当前位置:文档之家› 初中数学锐角三角函数的技巧及练习题附答案

初中数学锐角三角函数的技巧及练习题附答案

初中数学锐角三角函数的技巧及练习题附答案
初中数学锐角三角函数的技巧及练习题附答案

初中数学锐角三角函数的技巧及练习题附答案一、选择题

1.如图,在扇形OAB中,120

AOB

∠=?,点P是弧

AB上的一个动点(不与点A、B重

合),C、D分别是弦AP,BP的中点.若33

CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π

【答案】A

【解析】

【分析】

如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.

【详解】

解:如图作OH⊥AB于H.

∵C、D分别是弦AP、BP的中点.

∴CD是△APB的中位线,

∴AB=2CD=63

∵OH⊥AB,

∴BH=AH=33

∵OA=OB,∠AOB=120°,

∴∠AOH=∠BOH=60°,

在Rt△AOH中,sin∠AOH=

AH

AO

∴AO=

33

6

sin3

AH

AOH

==

∠,

∴扇形AOB的面积为:

2

1206

12

360

π

π

=

g g

故选:A .

【点睛】

本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

2.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( )

A 2

B 22

C 42

D 32 【答案】C

【解析】

【分析】

在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?DE 即可求出AE 的长度.

【详解】

∵AD ⊥BC

∴∠ADC=∠ADB=90?

在Rt △ADC 中,AC=4,∠C=45?

∴AD=CD=22在Rt △ADB 中,AD=22ABD=60?

∴BD=33AD=263

. ∵BE 平分∠ABC ,

∴∠EBD=30°.

在Rt △EBD 中,26,∠EBD=30° ∴DE=33BD=223 ∴AE=AD ?DE=222242 故选:C

【点睛】

本题考查了等腰直角三角形的性质,以及利用特殊角三角函数解直角三角形.

3.在Rt△ABC中,∠C=90°,如果AC=2,cosA=2

3

,那么AB的长是()

A.3 B.4

3

C.5D.13

【答案】A 【解析】

根据锐角三角函数的性质,可知cosA=AC

AB

=

2

3

,然后根据AC=2,解方程可求得AB=3.

故选A.

点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值

cosA=

A

的邻边

斜边

,然后带入数值即可求解.

4.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3

5

,则下列结论正确的个数有()

①DE=3cm; ②BE=1cm; ③菱形的面积为15cm2; ④BD=210cm.

A.1个B.2个C.3个D.4个【答案】C

【解析】

【分析】

根据菱形的性质及已知对各个选项进行分析,从而得到答案

【详解】

∵菱形ABCD的周长为20cm

∴AD=5cm

∵sinA=3 5

∴DE=3cm(①正确)

∴AE=4cm

∵AB=5cm

∴BE=5﹣4=1cm(②正确)

∴菱形的面积=AB×DE=5×3=15cm2(③正确)∵DE=3cm,BE=1cm

∴10(④不正确)

所以正确的有三个.

故选C.

【点睛】

本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键

5.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()

A.3

5

B.

4

5

C.

3

4

D.

4

3

【答案】C

【解析】

试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4.

∵∠A=1

2

∠BOC,∴∠A=∠BOD.

∴tanA=tan∠BOD=

4

3 BD

OD

=.

故选D.

考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.

6.直角三角形纸片的两直角边长分别为6,8,现将ABC

V如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE

∠的值是()

A.24

7

B

7

C.

7

24

D.

1

3

【答案】C 【解析】

试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+62,

解得x=25

4

,故CE=8-

25

4

=

7

4

∴tan∠CBE=

7

24 CE

CB

.

故选C.

考点:锐角三角函数.

7.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,则tan∠DEC的值是()

A.1 B.1

2

C

3

D

3

【答案】C

【解析】

【分析】

先根据题意过点C作CF⊥BD与点F可求得△AEB≌△CFD(AAS),得到AE=CF=1,EF=32

3-3

3

【详解】

过点C作CF⊥BD与点F.

∵∠BAE=30°,

∴∠DBC=30°,

∵BC=2,

∴CF=1,BF3,

易证△AEB≌△CFD(AAS)

∴AE=CF=1,

∵∠BAE=∠DBC=30°,

∴BE=

3

3

AE=

3

3

∴EF=BF﹣BE3﹣

3

3

2

3

3

在Rt△CFE中,

tan∠DEC=

1

3

23

32 CF

EF

==

故选C.

