁水经蠕化处理和孕育处理得到的.由金属基体和蠕虫状石墨构成。 8.可锻铸铁:是由白口铁经过退火而制得的一种高强度铸铁,白口铸铁中的渗碳体分解成团絮状石墨的灰口铸铁,性能优于灰铸铁,耐磨性和减震性优于普通碳索钢,可部分代替碳钢,合金钢和有色金属。 9.奥氏体(A或γ):碳溶于γ-Fe中所形成的间隙固溶体。晶格结构:面心立方晶格fcc。 10.铁素体(F或α):碳溶于α-Fe中所形成的间隙固溶体,晶格结构:体心立方晶格bcc。 11.δ-铁素体:碳溶于δ-Fe中所形成的间隙固溶体。 12.碳当量定义:将合金元素对共晶点碳量的影响折算成铸铁碳量的增减,折算后的值称之为碳当量,以CE表示。碳当量:CE=C+1/3(Si+p) 13.共晶度:铁液实际含碳量和共晶点的实际碳量的比值为共晶度,以sc表示。共晶度:Sc=C/[%-(Si+p)l/3l 14.钢的腐蚀金属表面在周围介质的作用下逐渐被破坏的现象称为金属的腐蚀。 15.化学腐蚀是指金属表面与周围介质发生化学反应而引起的破坏,如高温下金属的氧化等。 16.电化学腐蚀是指金属与电解质溶液发生电化学作用而使金属破坏的现象。 17.耐热钢是指在高温下对氧化性气体具有抗氧化性的钢种。 18.黑色金属:在工业生产中,通常把铁及其合金称为黑色金属。 19.有色金属:把其他非铁金属及其合金称为有色金属。 20.固溶强化:通过合金元素固溶于金属基体中,使晶格发生畸变,从而使塑性变形的抗力增加,合金强度和硬度提高的过程叫做固溶强化。 21.时效强化(沉淀强化):时效处理,又称低温回火。时效强化是指在网溶度随温庋降低而减少的合金系中,当合金元素含量超过一定限量后,淬火可获得过饱和固溶体。在较低的温度加热(时效),过饱和固溶体将发生分解并析出弥散相,引起合金强度、硬度升高而塑性下降的过程。它也被称为沉淀强化。 22.自然时效是指时效强化在室温下进行的时效,通常需要较长的时间。 23.人工时效又分为不完全人工时效、完全人工时效和过时效3种。 24.过剩相强化:当过量的合金元素加人到基体中时,一部分溶人固溶体,而超过极限溶解度的部分则不能溶入,形成过剩的第二相,如铝硅合金中的硅相。过剩相强化主要利用较硬的过剩相来阻碍基体的变形,从而使合金强化,与时效强化有相似之处。 25.变质处理:铸造合金的组织细化亦常称为变质处理 26.淬火:工艺是将工件加热到足够高的温度,并保温足够长的时间,使强化相充分溶人固溶体,随后快速冷却(淬人水中或油中)的过程。 27.时效:当铝合金通过高温下淬火形成过饱和固溶体后,再在一定温度下保温(或室温长时间放置)而使其强度、硬

相关主题
文本预览
相关文档 最新文档