当前位置:文档之家› 智能系统基本概论

智能系统基本概论

智能系统基本概论
智能系统基本概论

智能系统

智能系统(Intelligence system)是指能产生人类智能行为的计算机系统。智能系统不仅可自组织性与自适应性地在传统的诺依曼的计算机上运行,而且也可自组织性与自适应性地在新一代的非诺依曼结构的计算机上运行。“智能”的含义很广,其本质有待进一步探索,因而,对:“智能”这一词也难于给出一个完整确切的定义,但一般可作这样的表述:智能是人类大脑的较高级活动的体现,它至少应具备自动地获取和应用知识的能力、思维与推理的能力、问题求解的能力和自动学习的能力。

主要特征:

处理对象

智能系统处理的对象,不仅有数据,而且还有知识。表示、获取、存取和处理知识的能力是智能系统与传统系统的主要区别之一。因此,一个智能系统也是一个基于知识处理的系统,它需要如下设施:知识表示语言;知识组织工具;建立、维护与查询知识库的方法与环境;支持现存知识的重用。

处理结果

智能系统往往采用人工智能的问题求解模式来获得结果。它与传统的系统所采用的求解模式相比,有三个明显特征,即其问题求解算法往往是非确定型的或称启发式的;其问题求解在很大程度上依赖知识;智能系统的问题往往具有指数型的计算复杂性。智能系统通常采用的问题求解方法大致分为搜索、推理和规划三类。

智能与传统的区别

智能系统与传统系统的又一个重要区别在于:智能系统具有现场感应(环境适应) 的能力。所谓现场感应指它可能与所处的现实世界的抽象——现场——进行交往,并适应这种现场。这种交往包括感知、学习、推理、判断并做出相应的动作。这也就是通常人们所说的自动组织性与自动适应性。

类型:

操作系统

也称基于知识操作系统。是支持计算机特别是新一代计算机的一类新一代操作系统。它负责管理上述计算机的资源,向用户提供友善接口,并有效地控制基于知识处理和并行处理的程序的运行。因此,它是实现上述计算机并付诸应用的关键技术之一。

智能操作系统将通过集成操作系统和人工智能与认知科学而进行研究。其主要研究内容有:操作系统结构;智能化资源调度;智能化人机接口;支持分布并行处理机制;支持知识处理机制;支持多介质处理机制。

语言系统

为了开展人工智能和认知科学的研究,要求有一种程序设计语言,它允许在存储器中储存并处理一些复杂的、无规则的、经常变化的和无法预测的结构,这种语言即后来被称为的人工智能程序设计语言。人工智能程序设计语言及其相应的编译程序(解释程序)所

计支持数据处理采用的固定式算法所具有的明确计算步骤和精确求解知识相比,人工智能

程序设计语言的特点是:支持符号处理,采用启发式搜索,包括不确定的计算步骤和不

确定的求解知识。实用的人工智能程序设计语言包括函数式语言(如Lisp),逻辑式语言(如Prolog)和知识工程语言(Ops5),其中最广泛采用的是Lisp和Prolog及其变形。

Lisp语言适合于符号处理,它处理的唯一对象是符号表达式(又称S-表达式)。所

有的程序与数据均由S-表达式构成,采用的主要控制结构是递归。Prolog语言以一阶谓词

演算为其理论基础。它的数据结构是项,所有的程序和数据均由项组成,也采用递归为其

主要控制结构。此外,Prolog能自动实现模式匹配和回溯。

支撑环境

又称基于知识的软件工程辅助系统。它利用与软件工程领域密切相关的大量专门知识,对一些困难、复杂的软件开发与维护活动提供具有软件工程专家水平的意见和建议。

智能软件工程支撑环境具有如下主要功能:支持软件系统的整个生命周期;支持软件产品

生产的各项活动;作为软件工程代理;作为公共的环境知识库和信息库设施;从不同项目

中总结和学习其中经验教训,并把它应用于其后的各项软件生产活动。

专家系统

专家系统是一类在有限但困难的现实世界领域帮助人类专家进行问题求解的计算机软件,其中具有智能的专家系统称为智能专家系统。它有如下基本特征:不仅在基于计算

的任务,如数值计算或信息检索方面提供帮助,而且也可在要求推理的任务方面提供帮助。这种领域必须是人类专家才能解决问题的领域;其推理是在人类专家的推理之后模型化的;不仅有处理领域的表示,而且也保持自身的表示、内部结构和功能的表示;采用有限的自

然语言交往的接口使得人类专家可直接使用;具有学习功能。

应用系统

指利用人工智能技术或知识工程技术于某个应用领域而开发的应用系统。显然,随着

人工智能或知识工程的进展,这类系统也不断增加。智能应用系统是人工智能的主要进展

之一。

实现原理:

操作系统

也称基于知识操作系统。是支持计算机特别是新一代计算机的一类新一代操作系统。

它负责管理上述计算机的资源,向用户提供友善接口,并有效地控制基于知识处理和并行

处理的程序的运行。因此,它是实现上述计算机并付诸应用的关键技术之一。

智能操作系统将通过集成操作系统和人工智能与认知科学而进行研究。其主要研究内

容有:操作系统结构;智能化资源调度;智能化人机接口;支持分布并行处理机制;支持

知识处理机制;支持多介质处理机制。

语言系统

为了开展人工智能和认知科学的研究,要求有一种程序设计语言,它允许在存储器中

储存并处理一些复杂的、无规则的、经常变化的和无法预测的结构,这种语言即后来被称

为的人工智能程序设计语言。人工智能程序设计语言及其相应的编译程序(解释程序)所

计支持数据处理采用的固定式算法所具有的明确计算步骤和精确求解知识相比,人工智能

程序设计语言的特点是:支持符号处理,采用启发式搜索,包括不确定的计算步骤和不

确定的求解知识。实用的人工智能程序设计语言包括函数式语言(如Lisp),逻辑式语言(如Prolog)和知识工程语言(Ops5),其中最广泛采用的是Lisp和Prolog及其变形。