【点睛】

此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等

8.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为 45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为 60°,已知斜坡AB的坡角为30°,AB=AE=10 米.则标识牌CD的高度是( )米.

A.15-53B.20-103C.10-53D.53-5

【答案】A

【解析】

【分析】

过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN?DE即可求出结论.

【详解】

解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.

在Rt△ABE中,AB=10米,∠BAM=30°,

∴AM=AB?cos30°=3BM=AB?sin30°=5(米).

在Rt △ACD 中,AE =10(米),∠DAE =60°,

∴DE =AE?tan60°=103(米). 在Rt △BCN 中,BN =AE +AM =10+53(米),∠CBN =45°,

∴CN =BN?tan45°=10+53(米),

∴CD =CN +EN?DE =10+53+5?103=15?53(米).

故选:A .

【点睛】

本题考查了解直角三角形?仰角俯角问题及解直角三角形?坡度坡脚问题,通过解直角三角形求出BM ,AM ,CN ,DE 的长是解题的关键.

9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则

c a a b c b

+++的值为( )

A .12

B .22

C .1

D 2

【答案】C

【解析】

【分析】

先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin602?=cos60°=12,可求13,,2DB c AD ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.

【详解】

解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°,

∴13,,22

DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ??-=- ??

?, 即a 2+c 2=b 2+ac ,

∴()()

2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b ++++++++++====++++++++++

故选C .

【点睛】

本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.

10.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且3cos 5

α=,则AC 的长为( )

A .3

B .163

C .203

D .165

【答案】C

【解析】

【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC .

【详解】

解:∵DE ⊥AC ,

∴∠ADE+∠CAD=90°,

∵∠ACD+∠CAD=90°,

∴∠ACD=∠ADE=α,

∵矩形ABCD 的对边AB ∥CD ,

∴∠BAC=∠ACD ,

∵cos α=

35,35AB AC ∴=, ∴AC=520433

?=. 故选:C .

【点睛】

本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键.

11.在Rt△ABC中,∠C=90°,如果∠A=α,BC=a,那么AC等于()A.a?tanαB.a?cotαC.a?sinαD.a?cosα【答案】B

【解析】

【分析】

画出图形,根据锐角三角函数的定义求出即可.

【详解】

如图,∠C=90°,∠A=α,BC=a,

∵cotα

AC BC ,

∴AC=BC?cotα=a?cotα,

故选:B.

【点睛】

本题考查了锐角三角函数的定义的应用,在直角三角形中,锐角的正弦是角的对边与斜边的比;余弦是角的邻边与斜边的比;正切是对边与邻边的比;余切是邻边与对边的比;熟练掌握三角函数的定义是解题关键.

12.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()

A.B.C.D.

【答案】D

【解析】

【分析】

根据两个点的运动变化,写出点N 在BC 上运动时△BMN 的面积,再写出当点N 在CD 上运动时△BMN 的面积,即可得出本题的答案;

【详解】

解:当0

连接BD ,AC ,交于点O′,连接NM ,过点C 作CP ⊥AB 垂足为点P ,

∴∠CPB=90°,

∵四边形ABCD 是菱形,其中点B 的坐标是(0,4),点D 的坐标是3,4),

∴BO ′3,CO′=4,

∴228O B O C +'=',

∵AC=8,

∴△ABC 是等边三角形,

∴∠ABC=60°,

∴CP=BC×sin60°33,BP=4, BN=4x ,BM=2x , 242BM x x BP ==,2

BN x BC =, ∴=BM BN BP BC

, 又∵∠NBM=∠CBP ,

∴△NBM ∽△CBP ,

∴∠NMB=∠CPB=90°, ∴114438322

CBP S BP CP =??=??=V ; ∴2NBM CBP S BN S BC ??= ???

V V , 即y=22

283=232NBM CBP BN x S S x BC ????=?= ? ?????V V , 当2

∵四边形ABCD 是菱形,

∴AB ∥CD ,

∴NE=CP=43, BM=2x ,

∴y=

11=2434322

BM NE x x ??=g g ; 故选D.

【点睛】 本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键.

13.如图,ABC V 中,90ACB ∠=?,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).

A .1

B 2

C 21

D .222

【答案】D

【解析】

【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.

