当前位置:文档之家› 基准电压的应用

基准电压的应用

基准电压的应用
基准电压的应用

基准电压的介绍

基准电压是许多控制或应用电路所必需的,而且电路的控制精度或性能指标在很大程度上取决于基准电压的好坏。对基准电压的基本要求是:在电源电压和环境温度变化时其电压值应保持恒定不变。

通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所需电压值选一个对应型号的稳压管当然可以,但选得是否合适、是否最佳,却大有讲究。

最基本的电压基准源电路如图1(a)、稳压管的击穿特性如图1(b)所示。由图1(b)可见,不同稳压值的击穿特性并不相同,4V以下稳压管的击穿特性非常“软”(动态电阻可高达100Ω以上),其端电压随通过电流的不同、变化很大;而6V以上的特性就非常“硬”、尤以8V左右的特性最硬(动态电阻约4~15Ω),击穿电压越高动态电阻也越大,例如30V稳压管的动态电阻约为50~100Ω。

环境温度变化时稳压管的击穿特性还会产生漂移。6V以下的稳压管具有负温度系数、温度升高时稳压值减小。击穿电压越低则负温度系数越大,例如3V稳压管的温度系数约为-1.5mV/℃;6V以上为正温度系数、温度升高时稳压值增大,击穿电压越高的温度系数越大,例如30V稳压管的温度系数约为33mV/℃;而6V左右稳压管的温度系数最小、且在正负之间变化。因而在允许情况下应尽可能选用击穿特性较硬、温度系数最小的6V稳压管。这类稳压管的另一个缺点是同一型号管子其击穿电压的离散性很大,例如2CW1为7~8.5V、

2CW5 为11.5~14V,要想挑出合适电压值的管子是非常困难的。但如果对稳压值要求不高、电路又比较简单的场合,选用普通稳压管还是合适的。

如需要很低的基准电压,要求不高、而又不希望增加成本时,也可利用二极管的正向特性做为约0.7V的稳压管使用。笔者曾用图示仪对大量二极管的正向特性做过观察,发现稳压管的正向特性相对其它二极管而言最硬,整流管次之、开关管最差,因此可用稳压管正向串联的办法组成0.7V、1.4V、2.1V等的低压基准源,还可以通过改变通过电流的办法微调其端电压值。其温度系数约为-2mV/℃左右。

另一类常用的电压基准是采用半导体集成工艺生产的“基准二极管”和“精密电压基准”。“基准二极管”是一个双端单片式器件,其电特性和使用方法等同于稳压二极管,由于设计时已经考虑了动态电阻和温度系数问题,因而其性能(尤其是低电压器件)要比普通稳压管优越得多。例如LM103基准二极管,击穿电压分档:1.8、2.0、2.2、2.4、2.7、3.0、3.3、3.6、3.9、4.3、4.7、5.1、5.6V;动态电阻典型值:15Ω/0.13mA、5Ω/3mA、比稳压二极管低约10倍,因而可在比较小的电流(100 uA-1mA)下得到较稳定的基准电压。

另一类较常用的基准二极管如LM385-1.2、LM385-2.5、LM336-2.5、LM336-5具有更小的动态电阻(如LM385 仅1Ω、LM336-5仅0.6Ω、LM336-2.5仅0.2Ω),在很小的工作电流下即有很硬的特性、在10 uA电流下即可正常工作,而普通稳压管至少要在5~10mA下才能正常工作(严格讲并非不能工作,而是工作电流小时

其击穿特性非常软、电流的微小变化即可引起端电压的明显变化);温度系数低,典型值仅20ppm/℃、约25uV/℃,比普通稳压管低百倍以上;工作电压分别为1.235V、2.5V、5V且工作电压的离散性很小、仅1-2%,一般情况下具有互换性;价格也不贵,因而得到广泛使用。