Lisp语言适合于符号处理,它处理的唯一对象是符号表达式(又称S-表达式)。所

有的程序与数据均由S-表达式构成,采用的主要控制结构是递归。Prolog语言以一阶谓词

演算为其理论基础。它的数据结构是项,所有的程序和数据均由项组成,也采用递归为其

主要控制结构。此外,Prolog能自动实现模式匹配和回溯。

支撑环境

又称基于知识的软件工程辅助系统。它利用与软件工程领域密切相关的大量专门知识,对一些困难、复杂的软件开发与维护活动提供具有软件工程专家水平的意见和建议。

智能软件工程支撑环境具有如下主要功能:支持软件系统的整个生命周期;支持软件产品

生产的各项活动;作为软件工程代理;作为公共的环境知识库和信息库设施;从不同项目

中总结和学习其中经验教训,并把它应用于其后的各项软件生产活动。

专家系统

专家系统是一类在有限但困难的现实世界领域帮助人类专家进行问题求解的计算机软件,其中具有智能的专家系统称为智能专家系统。它有如下基本特征:不仅在基于计算

的任务,如数值计算或信息检索方面提供帮助,而且也可在要求推理的任务方面提供帮助。这种领域必须是人类专家才能解决问题的领域;其推理是在人类专家的推理之后模型化的;不仅有处理领域的表示,而且也保持自身的表示、内部结构和功能的表示;采用有限的自

然语言交往的接口使得人类专家可直接使用;具有学习功能。

应用系统

指利用人工智能技术或知识工程技术于某个应用领域而开发的应用系统。显然,随着

人工智能或知识工程的进展,这类系统也不断增加。智能应用系统是人工智能的主要进展

之一。

智能运输系统概论

ITS智能运输系统:通过关键基础理论模型的研究,从而将信息技术、通信技术、电子控制技术和系统集成技术等有效的应用于交通运输系统,从而建立起大范围内发挥作用的实时、准确、高效的交通运输管理系统。 特点属性:先进性、综合性、信息化、智能化。 意义和作用:对传统交通运输系统的一种革命,充分发挥现有交通基础设施的潜力,提高运输效率,保障交通安全,缓解交通拥挤的有力措施。 智能运输系统是一个庞大的系统,系统建设涉及众多部门与领域,管理体制、信息沟通能力、考虑问题角度等均会对系统建设与运行产生巨大的影响。智能运输系统包括多个子系统,子系统之间相互联系紧密。正是因为系统庞大,其建设是逐步完成的,有时会不断建设与整体协调。 1以监控为主体的交通工程系统 --交通工程基本设施、传感器、电子设备、数据采集 2初级智能交通系统 --计算机、信息技术、地理信息处理 3模型化智能交通系统 --系统辨识、模式识别 4高级智能交通系统 --人工智能 VICS道路交通信息通信系统(日本出行者信息系统的核心) SOCRA TES交通效率与安全蜂窝式通信系统(DRIVE项目的核心,欧洲) EURO SCOUT以红外信标为媒体的动态路线引导系统(车载装置由导航装置、红外线收发信号机、车辆位置测定装置及显示器、键盘等组成) 研究方法:面向过程。 开发过程:1确定用户服务内容2建立逻辑框架3建立物理框架4明确标准化内容。 服务领域:交通管理与规划、电子收费、出行者信息、车辆安全和辅助驾驶、紧急事件和安全、运营管理、综合运输、自动公路。 意义:智能运输系统体系框架是运输系统体系和规格的说明,他决定系统如何构成,确定功能模块以及允许模块间进行通信和协同的协议和接口。 组成:用户主体、服务主体、用户服务(是框架基础)、逻辑框架、物理框架、(ITS标准、ITS评价) 逻辑框架:对系统功能的一种分类,四个层次:功能域,基本上和服务域等同;系统功能,基本上和服务等同,但进行了功能的重新整合;过程,基本上与子服务相同;子过程,基本的逻辑单元。最主要的内容就是描述系统功能和系统功能之间的数据流。 物理框架:是逻辑框架的具体实现,他是由一些系统和子系统连接构成的。系统和子系统基

多智能体技术

多智能体技术 [摘要]当今,分布式人工智能研究的一个热点是多智能体系统,它是分布式问题求解的进一步发展。随着多智能体理论与技术的发展,其应用范围也在不断扩大着,但是由于其理论与应用研究刚起步不久,还有不少问题有待解决。本论文回顾了多智能体技术的发展历史,指出了多智能体理论及应用的研究方向,介绍了多智能体技术的基本概念和特点,多智能体系统的体系结构,多智能体中的协调与协作方法等内容。 [关键词]多智能体系统;多智能体结构;多目标优化;协调协作 Multi-agent technology [Abstract] Nowadays, one of the hot points in distributed artificial intelligence research is multi-agent system, which is the further development in distributed problem solving. With the development of multi-agent theory and technology, its application is being expanded.As the theory and application is just starting, there are many issues to be resolved.In this paper, the thesis reviews the development of EGCS, points out the research directions of multi-agent theory and application, and introduces the basic concepts and characteristics, Multi-agent system architecture,the coordination and collaboration on Multi-agent system. [Keywords] Multi-agent systems;Multi-agent architecture;Multi-objective optimization;Coordination and collaboration 1.前言 目前的工业系统正向大型、复杂、动态和开放的方向转变,传统的工业系统和多机器人技术在许多关键问题上遇到了严重的挑战。分布式人工智能 (DAI,Distributed Artificial Intelligence)与多智能体系统(MAS, Multi-Agent System)理论为解决这些挑战提供了一种最佳途径。智能体系统是分布式人工智能的一个重要分支,是20世纪末至21世纪初国际上人工智能的前沿学科。研究的目的在于解决大型、复杂的现实问题,而解决这类问题已超出了单个智能体的能力,将DAT、MAS充分应用于工业系统和多机器人系统的结果,便产生了一门新兴的机器人技术领域一多智能体机器人系统(MARS,MultiAgent Robot System)。总的来说,多智能体系统领域正在蓬勃发展。 2.多智能体 2.1多智能体理论的发展历史 智能体—Agent的概念最早可以追溯到1977年的 Carl Hewitt的“Viewing Control Structure as Patterns of Passing Messages”一文。在此文中,Carl Hewitt 给出了一个称为“Actor”的对象,它具有自身的内在状态,又能与其他同类对象发送和反馈信息。而正式采用“Agent”一词可见于M. Minsky于1986年出版的“Society of Mind”一书,文中用“Agent”称呼一些具有特别技能的个体,它们存在于社会中,并通过竞争或协商求解矛盾[1]。 多智能体系统(简称 MAS)是由多个单Agent组成的集合,该系统可以协调一组Agent的行为(知识、目标、方法和规划),以协同完成一个任务或是求解问题,各个单