【详解】

解:Q CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,

D ∴为ABC ?的内心,

OD ∴最小时,OD 为ABC ?的内切圆的半径,

,DO AB ∴⊥

过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F

,DE DF DO ∴==

∴ 四边形DFCE 为正方形,

O Q 为AB 的中点,4,AB =

2,AO BO ∴==

由切线长定理得:2,2,,AO AE BO BF CE CF r ======

sin 4522,AC BC AB ∴==??=

222,CE AC AE ∴=-=-

Q 四边形DFCE 为正方形,

,CE DE ∴=

222,OD CE ∴==-

故选D .

【点睛】

本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.

14.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )

A .(30)

B .(3,0)

C .(4035233

D .(30) 【答案】B

【解析】

【分析】

根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.

【详解】

由题意知,111C A =,11160C A B ?∠=,

则11130C B A ?∠=,11222A B A B ==,1122333C B C B C B ===,

结合图形可知,三角形在x 轴上的位置每三次为一个循环,

Q 20193673÷=, ∴2019673(123)20196733OC =++=+,

∴2019C (20196733,0)+,

故选B .

【点睛】

考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.

15.一艘轮船从港口O 出发,以15海里/时的速度沿北偏东60°的方向航行4小时后到达A 处,此时观测到其正西方向50海里处有一座小岛B .若以港口O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1海里为1个单位长度建立平面直角坐标系(如图),则小岛B 所在位置的坐标是( )

A .3,30)

B .(30,3-50)

C .330)

D .(30,3)

【答案】A

【解析】

【分析】

【详解】 解:OA =15×4=60海里,

∵∠AOC =60°,∴∠CAO =30°,

∵sin 30°=

OC AO =12

, ∴CO =30海里, ∴AC 3

∴BC =(3-50)海里,

∴B (3-50,30).

故选A

【点睛】

本题考查掌握锐角三角函数的应用.

16.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60?刻度线,则假山的高度CD 为( )

A .()23 1.6m +

B .()22 1.6m +

C .()43 1.6m +

D .23m

【答案】A

【解析】 【分析】 根据已知得出AK=BD=6m ,再利用tan30°= 6

CK CK AK =,进而得出CD 的长. 【详解】

解:如图,过点A 作AK ⊥CD 于点K

∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,

∴DB=AK ,AB=KD=1.6米,∠CAK=30°,

∴tan30°=6

CK CK AK =, 解得:3即3(3+1.6)m .

故选:A .

【点睛】

本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.

17.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )

A .a

B .45 a

C 2

D 3 【答案】C

【解析】

【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE

= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.

【详解】

∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,

∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CN

M

cos +=CD ,

在矩形ABCD 中,AB=CD=a ,

∴DM+CN=acos45°2a. 故选C.

【点睛】

此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =

18.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=?,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )

A .4

B .3

C .2

D .1

【答案】A

【解析】

【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.

【详解】

解:连接OB 、OC

∵ABC V 是等边三角形,点O 是ABC V 的内心,

∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=

12∠ABC=30°,∠OCA=∠OCB=12

∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=?

∴∠=FOG ∠BOC

∴∠FOG -∠BOE=∠BOC -∠BOE

∴∠BOD=∠COE

在△ODB 和△OEC 中

BOD COE BO CO

OBD OCE ∠=∠??=??∠=∠?

∴△ODB ≌△OEC

∴OD=OE

∴△ODE 是顶角为120°的等腰三角形,

∴ODE V 形状不变,故①正确;

过点O 作OH ⊥DE ,则DH=EH

∵△ODE 是顶角为120°的等腰三角形

∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·

sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=34

OE 2 ∴OE 最小时,S △ODE 最小,

过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值

∴BE ′=

12BC=12

a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=

12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC

∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤

14

S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;

∵△ODB ≌△OEC

∴DB=EC

∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE

∴DE 最小时BDE V 的周长最小

∵DE=3OE ∴OE 最小时,DE 最小 而OE 的最小值为OE′=3a ∴DE 的最小值为3×3a =12a ∴BDE V 的周长的最小值为a +

12a =1.5a ,故④正确; 综上:4个结论都正确,

故选A .

【点睛】

此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.

19.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB :BC =2:1,且BE ∥AC ,CE ∥DB ,连接DE ,则tan ∠EDC =( )

A .14

B .16

C .26

D .310

【答案】B

【解析】

【分析】

过点E 作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G .根据邻边相等的平行四边形是菱形即可判断四边形OBEC 是菱形,则OE 与BC 垂直平分,易得EF=12

x ,CF=x .再由锐角三角函数定义作答即可.