在要求稳定性极高的应用场合、可以考虑选用自恒温电压基准LM199/299/399系列,其稳定电压典型值为6.95V、动态电阻典型值0.5Ω、LM199/299温度系数<1ppm/℃。LM399温度系数<2ppm。其最大的优点是温度系数极小,可以说是几乎不受环境温度的影响。这是因为在其基片上除集成了一个能隙式电压基准外。还另外制造了一个加热、控温电路,工作时需单独对加热电路供电、即可自动将芯片加热并控温在90℃,因此只要环境温度的变化在85℃以下、可以认为芯片的环境温度没有变化.自然不会产生温度漂移。为保证恒温效果.在其金属壳外另加了一个由保温材料聚砜制造的隔热外壳.其管脚排列如图2所示.典型应用电路如图3所示。

使用LM399时应注意的是,因其温度系数是有保证的.决定基准电压精度的主要矛盾转移到动态电阻上。在要求基准精度极高时.为基准芯片供电的工作电流必须恒定。如果如图3所示,基准芯片工作电流是由电源通过电阻提供,则要求供电电源必须恒定。笔者在研制高精度控温设备时发现,仅由普通三端稳压器如LM7809等次稳压供电的电源.在市电波动较大时其稳定度是不够的。相关实验数

据如附表所示:

市电200V 220V 240V

整流滤波直流电压11.2V 12.7V 14.05V

7809输出电压9.0229V 9.070V 9.109V

LM399输出电压6.86361V 6.86315V 6.86283V

由附表测试数据可见,市电±10%波动时、因7809输出电压仍有约86mV的变化,致使LM399基准芯片的工作电流亦产生微小变化。由于LM339的动态电阻并不为零,市电±10%的波动已造成基准电压约78 uV的变化。在高精度控制系统中.基准电压几个uV的变化就可能使系统精度超差。因此,在要求高稳定度的应用场合,最好对LM399的供电电源进行二次稳压,电路如图4所示。

定位基准选择解析

精密机械制造基础 定位基准的选择 一、定位基准的概念和类型 在加工时,用以确定零件在机床的正确位置所采用的基准,称为定位基准。它是工件上与夹具定位元件直接接触的点、线或面。如图11-14a所示零件,加工平面F和C时是通过平面A和D 放在夹具上定位的,所以,平面A和D是加工平面F和C的定位基准。又如图11-14b所示的齿轮,加工齿形时是以内孔和一个端面作为定位基准的。 根据工件上定位基准的表面状态不同,定位基准又分为精基准和粗基准。精基准是指已经经过机械加工的定位基准,而没有经过机械加工的定位基准为粗基准。 11-4基准分析图二、精基准的选择定位基准的选择应先选择精基准,再根据精基准的加工选择粗基准。选择精基准时,主要应考虑保证加

工精度和工件安装方便可靠。其选择原则如下: 1.基准重合原则 即选用设计基准作为定位基准,以避免定位基准与设计基准不重合而引起的基准不重合误差。当设计基准与定位基准不重合时,在加工误差中将会增加一个误差值,其值大小等于设计基准和定位基准之间的尺寸误差,这就是基准不重合误差。当基准重合时,则没有基准不重合误差。 图11-5表示具有相交孔的轴承座准备镗以O-O为中心线的孔。在该工序之前,零件的M、H、K 平面已加工好,并且M-H、H-K之间的尺寸为C+T及B+T。本工序要求镗出的孔中心线O-O距K 表面BC的尺寸为A+T。为此,工件可以考虑几个定位加工方案:A图11-15b所示方案以M面为定位基准。加工时采用“调整法”加工,即镗杆中心线距机床工件台或夹具定位元件工作表面间的位置已经调好,固定不变。这时获得的尺寸A的大小将和M-K面间的可能相对位置变化有关,其最大可能位置变化为尺寸B和C的公差之和,即 Δ=T +T C BB 尺寸的误差A面为定位基准。因工序基准与定位基准不重合而引起的H所示方案以11-15c图 精密机械制造基础 仅是H-K间的位置变化,即 Δ= T BB图11-15d所示方案以设计基准K面为定位基准,此时δ= 0 基准不重合由上例可知,加工中最好直接用设计基准作为定位基准,以便消除基准不重合误差。