公共建筑智能化系统构成

公共建筑智能化系统构成 公共建筑大厦内智能化系统的各子系统组成分为五大智能化系统【通信网络系统(CAS)、办公自动化系统(OAS)、建筑设备自动化系统(BAS)、保安自动化系统(SAS)、火灾自动报警控制系统(FAS)】做相应简述: 1 通信网络系统(CAS) 它是楼内的语音、数据、图像传输的基础,同时与外部通信网络(如公用电话网、综合业务数字网、计算机互联网、数字通信网及卫星通信网等)相联,确保信息相通。主要包括: 1.1 电话通信系统 建筑或建筑群的固定电话通信系统应根据建筑物的用途、规模、使用属性以及公用网的具体情况,可选择接入远端模块局或采用虚拟交换、自设独立的数字程控用户交换机(PABX)或综合业务程控用户交换机(ISPBX),并应与公用电话交换网连接。 1.2 计算机网络系统 智能建筑本地网络的安全,应根据实际需要分别在通信子网和高层或应用系统中采取措施。计算机网络系统应为管理与维护提供相应的网络管理系统,并应提供高密度的网络端口,满足用户容量分批增加的需求。 1.3 卫星通信系统 可设置多个端站和设备机房或预留天线安装位置和设备机房位置,供用户接受和传输数据和语音业务。 1.4 有线电视系统(含闭路电视系统) 提供当地多套开路电视和多套自制电视节目,并与卫星系统联通。 1.5 移动通信覆盖系统 建筑物由于屏蔽效应出现移动通信盲区时,设置移动通信中继收发通信设备。1.6 公共广播系统 公共广播系统的类别应根据建筑规模、使用性质和功能要求确定。公共广播系统一般可分为:业务性广播系统、服务性广播系统、火灾应急广播系统。

1.7 会议系统 会议系统应是音频系统(电声、建声)、视频系统(投影、摄像、录制)等多系统的综合设计,所选用的音频、视频设备、计算机等的网络传输、语音与数字设备接口、终端等应符合相应的国家标准、规范。会议系统应实现计算机语音、文字、图形、图像、自动监管、多媒体实时同步网络传输、系统控制一体化功能。 1.8 同声传译系统 (1)同声传译一般可设有多种语种(根据甲方的需求); (2)同声传译传输方式可采用有线同声传译和无线同声传译; (3)会议室译员间的位置应设置在主席台对面或主席台的两侧(或二层较高位置),应使译员能观察到发言者的口型。 2 办公自动化系统(OAS) 办公自动化系统是采用应用计算机技术、通信技术、多媒体技术和行为科学等先进技术,使人们的部分办公业务借助于各种办公设备,并由这些办公设备与办公人员构成服务于某种办公目标的人机信息系统。主要包括: 2.1 物业管理运营系统 物业管理运营子系统应以高效便捷的方式来协调用户、物业管理人员、物业服务人员三者之间的关系,应能实现对投入使用的建筑物、附属配套设施、设备资产及场地、用户、服务、各类资料及各项费用以经营的方式进行管理,同时对建筑的环境、清洁绿化、安全保卫、租赁业务、建筑物内各类机电设备运行与维护实施一体化的专业管理。 2.2 办公管理系统 办公管理子系统应能在日常办公中通过办公自动化系统协助管理人员对办公事务过程中大量的信息进行分析、整理、统计,协助领导对各项工作的分析、决策。提供公文管理、会务管理、档案管理、电子账号、人员管理、领导活动安排、突发事件处理、书面意见处理等功能,应能实现电子公告、规章制度、公用电话等公共事务功能。 2.3 信息采集发布系统

多智能体系统一致性综述

多智能体系统一致性综述 一 引言 多智能体系统在20世纪80年代后期成为分布式人工智能研究中的主要研究对象。研究多智能体系统的主要目的就是期望功能相对简单的智能体系统之间进行分布式合作协调控制,最终完成复杂任务。多智能体系统由于其强健、可靠、高效、可扩展等特性,在科学计算、计算机网络、机器人、制造业、电力系统、交通控制、社会仿真、虚拟现实、计算机游戏、军事等方面广泛应用。多智能体的分布式协调合作能力是多智能体系统的基础,是发挥多智能体系统优势的关键,也是整个系统智能性的体现。 在多智能体分布式协调合作控制问题中,一致性问题作为智能体之间合作协调控制的基础,具有重要的现实意义和理论价值。所谓一致性是指随着时间的演化,一个多智能体系统中所有智能体的某一个状态趋于一致。一致性协议是智能体之间相互作用、传递信息的规则,它描述了每个智能体和其相邻的智能体的信息交互过程。当一组智能体要合作共同去完成一项任务,合作控制策略的有效性表现在多智能体必须能够应对各种不可预知的形式和突然变化的环境,必须对任务达成一致意见,这就要求智能体系统随着环境的变化能够达到一致。因此,智能体之间协调合作控制的一个首要条件是多智能体达到一致。 近年来,一致性问题的研究发展迅速,包括生物科学、物理科学、系统与控制科学、计算机科学等各个领域都对一致性问题从不同层面进行了深入分析,研究进展主要集中在群体集、蜂涌、聚集、传感器网络估计等问题。 目前,许多学科的研究人员都开展了多智能体系统的一致性问题的研究,比如多智能体分布式一致性协议、多智能体协作、蜂涌问题、聚集问题等等。下面,主要对现有文献中多智能体一致性协议进行了总结,并对相关应用进行简单的介绍。 1.1 图论基础 多智能体系统是指由多个具有独立自主能力的智能体通过一定的信息传递方式相互作用形成的系统;如果把系统中的每一个智能体看成是一个节点,任意两个节点传递的智能体之间用有向边来连接的话,智能体的拓扑结构就可以用相应的有向图来表示。 用)(A E,V,G =来表示一个有向加权图,其中}{n 21v ,,v ,v V =代表图的n 个顶