【详解】

解:∵矩形ABCD 的对角线AC 、BD 相交于点O ,AB :BC =2:1,

∴BC =AD ,

设AB =2x ,则BC =x .

如图,过点E 作EF ⊥直线DC 交线段DC 延长线于点F ,连接OE 交BC 于点G . ∵BE ∥AC ,CE ∥BD ,

∴四边形BOCE 是平行四边形,

∵四边形ABCD 是矩形,

∴OB =OC ,

∴四边形BOCE是菱形.∴OE与BC垂直平分,

∴EF

=1

2

AD=

1

2

x

,OE∥AB,

∴四边形AOEB是平行四边形,

∴OE=AB=2x,

∴CF=

1

2

OE=x.

∴tan∠EDC=

EF

DF

1

2

2

x

x x

+

1

6

故选:B.

【点睛】

本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.

20.如图,ABC

?是一张顶角是120?的三角形纸片,,6

AB AC BC

==现将ABC

?折叠,使点B与点A重合,折痕DE,则DE的长为()

A.1 B.2 C.2D.3

【答案】A

【解析】

【分析】

作AH⊥BC于H,根据等腰三角形的性质求出BH,根据翻折变换的性质求出BD,根据正切的定义解答即可.

【详解】

解:作AH⊥BC于H,

∵AB=AC,AH⊥BC,

BH=12

BC=3, ∵∠BAC=120°,AB=AC ,

∴∠B=30°,

∴AB=30BH cos

由翻折变换的性质可知,

∴DE=BD ?tan30°=1,

故选:A .

【点睛】

此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

初中数学证明题

初中数学证明题Prepared on 21 November 2021

1.如图 1,△ABC 中,AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =130°,求∠BAC 的度数. 2.如图,△ABC 中,AD 平分∠CAB ,BD ⊥AD ,DE ∥AC 。求证:AE=BE 。 .3.如图,△ABC 中, AD 平分∠BAC ,BP ⊥AD 于P ,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB 。 4.如图1,△ABC 中,AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =130°,求∠BAC 的度数. 5.点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE 求证:BD =CE 6.△ABC 中,AB=AC,PB=PC .求证:AD⊥BC 7. 已知:如图,BE 和CF 是△ABC的高线,BE=CF,H 是CF 、BE 的交点.求证:HB=HC 8 如图,在△ABC 中,AB=AC,E 为CA 延长线上一点,ED⊥BC 于D 交AB 于F.求证:△AEF 为等腰三角形. 9.如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F 。 (1)求证:AN=BM; (2)求证:△CEF 是等边三角形 10 如图,△ABC 中,D 在BC 延长线上,且AC=CD,CE 是△ACD 的中线,CF 平分∠ACB,交AB 于F,求证:(1)CE⊥CF;(2)CF∥AD. 11.如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE . 12.已知:如图,△BDE 是等边三角形,A 在BE 延长线上,C 在BD 的延长线上,且AD=AC 。求证:DE+DC=AE 。 13.已知ΔACF ≌ΔDBE ,∠E =∠F ,AD = 9cm ,BC = 5cm ;求AB 的长. 图1 B E C D A A P D C B 图1 A B C D E

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

初中数学规律题汇总(全部有解析)

初中数学规律题拓展研究 “有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。 初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索: 一、基本方法——看增幅 (一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。 例:4、10、16、22、28……,求第n位数。 分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2 (二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。 基本思路是:1、求出数列的第n-1位到第n位的增幅; 2、求出第1位到第第n位的总增幅; 3、数列的第1位数加上总增幅即是第n位数。 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。 (三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. (四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。 二、基本技巧

用锐角三角函数概念解题的常见方法(含答案11页)

用锐角三角函数概念解题的常见方法 1.锐角三角函数 (1)锐角三角函数的定义 我们规定: sinA=a c ,cosA= b c ,tanA= a b ,cotA= b a . 锐角的正弦、余弦、正切、余切统称为锐角的三角 函数. (2)用计算器由已知角求三角函数值或由已知三 角函数值求角度 对于特殊角的三角函数值我们很容易计算,甚至可 以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题. ①已知角求三角函数值; ②已知三角函数值求锐角. 2 直角三角形中,30°的锐角所对的直角边等于斜边的一半. 3.锐角三角函数的性质 (1)0