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

TL431可调电压基准的接法

TL431可调电压基准的接法 TL431是一个小个头(如同普通小三极管封装)而又便宜的可调电压基准芯片。具体的参数大家可以参考其pdf文档说明,这里给出其两种最常用的接法。 1.这种接法提供 2.5V基准电压,简单适用。 2.该接法可以提供一个可以调节的基准电压。电压输出为2.5×(1+R2/R1)。

TL431的几种基本用法 TL431的几种基本用法 作者:Panic2006年10月9日 TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。 图(1)是TL431的典型接法,输出一个固定电压值,计算公式是:Vout = (R1 +R2)*2.5/R2, 同时R3的数值应该满足1mA < (Vcc-Vout)/R3 < 500mA 当R1取值为0的时候,R2可以省略,这时候电路变成图(2)的形式,TL431在这里相当于一个2.5V稳压管。 利用TL431还可以组成鉴幅器,如图(3),这个电路在输入电压Vin < (R1+R2) *2.5/R2 的时候输出Vout为高电平,反之输出接近2V的电平。需要注意的是当Vin在(R1+R2)*2.5/R2附近以微小幅度波动的时候,电路会输出不稳定的值。

TL431可以用来提升一个近地电压,并且将其反相。如图(4),输出计算公式为:Vout = ( (R1+R2)*2.5 - R1*Vin )/R2 特别的,当R1 = R2的时候,Vout = 5 - Vin。这个电路可以用来把一个接近地的电压提升到一个可以预先设定的范围内,唯一需要注意的是TL431的输出范围不是满幅的。 TL431自身有相当高的增益(我在仿真中粗略测试,有大概46db),所以可以用作放大器。 图(5)显示了一个用TL431组成的直流电压放大器,这个电路的放大倍数由R1和Rin决定,相当于运放的负反馈回路,而其静态输出电压由R1和R2决定。这个电路的优点在于,它结构简单,精度也不错,能够提供稳定的静态特性。缺点是输入阻抗较小,Vout的摆幅有限。

110KV变电站设计,110kv,35kv,10kv,三个电压等级

第1章原始资料及其分析 绪论 电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。 由于电能在工业及国民经济的重要性,电能的输送和分配是电能应用于这些领域不可缺少的组成部分。所以输送和分配电能是十分重要的一环。变电站使电厂或上级电站经过调整后的电能输送给下级负荷,是电能输送的核心部分。其功能运行情况、容量大小直接影响下级负荷的供电,进而影响工业生产及生活用电。若变电站系统中某一环节发生故障,系统保护环节将动作。可能造成停电等事故,给生产生活带来很大不利。因此,变电站在整个电力系统中对于保护供电的可靠性、灵敏性等指标十分重要。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。这就要求变电所的一次部分经济合理,二次部分安全可靠,只有这样变电所才能正常的运行工作,为国民经济服务。 变电站是汇集电源、升降电压和分配电力场所,是联系发电厂和用户的中间环节。变电站有升压变电站和降压变电站两大类。升压变电站通常是发电厂升压站部分,紧靠发电厂,降压变电站通常远离发电厂而靠近负荷中心。这里所设计得就是110KV降压变电站。它通常有高压配电室、变压器室、低压配电室等组成。 变电站内的高压配电室、变压器室、低压配电室等都装设有各种保护装置,这些保护装置是根据下级负荷的短路、最大负荷等情况来整定配置的,因此,在发生类似故障是可根据具体情况由系统自动做出判断应跳闸保护,并且,现在的跳闸保护整定时间已经很短,在故障解除后,系统内的自动重合闸装置会迅速和闸恢复供电。这对于保护下级各负荷是十分有利的。这样不仅保护了各负荷设备的安全有利于延长使用寿命,降低设备投资,而且提高了供电的可靠性,这对于提高工农业生产效率是十分有效的。工业产品的效率提高也就意味着产品成本的降低,市场竞争力增大,进而可以使企业效益提高,为国民经济的发展做出更大的贡献。生活用电等领域的供电可靠性,可以提高人民生活质量,改善生活条件等。可见,变电站的设计是工业效率提高及国民经济发展的必然条件。 原始资料 待建变电站是该地区农网改造的重要部分,预计使用3台变压器,初期一次性投产两台变压器,预留一台变压器的发展空间。 电压等级 变电站的电压等级分别为110kV、35kV、10kV。 110kV :2回 35kV :5回(其中一回备用) 10kV :12回(其中四回备用) 变电站位置示意图:

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

电压基准芯片的参数解析及应用技巧(精)

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

用户自用发电厂升压站额定电压选择

用户自用发电厂升压站额定电压选择 摘要:电压等级一般由系统容量和输送距离确定,当电压等级确定后,额定电 压选取1.05U(U为系统标称电压)还是1.1U就成了设计时必须考虑的问题。本 文笔者结合工程项目实例,分析规范条文,研究电压配合的原则,对用户自用发 电机组升压站额定电压的选择进行了细致的论述,得出了用户自用发电厂升压站 额定电压应按1.05U选择的结论,并提出了变压器电压选择时配合的一般原则。 关键字:自用电厂升压站额定电压 1.05U 引言 发电机升压站二次电压额定值一般取1.1U(U为系统标称电压),但对于用 户自用发电厂升压站因其电量是以自用为主,就地消化,额定电压的选择会有更 多的限制条件。 1.工程项目实例 1.1项目情况 某钢铁厂,共设110kV、35kV、10kV、6kV、0.38/0.22kV五个电压等级。建厂初期电源取自供电公司35kV电网,后经扩建主供电源取自供电公司110kV电网。 厂内电力网规划拟淘汰现有35kV电网接入点,全厂由110kV系统供电。 1.2新建自用机组接入 钢铁厂拟利用高炉煤气发电,建设65MW自用发电站一座,发电机机端电压10.5kV,考虑经变压器升压至35kV后并网运行。 结合厂内电力网规划,钢厂拟改造110kV变电站内1#主变,增加35kV绕组 用于发电机并网。 1.3并网额定电压设计 (1)常规电压设计 常规设计时,发电机升压变高压侧额定电压按设计规范[1][2]选择应为38.5kV,即1.1U。当隔离出发电机组、升压变以及110kV并网变压器,孤立来看发电并网 系统时,机组升压后采用38.5kV电压,是没有问题的。 (2)按常规设计存在的问题 此处发电机组为用户自用机组,发电量以自用为主,考虑现有35kV系统或未来扩建的35kV系统(用户端系统,额定电压为35kV),此处采用38.5kV的额定 电压将引起一系列问题。 根据文献[3] 第4.3条,我国35kV电压等级的标称电压为35kV,设备最高运 行电压为40.5kV。各类电气设备的绝缘均按正常35kV最高40.5kV设计。如强行 将35kV系统额定电压提高至38.5kV,那么35kV电力设备(开关、变压器、电缆等)将长期处于1.1倍过电压运行状态。 同时,随着35kV母线电压的升高,35kV系统下的降压变压器二次电压也将 会提升。据计算,35kV电压升至38.5kV后,该厂35kV系统下干熄焦6kV母线电 压将会由6.3kV提升至6.9kV,计及分接头的作用,6kV母线电压波动范围将是 6.6- 7.3kV。而6kV母线上的西门子干熄焦风机变频器的过电压保护动作值为 6.5kV,此时变频器将因过电压保护动作而跳闸。 1.4用户自用发电厂升压站额定电压选择 由上述分析可知,用户自用发电厂升压站额定电压应按1.05U选择。 2.额定电压配合关系分析 各种电气设备的额定电压的配合原则是:以用电设备的额定电压为参考,即