多智能体系统及其协同控制研究进展

多智能体系统及其协同控制研究进展 摘要::对多智能体系统及其协同控制理论研究和应用方面的发展现状进行了简要概述.首先给出Agent及多Agent 系统的概念和特性等,介绍了研究多Agent系统协同控制时通常用到的代数图论;然后综述了近年来多Agent系统群集运动和协同控制一致性方面的研究状况,并讨论了其在军事、交通运输、智能机器人等方面的成功应用;最后,对多Agent系统未来的发展方向进行了探讨和分析,提出几个具有理论和实践意义的研究方向,以促使多Agent系统及其协同控制理论和应用的深入研究. 关键词:多Agent系统(MAS);协同控制;代数图论;群集运动;一致性协议 Advances in Multi-Agent Systems and Cooperative Control Abstract: Progress in multi-Agent systems with cooperative controlwas reviewed in terms of theoretical research and its applications. Firs,t concepts and features used to define Agents and multi-Agents were analyzed. Then graph theory was introduced, since it is often used in research on cooperative control of multi-Agent systems. Then advances in swarming/flocking as well as the means used to derive a consensus among multi-Agents under cooperative control were summarized. The application of these abilitieswas discussed for the military, transportation systems,and robotics. Finally, future developments for multi-Agent systemswere considered and significant research problems proposed to help focus research on key questions formulti-Agent systemswith cooperative control. Key words:Multi-Agent system (MAS) ; Cooperative control; Graph theory; Swarming/ flocking; Consensus protocol 分布式人工智能是人工智能领域中一个重要的研究方向,而多Agent系统(multi-Agent systemMAS)则是其一个主要的分支. 20世纪90年代,随着计算机技术、网络技术、通信技术的飞速发展,Agent及MAS的相关研究已经成为控制领域的一个新兴的研究方向.由于Agent体现了人类的社会智能,具有很强的自治性和适应性,因此,越来越多的研究人员开始关注对其理论及应用方面的研究.目前,人们已经将MAS的相关技术应用到交通控制电子商务、多机器人系统、军事等诸多领域.而在MAS中,Agent之间如何在复杂环境中相互协调,共同完成任务则成为这些应用的重要前提.近年来,从控制的角度对MAS进行分析与研究已经成为国内外众多学术机构的关注热点,人们在MAS协同控制问题上做了大量的研究工作,特别是在MAS群集运动控制和协同控制一致性问题方面取得了很大的进展.目前对MAS的研究总体上来说还处于发展的初步阶段,离真正的实用化还有一定的距离;但其广泛的应用性预示着巨大的发展潜力,这必将吸引更多专家、学者投入到这一领域的研究工作中,对MAS的理论及应用做进一步探索.根据上述目的,本文主要概述了多智能体系统(MAS)在协同控制方面的研究现状及其新进展. 1Agent与MAS的相关概念 1.1Agent的概念 Agent一词最早可见于Minsky于1986年出版的《Social of Mind》一书中.国内文献中经常将Agent翻译为:智能体、主体、代理等,但最常见的仍是采用英文“Agent”;因为Agent的概念尚无统一标准,人们对于

建筑智能化系统练习试题

一 . 填空题(每题3分,共30分) 1.综合布线系统一般逻辑性地分为工作区子系统、水平子系统、干线(垂直) 子系统、设备间子系统、管理子系统、建筑群子系统六个系统,它们相对独立,形成具有各自模块化功能的子系统,成为一个有机的整体布线系统。2.EIA/TIA 的布线标准中规定了双绞线标准568B的排列线线序为:1、白橙、2、 橙、3、白绿、4、蓝、5、白蓝、6、绿、7、白棕、8、棕。 3.按传输模式分类,光纤可以分为单模光纤和多模光纤两类。 4.工程项目的招标又可分为公开招标、邀请招标、议标三种方式。公开招标 由招标单位发布招标广告,只要有意投标的承包商都可以购买招标文件,参加资格审查和进行投标工作。 5.对于建筑物的综合布线系统,一般可以根据基本复杂程度定义为3种不同的 布线系统等级,分别是办公楼、综合型建筑物和住宅楼.应根据实际需要,选择适当等级的综合布线系统。 6.暗敷管路如必须转变时,其转变角度应大于90°。暗敷管路曲率半径不应小 于该管路外径的6倍。 7.工程建设监理制对于确保工程的施工质量、控制工程的投资和加快建设工期, 以及协调参与各方的权益关系上都发挥了主要的作用。 8.目前综合布线工程中,常用的测试标准为ANSI/EIA/TIA制定的综合布线的行 业测试标准。 9.综合布线系统的验收一般分两部分进行:第一部分是初步验收;第二部分是竣 工验收。 10.当综合布线系统周围的环境干扰场强很高,采用屏蔽系统也无法满足规定的 要求是,应该采用全程屏蔽处理。 二 . 选择题(答案可能不止一个,每题3分,共15分) 1.综合布线系统中直接与用户终端设备相连的子系统是( A )。 A.工作区子系统 B.水平子系统 C.干线子系统 D.管理子系统 2.信息插座在综合布线系统中主要用于连接( A )。 A.工作区与水平子系统 B.水平子系统与管理子系统 C.工作区与管理子系统 D.管理子系统与垂直子系统

多智能体系统一致性综述

多智能体系统一致性综述 引言 多智能体系统在20世纪80年代后期成为分布式人工智能研究中的主要研究对象。研究多智能体系统的主要目的就是期望功能相对简单的智能体系统之间进行分布式合作协调 控制,最终完成复杂任务。多智能体系统由于其强健、可靠、高效、可扩展等特性,在科 学计算、计算机网络、机器人、制造业、电力系统、交通控制、社会仿真、虚拟现实、计 算机游戏、军事等方面广泛应用。多智能体的分布式协调合作能力是多智能体系统的基 础,是发挥多智能体系统优势的关键,也是整个系统智能性的体现。 在多智能体分布式协调合作控制问题中,一致性问题作为智能体之间合作协调控制的基础,具有重要的现实意义和理论价值。所谓一致性是指随着时间的演化,一个多智能 体系统中所有智能体的某一个状态趋于一致。一致性协议是智能体之间相互作用、传递 信息的规则,它描述了每个智能体和其相邻的智能体的信息交互过程。当一组智能体要 合作共同去完成一项任务,合作控制策略的有效性表现在多智能体必须能够应对各种不可预知的形式和突然变化的环境,必须对任务达成一致意见,这就要求智能体系统随着环 境的变化能够达到一致。因此,智能体之间协调合作控制的一个首要条件是多智能体达到一致。 近年来,一致性问题的研究发展迅速,包括生物科学、物理科学、系统与控制科学、计算机科学等各个领域都对一致性问题从不同层面进行了深入分析,研究进展主要集中在群体集、蜂涌、聚集、传感器网络估计等问题。 目前,许多学科的研究人员都开展了多智能体系统的一致性问题的研究,比如多智能体分布式一致性协议、多智能体协作、蜂涌问题、聚集问题等等。下面,主要对现有文 献中多智能体一致性协议进行了总结,并对相关应用进行简单的介绍。 1.1 图论基础 多智能体系统是指由多个具有独立自主能力的智能体通过一定的信息传递方式相互作用形成的系统;如果把系统中的每一个智能体看成是一个节点,任意两个节点传递的智 能体之间用有向边来连接的话,智能体的拓扑结构就可以用相应的有向图来表示。 用G (V,E,A)来表示一个有向加权图,其中V { v1,v2 , ,v n} 代表图的n个顶点; E V V 是边集合,如果存在从第 i 个顶点到第 j 个顶点的信息流,则有e ij (v i,v j) E; A 是非负加权邻接矩阵e ij E a ij 0;节点v i的邻居集定义为N i {v j|(v i,v j) E} 。如果对所 有的e ij E意识着e ji E,则称 G是无向图。