(2)tan α·cot α=1或tan α=1 cot α ; (3)tan α= sin cos αα,cot α=cos sin α α . (4)sin α=cos (90°-α),tan α=cot (90°-α). 有关锐角三角函数的问题,常用下面几种方法: 一、设参数 例1. 在ABC ?中,?=∠90C ,如果125 tan = A ,那么sin B 的值等于( ) 5 12.12 5. 13 12. 13 5. D C B A 解析:如图1,要求sinB 的值,就是求 AB AC 的值,而已知的12 5 tan =A ,也就是12 5 =AC BC 可设k AC k BC 125==, 则k k k AB 13)12()5(22=+= 13 12 1312sin == ∴k k B ,选B 二、巧代换 例2. 已知3tan =α,求 α αα αcos sin 5cos 2sin +-的值。 解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式 3cos sin tan == α α α,作代换ααcos 3sin =,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以αcos 。 图1

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

初中数学各题型的解题技巧汇总

初中数学各题型的解题技巧汇总 在数学考试中,90%以上的孩子都觉得时间紧迫,不够用!试分析,如果你有 这种情况,很可能花了太多时间在客观题!对于分值比较大的客观题(也就是填空题与选择题)是否有巧妙的解题方法,快速的选择答案? “选择题、填空题、解答题各种题型应试技巧: 选择题: 在做选择题可运用各种解题的方法:如直接法、特殊值法、排除法、验证法、图 解法、假设法、动手操作法(比如折一折,量一量等方法),对于选择题中有“或” 的选项一定要警惕,看看要不要取舍。 填空题: 注意一题多解等特殊情况。 考虑各种简便方法解题。选择题、填空题更是如此(直接法最后考虑)尤其是选择题,有些可用排除法、特殊值法、画图像解答,不必每题都运算。 解答题: 1.注意规范答题,过程和结论都要书写规范。认真审题,不慌不忙,先易后难, 不能忽略题目中的任何一个条件。 2.计算题一定要细心,最后答案要最简,要保证绝对正确。 3.先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考 虑技巧,如整体代入。 4.解直角三角形问题。注意交代辅助线的作法,解题步骤。关注直角、特殊角。取近似值时一定要按照题目要求。 5.实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。最后一定要检验方程的解。 6.证明题:切线证明要写出辅助线的作法,辅助线要用虚线;遇到线段比例式及 乘积式,就要证线段所在的三角形相似,同时注意线段的等量代换(注意线段倍数关系)。

7.方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不 要考虑复杂、追求美观的方案。 8.若压轴题最后一问确实无从下手,可以放弃,不如把时间放在检验别的题目上, 对于存在性问题,要注意可能有几种情况不要遗漏。对于动点问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况。 解各类大题目时脑子里必须反映出该题与平时做的哪道题类似,应反映出似曾相识,又非曾相识的感觉。 一解题方法归纳:1.配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2.因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3.换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。4.判别式法与韦达定理 一元二次方程aX2+bX+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不 等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。5.待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。

初二数学下册证明题

(1)求证:BG FG =; (2)若2 ==,求AB的长. AD DC 二:如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF⊥DF。 三:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

求证:AE平分∠BAD. 四、(本题7分)如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12, AC=18,求DM的长。

五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD 交于点O , 且AC ⊥BD ,DH ⊥BC 。 ⑴求证:DH=2 1(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。 六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.

七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点. (1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形? (3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明). 选择题: 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如 图,依此规律第10个图形的周长为 。 …… 第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为 (―1,―3),若一反比例函数x k y 的图象过点D ,则其 解析式为 。 M F E N D C A B

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

初中数学易错点及解题方法汇总

10年阅卷老师圈出初中数学易错知识点 数与式 易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。 易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。 易错点3:平方根、算术平方根、立方根的区别。填空题必考。 易错点4:求分式值为零时学生易忽略分母不能为零。 易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。 易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。 易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。 易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!