定位粗基准选择解析

定位粗基准的选择 以未加工过的表面进行定位的基准称为粗定位基准,简称粗基准。当毛坯加工完成后,零件进入机械加工过程的第一道工序,其定位基准必然时毛坯表面,即粗基准。选择粗基准时应遵循以下基本原则: 一、选择重要表面为粗基准 图1 如图所示,在床身加工中,导轨面时最重要的工作表面,要求加工时切去薄而均匀的一层金属,使其保留铸造时在导轨面所形成的均匀而细密的金相组织,以便增加导轨的耐磨性。因此,在第一道工序中,应选择导轨面作为车床床身的粗基准加工床脚。在第二道工序中,再以已加工的床脚底平面作为精基准加工导轨面,这样导轨面的加工余量可以小而均匀,加工后表层金相组织均匀,力学性能基本相同,在使用过程中表面的磨损就会比较均匀。 二、选择加工余量小的表面为粗基准 图2

如图阶梯轴毛坯,毛坯大小头的同轴度误差为3mm,小头的加工余量为5mm.而大头的加工余量为8mm,以加工余量最小的小头作粗基准加工大头,则加工余量足够。如果反过来采用大头作粗基准加工小头,则小头的加工余量不足,继续加工会导致工件报废。 三、选择不需加工并且与加工表面有相互位置精度要求的表面为粗基准。 图3 如图所示,如果采用不加工的A面作粗基准加工内孔,则加工后内孔与不加工表面A面的同轴度好;如果采用内孔B面做粗基准加工内孔,则加工后内孔与不加工表面A面的同轴度不好。 四、选择比较光洁、平整、面积足够大、装夹稳定的表面作粗基准,不允许有锻造飞边和铸造浇道、冒口或其他缺陷,以确保定位准确,加紧可靠。 五、粗基准在同一尺寸方向上只允许在第一道工序中使用一次,不得重复使用,以避免产生较大的定位误差。 图4 如图所示,工件以表面B为粗基准加工表面A之后,如果仍以表面B为粗基准加工表面C,由于不能保证工件轴心线在前后两次装夹中位置的一致性,就必然导致加工出来的表面A 与C之间产生较大的同轴度误差。 六、在处理上述由粗基准向精基准过渡的问题时,在下列情况下可以例外:

基准电压模块mc1403

MC1403简介 MC1403是低压基准芯片。一般用作8~12bit的D/A芯片的基准电压等一些需要基本精准的基准电压的场合。 输出电压: 2.5 V +/- 25 mV 输入电压范围: 4.5 V to 40 V 输出电流: 10 mA 芯片引脚图: .........+--+--+--+ ...Vin.|1.+---+.8|.NC .Vout.|2..........7|.NC .GND.|3..........6|.NC ....NC.|4..........5|.NC .........+---------+ 因为输出是固定的,所以电路很简单。就是Vin接电源输入,GND 接底,Vout加一个0.1uf~1uf的电容就可以了。Vout一般用作8~12bit的D/A芯片的基准电压。 MC1403是美国摩托罗拉公司生产的高准确度、低温漂、采用激光修正的带隙基准电压源,国产型号为5G1403和CH1403。它采用

DIP-8封装,引脚排列如图7-1-2所示。UI=+4.5V~+15V,UO =2.500V(典型值),αT可达10×10-6/℃。为了配8P插座,还专门设置了5个空脚。其输出电压UO=Ug0(R3+R4)/R4= 1.205× 2.08=+2.5V。 MC1403的输入-输出特性 输入电压UI/V 10 9 8 7 6 5 4.5 输出电压UO/V 2.5028 2.5028 2.5028 2.5028 2.5028 2.5028