智能交通系统(ITS)概论(下)80分

各题型提交答案说明: 1.单选题及判断题点击圆形按钮进行单项选择,多选题点击勾选框进行多项选择。 2.选择题和判断题:直接点击选项,系统将自动提交答案。 3.未完成考试误操作推出系统后,在考试时间段内可重新进入系统考试。 4.完成考试后点击提交答案按钮,考试结束,不可再次进入系统考试。 5.答题完成后,点击考试页面左侧“未答题”按钮,确认无未答题后再提交答案。 6.未提交答案的试卷在考试时间结束后将强制提交答案。 一、单选 ( 共 4 小题,总分: 40 分) 1. 目前,我国()个省市高速公路都开通了不停车收费系统。 A.21 B.24 C.27 D.32 2. 能提供方便的服务和初级管理系统的地区是() A.东北部 B.西部 C.中部 D.东部 3. 美国的交通信息服务是以()为主体的。 A.ETC B.GPS C.车载导航

D.511信息服务系统 4. 智能交通系统概念引入中国的时间是() A.1996年 B.1995年 C.1994年 D.1993年 二、多选 ( 共 2 小题,总分: 20 分) 1. 2003年伦敦实施交通拥堵收费后的结果包括() A.收费区内交通延误降低30% B.进入收费区的主要道路交通延误降低20% C.进入收费区域的交通量减少18% D.收费区域外存在明显的交通冲突 2. 根据本讲,我国智能交通仍面临着那些考验?() A.智能交通发展理念有待转变和提升 B.公众出行和货物运输服务以及交通安全等民生需求关注不足 C.自主创新少,缺乏适合国情的关键技术和应用模式 D.市场化推进机制缺乏,智能交通产业链、价值链尚未形成 三、判断 ( 共 3 小题,总分: 40 分) 1. 伦敦实施交通拥堵收费后,收费区域外存在明显的交通冲突。 正确 错误 2. 国家“十一五”科技攻关项目明确中国ITS的总体需求。 正确

《智能运输系统概论》课程作业.docx

《智能运输系统概论》课程作业 智能公路

主要内容 一、基本概念 二、现状及趋势 三、主要需求 四、主要理论和技术 五、案例分析 六、国内优势和国外最新发展 七、主要结论 八、参考文献

一.基本概念 交通堵塞现象已成为现代化社会的一大问题,智能公路体系则能解决公路交通堵塞。所谓智能公路体系, 就是一种运用高技术来避免车辆堵塞的现代化交通管理系统, 其灵魂和核心是各种信息设备和传输技术,这套管理系统通常由监测器、数据搜集器、中心电脑、电子显示牌和闪光灯等构成。由环状通电线圈构成的监测器设置在公路两旁或上方,每当汽车驶过, 它就会把车流信息通知路旁的数据搜集器,进而传送到中心电脑。中心电脑会根据车流大小和拥挤程度, 迅速计算出最佳控制模式, 自动调节红绿灯时间, 使道路交叉点的各种车辆将停车时间减至最少。同时, 路旁的电子显示牌会向驾车人显示交通堵塞的程度、范围以及如何另辟蹊径。如有必要, 也可以启动路旁的闪光灯——这是提醒驾车人利用车上的无线收音机收听当地的公路情况广播, 以便因地制宜, 采取灵活措施。这种公路体系一旦实现至少可以把城市中的交通阻塞减少一半, 交通事故可望减少80 % 左右。 这类系统目前在一些国家已经使用。同时, 一种更先进的系统正在加紧研制和试验之中。新系统将给所有汽车配备速度、方位自动控制仪和信息接收机; 发展雷达、诱导刹车和防冲撞等一系列配套技术。例如一种电子装置可以通过卫星向汽车发射高频无线电信号, 通报前方道路有无堵塞、该车所处方位以及周围的地理交通图等, 这些信息都可以清楚地显示在驾驶座前的荧光屏上。如果驾车人把要去的地点和行车路线事先输人车载电脑, 该系统就会自动为汽车导向。

智能运输系统概论期末复习

1.智能运输系统(简称ITS)就是通过关键基础理论模型的研究,从而将信息技术、通信技术、电子控制技术和系统集成技术等有效地应用于交通运输系统,从而建立起大范围内发挥作用的实时、准确、高效的交通运输管理系统。 2.ITS研究的领域: 1)先进的交通管理系统 2)先进的出行者信息系统 3)先进的公共交通系统 4)先进的乡村运输系统 5)自动公路系统 6)电子收费系统 3.解决交通问题的方法: 1)控制需求最直接的方法就是控制车辆的增加,或者改变车型,使车辆数量减少,但在相当长的时期内舍弃车辆是不可能的。 2)增加供给,也就是修路。 3)实施智能运输系统。 4.智能运输系统(ITS)的主要作用: 充分利用交通系统资源“削峰填谷” 提高交通的便捷性 提高交通系统的整效性 提高交通系统的安全稳定性 降低污染与促进生态环境的和谐发展

智能交通的优势:方便、安全、舒适、快捷 5.智能交通系统的目标应体现在社会经济生态系统三个层次的效益提高目标: 提高交通运输的安全性 减少交通拥挤,保持交通顺畅 提高运输网络通行能力 降低交通运输对环境的污染程度并节约能源,提高交通运输生产效率和经济效益 6.ITS对交通系统的正效应: 为交通出行者提供便利 为交通管理者提供有力的支持 带来了社会效应 7.ITS负效应: 1)对出行者出行行为的影响产生了三种不良的效应现象: 信息过剩现象过激反应现象集聚现象 2)对城市客运交通结构的影响 3)对交通系统经济效益的影响 8.智能运输系统集成应用产生的综合效益主要体现在: 1.挽救生命 2.时间和金钱的节省 3.能耗的降得以及改善环境 9.日本式最早进行ITS研究的国家。 10.信息发布形式:1.广播 2.VMS 3.互联网 4.车载GPS 5.手机