易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要 注意计算顺序。 方程(组)与不等式(组) 易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。 易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验! 易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。 易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。 易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。 易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。 易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。 易错点8:利用函数图象求不等式的解集和方程的解。 函数 易错点1:各个待定系数表示的的意义。

初中数学证明题汇总(含参考答案)

证明(一) 一、选择题 1.下列句子中,不是命题的是() (A )三角形的内角和等于180 度( B)对顶角相等 (C)过一点作已知直线的平行线( D)两点确定一条直线 2.下列说法中正确的是() (A )两腰对应相等的两个等腰三角形全等( B )两锐角对应相等的两个直角三角形全等(C)两角及其夹边对应相等的两个三角形全等(D )面积相等的两个三角形全等 3.下列命题是假命题的是() (A )如果a∥b,b∥c,那么a∥c(B)锐角三角形中最大的角一定大于或等于60°(C)两条直线被第三条直线所截,内错角相等(D)矩形的对角线相等且互相平分 4. △ABC中,∠A∠B 120,∠C ∠A,则△ABC 是(). (A )钝角三角形( B)等腰直角三角形( C)直角三角形(D )等边三角形5. 在△ABC中,∠A,∠B的外角分别是 120°、 150°,则∠C(). (A ) 120°( B) 150°( C) 60°(D ) 90°6.如图 1, l 1∥ l2,∠ 1=50° , 则∠ 2 的度数是() (A ) 135°( B )130°( C)50°( D) 40° 7.如图 2 所示,不能推出AD∥BC的是()图 1 (A )∠DAB∠ABC 180(B)∠2∠4 (C)∠1∠3( D)∠CBE∠ DAE 图 2 8. 如图 3,a∥b,c a ,∠1 130 ,则∠ 2 等于() (A ) 30°(B)40°(C)50°(D)60° 图 3 9.如图4,AB∥CD,AC BC ,图中与∠ CAB 互余的角 有() (A)1个(B)2个(C)3个(D)4个

10.若三角形的一个外角等于和它相邻的内角,则这个三角形是() (A )锐角三角形(B)直角三角形(C)钝角三角形(D)都有可能 二、填空题 11.将命题“对顶角相等”改写成“如果 ,, ,那么,,”的形式:如果,那么. 12.如图 5 所示,如果BD 平分∠ ABC ,补上 一个条件作为已知,就能推出AB ∥ CD . 图 5 13.如图 6,AB∥CD,AF交AB、CD于A,C,CE平分∠DCF,∠1120 ,则2. 图6 图 7 14.如图 7,一个顶角为 40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则 ∠1∠ 2. 15.若一个三角形的三个内角之比为4∶3∶ 2,则这个三角形的最大内角的外角为. 三、解答题 16.如图 8,直线 AB、CD 相交与点 O,∠ AOD =70o, OE 平分∠ BOC,求∠ DOE 的度数。 A C O 70o E D图8B 17.已知:如图9,BE∥DF,∠B=∠D. 求证: AD∥BC.

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

中考数学压轴题解题方法大全和技巧

中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

初中数学解题思维方法大全

初中数学解题思维方法大全 还在为初中数学解题而烦恼?还在为数学低分而烦躁?那是你没有全面理解初中数学 的解题思维和解题方法。暑假不出门,了解,助你在新学期解决数学难题。 一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2、特殊值法:特殊值淘汰法有些选择题所涉及的数学命题与字母的取值范围有关, 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然 后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既 采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这 样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义, 又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求 解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数 含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数 学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之 间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊 与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不 同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要 的解题策略。

初一数学证明题汇集

(一)证明题练习 1.如图,已知AC AB ⊥,,,12EF BC AD BC ⊥⊥∠=∠,请问AC DG ⊥吗?请写出推理过程; 2.如图,BD 是△ABC 的角平分线,DE ∥CB ,交AB 于点E , ∠A =45°,∠BDC =60°,求△BDE 各内角的度数. 3.如图,四边形ABCD 中, E 是AD 中点, CE 交BA 延长线于点F ,且CE =EF . (1)试说明:CD ∥AB ; (2)若BE ⊥CF ,试说明:CF 平分∠BCD . A D C B 3 2 1 E F G

4. 如图,四边形ABCD 中,AC 交BD 于点O,则有这样的结论:AC+BD>AB+CD, 你能说出理由吗? O A D C B 5如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么 ? 6.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。 1D 2 A E C B

7.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°, ∠D=42°,求∠ACD 的度数 . F D C B E A 8.如图,点E 、F 在正方形ABCD 的边BC 、CD 上,且BE=CF,试判断AE 、 BF 的关系,并说明理由 9.如图 AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证AD=AE ; (2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.

(二)解方程组练习 (1)???=-=+5 24y x y x (2)22(1) 2(2)24x y x y -=-??-+-=? (3)???-=-=+35y x y x (4)?? ?=+=-7324 23y x y x

相关主题
文本预览
相关文档 最新文档