多智能体

分布式计算是一门计算机科学,一种计算方法,和集中式计算是相对的。它研究如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多计算机进行处理,最后把这些计算结果综合起来得到最终的结果。这样可以节约整体计算时间,大大提高计算效率。 分布式人工智能(Distributed Artificial Intelligence),简称DAI,它是人工智能和分布式计算相结合的产物。DAI的提出,适应了设计并建立大型复杂智能系统以及计算机支持协同工作(CSCW)的需要。目前,DAI的研究大约可划分为两个基本范畴:一是分布式问题求解(Distributed Problem Solving,DPS);另一个是关于多智能体系统(Multi Agent System,MAS)实现技术的研究。 分布式问题求解:往往针对待解决的总问题,将其分解为若干子任务,并为每个子任务设计一个问题求解的子系统。这里,首先需要智能地确定一个分配策略:如何把总工作任务在一群模块(Module)或者节点(Node)之间进行子任务分配;其次需要智能地确定一个工作任务协同的策略:要在基于分散、松耦合知识源的基础上,实现对问题的合作求解。这里所谓“分散”的概念是指任务的控制操作和可利用的信息都是分布的,没有全局控制和全局数据;知识源分布在不同的处理节点上,数据、信息、知识和问题的答案可以按照某种规则予以共享。 (松耦合系统通常是基于消息的系统,此时客户端和远程服务并不知道对方是如何实现的。客户端和服务之间的通讯由消息的架构支配。只要消息符合协商的架构,则客户端或服务的实现就可以根据需要进行更改,而不必担心会破坏对方。)

建筑智能化系统集成解决方案

建筑智能化弱电系统集成解决方案 凭借专业队伍、雄厚技术和优良产品为客户提供完善的建筑智能化弱电系统集成解决方案,在广电、政府、军队、监狱、银行、电力、交通、学校、医院、酒店、小区、烟草等行业均有典型成功案例,并可根据用户的实际需求,按不同的产品和层次 为用户提供紧扣需求、经济适用、考虑周全的总体解决方案,使用户的投资收益最大化。 典型商业大厦弱电系统集成子系统: 》?综合布线系统 》?楼宇设备自控系统(删) 》闭路电视监控系统 》?防盗报警系统 》?门禁及考勤系统 》公共广播系统及背景音乐 》?有线电视系统 》电子会议系统(删) 》?停车场管理系统 》电子巡更系统 》?计算机网络系统 》?数字程控交换机系统 》?商务会议系统 》酒店管理系统(删) 》?物业管理系统 》?机房工程与防雷系统 典型智能化小区弱电系统集成子系统: 》?综合布线系统 》?闭路电视监控系统 》?楼宇对讲(可视、非可视)系统 》?门禁系统 》?周界防范子系统 》?家庭报警系统 》?电子巡更系统 》楼宇自控系统

》停车场管理系统 》紧急广播与背景音乐系统

》远程抄表系统 》?宽带网络接入系统 》卫星电视接收系统 》物业管理计算机系统 》社区”一卡通”管理系统 》?机房工程与防雷系统 典型医院弱电系统集成子系统: 》?综合布线系统 》计算机网络系统 》楼宇自控及水电计量系统 》闭路电视监控系统 》?紧急广播及背景音乐系统 》有线电视系统 》病房呼叫系统 》医学示教系统 》排队系统 》?视频会议系统 》停车场管理系统 》门禁及考勤系统 》U P S系统 》一卡通系统 》?无线对讲系统 》公众信息发布系统 》综合管路系统 》机房工程与防雷系统

智能交通系统概论,期末复习参考

绪论 智能运输系统(ITS)的定义: 智能运输系统(Intelligent Transportation Systems,简称ITS)是将先进的信息技术、计算机技术、数据通信技术、传感器技术、电子控制技术、自动控制理论、运筹学、人工智能等有效地综合运用于交通运输、服务控制和车辆制造,加强了车辆、道路、使用者三者之间的联系,从而形成的一种实时、准确、高效的综合运输系统。 交通运输的发展史是人类社会发展史的一个重要组成部分,是一部科学的发展史。交通运输业的发展更是科学技术发展的想象。 科学技术的发展推动了交通运输的发展,智能运输系统正是现代科学技术发展的必然产物。 交通问题是指对社会或经济未能产生正效益,交通本身机能也未充分发挥的状态,即人、车、路之间的矛盾。(拥堵、安全、环境)。 解决交通问题的方法:控制需求:增加供给:实施智能运输系统。 日本是最早进行ITS研究的国家。日本在自动公路系统方面的研究最为先进,研究内容有: 1、公路与车辆、车辆与车辆之间的通信系统; 2、事故监测与警报; 3、使用视频、雷达监测器进行车辆间距控制; 4、

车辆最大速度控制;4、自动停车控制。 施智能运输系统:将人、车、路综合起来考虑,利用现代科学技术的智能运输系统解决城市交通问题——ITS。 ITS的核心: 新思路:采用先进技术对交通进行有效的控制与管理 新目标:最大限度地发挥现有道路系统的交通效率 新手段:用信息技术将驾驶者、车辆、道路设施集成 新技术:信息技术:电子、通信、计算机 控制技术:自动化、传感器、人工智能 系统工程:运筹学、管理学 ITS的作用: 解决交通拥堵(顺畅) 减少交通事故(安全) 降低环境污染(环境) 节约能源 综合目标:“保障安全、提高效率、改善环境、节约能 源” 第二章ITS的理论基础 动态交通系统分配:将时变的交通出行合理分配到不同的路径上,以降低个人的出行费用或系统总费用。通过交通流管理和动态路径诱导在空间和时间尺度上对人们已经产生的交通需求的合理配置,使得交通路网优质高效的运行。

多智能体系统一致性综述

多智能体系统一致性综述 一引言 多智能体系统在20世纪80年代后期成为分布式人工智能研究中的主要研究对象。研究多智能体系统的主要目的就是期望功能相对简单的智能体系统之间进行分布式合作协调控制,最终完成复杂任务。多智能体系统由于其强健、可靠、高效、可扩展等特性,在科学计算、计算机网络、机器人、制造业、电力系统、交通控制、社会仿真、虚拟现实、计算机游戏、军事等方面广泛应用。多智能体的分布式协调合作能力是多智能体系统的基础,是发挥多智能体系统优势的关键,也是整个系统智能性的体现。 在多智能体分布式协调合作控制问题中,一致性问题作为智能体之间合作协调控制的基础,具有重要的现实意义和理论价值。所谓一致性是指随着时间的演化,一个多智能体系统中所有智能体的某一个状态趋于一致。一致性协议是智能体之间相互作用、传递信息的规则,它描述了每个智能体和其相邻的智能体的信息交互过程。当一组智能体要合作共同去完成一项任务,合作控制策略的有效性表现在多智能体必须能够应对各种不可预知的形式和突然变化的环境,必须对任务达成一致意见,这就要求智能体系统随着环境的变化能够达到一致。因此,智能体之间协调合作控制的一个首要条件是多智能体达到一致。 近年来,一致性问题的研究发展迅速,包括生物科学、物理科学、系统与控制科学、计算机科学等各个领域都对一致性问题从不同层面进行了深入分析,研究进展主要集中在群体集、蜂涌、聚集、传感器网络估计等问题。 目前,许多学科的研究人员都开展了多智能体系统的一致性问题的研究,比如多智能体分布式一致性协议、多智能体协作、蜂涌问题、聚集问题等等。下面,主要对现有文献中多智能体一致性协议进行了总结,并对相关应用进行简单的介绍。 1.1图论基础 多智能体系统是指由多个具有独立自主能力的智能体通过一定的信息传递方式相互作用形成的系统;如果把系统中的每一个智能体看成是一个节点,任意两个节点传递的智能体之间用有向边来连接的话,智能体的拓扑结构就可以用相应的有向图来表示。 用)(A E,V ,G =来表示一个有向加权图,其中}{n 21v ,,v ,v V =代表图的n 个顶

智能交通系统概述

智能交通系统概述 引言 今天,道路运输已经成为超越铁路的最重要的地面运输方式,在国民经济和社会发展中起着举足轻重的作用。但是随着汽车的普及、交通需求的急剧增长,进入80年代以来,道路运输所带来的交通拥堵、交通事故和环境污染等负面效应也日益突出,逐步成为经济和社会发展中的全球性共同问题。 解决车和路的矛盾,常用的有两个办法:一是控制需求,最直接的办法就是限制车辆的增加;二是增加供给,也就是修路。但是这两个办法都有其局限性。交通是社会发展和人民生活水平提高的基本条件,经济的发展必然带来出行的增加,而且在我国汽车工业正处在起步阶段的时期,因此限制车辆的增加不是解决问题的好办法。而采取增加供给,即大量修筑道路基础设施的办法,在资源、环境矛盾越来越突出的今天,面对越来越拥挤的交通、有限的资源和财力以及环境的压力,也将受到限制。这就需要依靠除限制需求和提供道路设施之外的其它方法来满足日益增长的交通需求。智能交通系统(intelligent transportation system, 简称its)正是解决这一矛盾的途径之一。

一、智能交通系统概述 从国际上智能交通系统的发展历史来看,各国普遍认为起步于60-70年代的交通管理计算机化就是智能交通系统的萌芽。随着社会的发展和技术的进步,交通管理和交通工程逐步发展成智能交通系统,但是智能交通系统与原来意义上的交通管理和交通工程有着本质的区别,智能交通系统强调的是系统性、信息交流的交互性以及服务的广泛性,其核心技术是电子技术、信息技术、通信技术、交通工程和系统工程。 智能交通系统就是将先进的信息技术、计算机技术、数据通信技术、传感器技术、电子控制技术、自动控制理论、运筹学、人工智能等有效的综合运用于交通运输、服务控制和车辆制造,加强了车辆、道路、使用者三者之间的联系,从而形成一种定时、准确、高效的综合运输系统。智能交通系统就是以缓和道路堵塞和减少交通事故,提高交通利用者的方便、舒适为目的,利用交通信息系统、通讯网络、定位系统和智能化分析与选线的交通系统的总称。它通过传播实时的交通信息使出行者对即将面对的交通环境有足够的了解,并据此作出正确选择;通过消除道路堵塞等交通隐患,建设良好的交通管制系统,减轻对环境的污染;通过对智能交叉路口和自动驾驶技术的开发,提高行车安全,减少行驶时间。

多智能体

多智能体 1简介 说到“多智能体”,一般专指多智能体系统(MAS,Multi-AgentSystem)或多智能体技术(MAT,Multi-Agent Technology)。多智能体系统是分布式人工智能(DAI,DistributedArtificial Intelligence)的一个重要分支,是20世纪末至21世纪初国际上人工智能的前沿学科。研究的目的在于解决大型、复杂的现实问题,而解决这类问题已超出了单个智能体的能力。 1989年举行的第一届国际多智能体欧洲学术会议,标志着该技术受到了研究者的广泛重视。1993年首次召开了智能体形式化模型国际会议,1994年又召开了第一届智能体理论、体系结构和语言国际会议,表明多智能体技术日益获得了重视。 2 定义 多智能体系统是多个智能体组成的集合,它的目标是将大而复杂的系统建设成小的、彼此互相通信和协调的,易于管理的系统。 它的研究涉及智能体的知识、目标、技能、规划以及如何使智能体采取协调行动解决问题等。研究者主要研究智能体之间的交互通信、协调合作、冲突消解等方面,强调多个智能体之间的紧密群体合作,而非个体能力的自治和发挥,主要说明如何分析、设计和集成多个智能体构成相互协作的系统。 同时,人们也意识到,人类智能的本质是一种社会性智能,人类绝大部分活动都涉及多个人构成的社会团体,大型复杂问题的求解需要多个专业人员或组织协调完成。要对社会性的智能进行研究,构成社会的基本构件物——人的对应物——智能体理所当然成为人工智能研究的基本对象,而社会的对应物——多智能体系统,也成为人工智能研究的基本对象,从而促进了对多智能体系统的行为理论、体系结构和通信语言的深入研究,这极大的繁荣了智能体技术的研究与开发。 3优势特点 多智能体系统在表达实际系统时,通过各智能体间的通讯、合作、互解、协调、调度、管理及控制来表达系统的结构、功能及行为特性。 多智能体系统具有自主性、分布性、协调性,并具有自组织能力、学习能力和推理能力。采用多智能体系统解决实际应用问题,具有很强的鲁棒性和可靠性,并具有较高的问题求解效率。 多智能体系统是智能体技术应用及研究上的一个质的飞跃,不同行业的专家学者对之进行了深入的研究并从多个角度阐述了多智能体系统用于解决实际问题的优势,归纳起来,主要有以下几点: (1)在多智能体系统中,每个智能体具有独立性和自主性,能够解决给定的子问题,自主地推理和规划并选择适当的策略,并以特定的方式影响环境。

医院建筑智能化系统解决方案

医院建筑智能化系统解决方案 第1章行业需求分析 随着我国经济的快速发展,人民生活水平的不断提高,广大民众对生活的质量、就医的环境和条件发生了深刻的变化。选择医疗条件好、水平高、环境舒适的医院就医,已成为病人的迫切需要。 我国原有医院的设施和服务部分还停留在六七十年代的水平,已经远远不能满足当前社会发展的需要。新型医院的建设正在蓬勃兴起,医院的建设也越来越注重建筑的整体功能和为患者、医护人员的服务功能,强调以病人为中心,处处体现出人性化的设计,其中智能化系统则是提升医院管理水平、提高医务人员工作效率和提高为病人服务水平的重要技术手段。 集医疗、教学、科研于一体的现代化医院建筑,由于其功能和流程的复杂性,不同于一般的公共建筑。在一座现代化智能医院里有大量的机电设备及之相应的自动管理设备,涉及大量的不同专业,不可避免会增加管理者可操作的复杂性,缺乏统一管理的功能,使设备运行效率低下,能源及人力的浪费惊人,加之建筑内人流,物流,信息流交错,各种人员情况非常复杂,只有采取最具有时代特征的智能化系统,使之与医院建筑环境有机结合统一,才能更好建立以人为本,数字化医疗环境,同时提升医院管理水平,提高医护人员工作效率和降低能源消耗,节约医院的运行成本。

第2章智能化医院 2.1智能建筑的概念 2.1.1智能建筑的定义 以建筑为平台,兼备通信、办公、建筑设备自动化,集系统、结构、服务、管理及它们之间的最优化组合,向人们提供一个高效、舒适、便利的建筑环境。 2.1.2智能建筑的构成 智能建筑首先是以建筑为平台,组成智能的三大系统,即:楼宇自动化系统(BAS)、网络通讯系统(CAS)和办公自动化系统(OAS)。 定义中系统、结构、服务和管理这四个要素中前两者是建筑过程的结果,后两者是建筑功能的内容。 需要明确的是: 智能建筑工有智能化系统的建筑(注:当有了智能化系统,而不被充分合理的使用,则不能称其为智能建筑); 智能建筑==智能建筑硬件+智能建筑软件(注:没有优秀的操作和管理软件,也无法实现真正意义上的智能)。 2.1.3智能建筑的建设目标 建立先进与科学的综合管理机制。 提供安全、舒适、快捷的优质服务。 降低能耗和节省人工成本。 2.2智能化医院的概念 简单的说智能化医院就是将智能建筑的理念运用到医院的建筑中,即在医院中采

智能交通系统简介

城市智能交通系统简介 随着城市经济的快速发展,城市化、汽车化进程加快,越来越迫切地需要运用先进的信息技术、数据通讯传输技术及计算机技术,建立一种大范围内、全方位发挥作用的实时、准确、高效的道路交通管理综合集成系统。 智能交通系统将以道路交通有序、安全、畅通以及交通管理规范服务、快速反应和决策指挥为目标,初步建成集高新技术应用为一体的适合于城市道路交通特点的、具有高效快捷的交通数据采集处理能力、决策能力和组织协调指挥能力的管理系统,实现交通管理指挥现代化、管理数字化、信息网络化。 1、城市智能交通系统建设必要性 ●城市交通发展的需要 ●提升全市道路交通总体管理水平的需要 ●城市公共治安管理的需要 ●面向公众出行提供方便、快捷的信息服务 2、智能交通系统建设目标 ●以城市路网为对象,以公众交通出行需求为导向,重点考虑道路交通管 理与交通突发事件应急处置的需求,建设以视频综合复用技术为核心的道路视频监控系统,同时整合已有和新建外场设备的动态数据。 ●建设城市道路交通智能管理中心及相关应用系统,相应的通信网络和外 场设备,实现城市的道路网交通管理与交通突发事件应急处置、非现场

执法及综合信息管理、车辆驾驶员综合信息管理,面向公众的道路交通信息服务。 充分考虑与公安局110指挥中心、城市应急联动指挥中心、社会治安防控动态监控系统及其他相关系统的衔接。实现城市道路网的高水平日常运行管理、高效的交通突发事件应急处置,为公众提供安全便捷畅通的道路交通出行服务。 3、智能交通系统所包括的一个平台、8个子系统 中心集成平台 智能交通系统中心平台通过对智能交通各子系统的高度集成,汇总融合、分析处理各类交通数据,并依据最终获取的有效信息进行决策和 交通指挥调度,同时对各种交通突发事件进行判断、确认和处理;以达

多智能体系统分布式协同控制

2016年教育部自然科学奖推荐项目公示材料 1、项目名称:多智能体系统分布式协同控制 2、推荐奖种:自然科学奖 3、推荐单位:东南大学 4、项目简介: 多智能体系统是20世纪末至21世纪初分布式人工智能领域的国际前沿研究课题,其核心支撑理论是人工智能、分布式控制和分布式计算。进入21世纪,人们在解决大型、复杂的工程问题时,发现单个智能体的能力已经无法胜任,需要多个智能体在网络环境下以信息通讯的方式组成多智能体系统协同地解决工程问题。典型的多智能体系统包括多机器人系统,多无人机系统,智能电网和分布式卫星系统等。本项目系统深入研究了多智能体系统协同控制的共性问题、网络结构控制、通讯受限等关键科学问题,取得的重要科学发现如下: (1)通过引入一致性区域的概念,把二阶和高阶系统一致性问题转化为研究一致性区域的稳定性范围,给出了具有固定网络拓扑的多智能体线性系统二阶和高阶一致性的充分必要条件,解决了长期困惑研究者的多智能体系统协同控制器设计的本质问题;提出有向网络的广义代数连通度作为有向网络收敛判别的基本依据,推广了无向网络的代数连通度。 (2)给出了牵制控制无向网络实现同步的一般条件;克服非对称网络拓扑结构的本质困难,解决了有向网络同步牵制控制的挑战问题;采用图分解引入匹配割点和割集,完善了矩阵分解的谱理论,解决网络牵制控制一个结点的最优控制的关键难题。 (3)利用非奇异M矩阵理论和切换系统稳定性分析方法,突破了通过求解闭环系统的解曲线,然后再进行稳定分析的技术性瓶颈,发现了具有间歇信息通讯的二阶多智能体系统一致性的实现与降阶后的低维切换系统全局稳定性的内在本质联系,解决了切换有向拓扑下多智能体系统的协同一致性的难题。 项目组近年来在IEEE、Automatica、SIAM等本领域著名期刊上发表多智能体系统协同控制SCI论文110篇。10篇代表性论文SCI他引1159次,WOS 他引1433次,Google Scholar他引2165次,全部为ESI工程领域前1%高被引论文,9篇论文Google Scholar他引超过100次,6篇论文发表至今在所在期刊的SCI引用排名居于前2位,被38位院士和IEEE Fellow在Nature、Nature Physics、IEEE汇刊等正面评价,相关成果获亚洲控制会议最佳论文奖、IEEE 电路与系统协会神经系统与应用技术委员会最佳理论论文奖、全国复杂网络学术会议最佳学生论文奖、IEEE国际电路与系统会议最佳学生论文奖提名等。

相关主题
文本预览
相关文档 最新文档