2.5027 当UI从10V降至4.5V时,UO只变化0.0001V,变化率仅为-0.0018%。

测量基准面和基准线解析

测绘地理信息技术专业教学资源库 - 1 - 测量工作的基准面和基准线 地球是一个极其不规则的旋转椭球体,地球表面有高山、丘陵、平原、盆地、海洋等。最高处珠穆朗玛峰高出海平面8844.43mm ,海洋最深处的马利亚纳海沟深11022.0m ,看起来起伏变化非常之大,但是这种起伏变化与庞大的地球(半径约6 371 km)比较起来是微不足道的。同时,就地球表面而言,海洋面积约占71%,陆地仅占29%,所以海水面所包围的形体基本上代表了地球的形状和大小。于是设想有一个静止的海水面,向陆地延伸而形成一个封闭的曲面,这个曲面称为大地水准面(任何一个静止的液体表面都叫做水准面)。由于受太阳、月亮、地球三者引力的影响,出现潮汐,海水面时高时低,所以大地水准面很难确定,对不同的国家或地区来说,通过验潮确定平均海水面,作为该国家或地区的大地水准面。大地水准面所包围的形体称为大地体,大地体就代表了地球的形状和大小。 水准面的特性是处处与铅垂线(重力作用线)垂直。水准面和铅垂线是测量工作所依据的基准面和基准线。 由于地球内部物质分布不均匀,致使铅垂线方向产生不规则变化,因而使大地水准面成为一个有微小起伏的不规则曲面,如图4所示。在这个面上无法进行测量的计算工作,于是人们选择了一个与大地体形状和大小较为接近的旋转椭球来代替大地体,通过定位使旋转椭球与大地体的相对位置固定下来。选定了形状和大小,并在地球上定位的旋转椭球称为参考椭球。参考椭球的表面是一个规则的数学曲面,它是测量计算和投影制图所依据的基准面。 参考椭球的元素有长半径a 、短半径b 和扁率α(a b a α-=) ,只要知道其中两个元素,即可确定参考椭球的形状和大小,通常采用a 和a 两个元素。我国过去采用的是克拉索夫斯基椭球(a=6 378 245 m, α=1:298.3),由于该椭球的表面与我国大地水准面情况不相适应,故自1980年以后,采用国际大地测量与地球物理协会(IUGG)1975年十六届大会推荐的椭球(a = 6 378 140 m , α =1: 298.257 )。由于参考椭球的扁率很小,在普通测量中又近似地把大地体视做圆球体,其半径采用与参考椭球同体积的圆球半径,其值R=6371 km 。当测区范围较小时,又可以将该部分球面当成平面看待,亦即将水准面当成平面看待,称之为水平面。 图4 大地水准面示意图

电压基准源的选择

电压基准源的选择 在DAC和DAC里面都有电压基准源,它可以是芯片内部提供的基准也可以是外接的电压基准芯片。 基准源的类型 两种常见的基准源是齐纳和带隙基准源。齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。选择依据如下表: 并联结构的齐纳基准与串联结构的带隙基准的对照表。 表1.电压基准对照表 齐纳二极管缺点: 1)精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。例如: BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V 之间变化,即精确度为±8%,这只适合低精度应用。 2)齐纳基准源的另一个问题是它的输出阻抗。上例中器件的内部阻抗为5mA 时100Ω和1mA时600Ω。非零阻抗将导致基准电压随负载电流的变化而发生变化。选择低输出阻抗的齐纳基准源将减小这一效应。 所以在高精度应用的场合通常用带隙基准源。如14bit,210MSPS(刷新速率 UpDate Rate)的DAC9744内部就带一个2.1V的带隙基准源。

AD9744内部基准源配置 AD9744外部基准源配置 AD9744基准源配置管脚 (这个是AD9742的基准源配置管脚,AD9744的我怀疑错了,AD9742是与AD9744同系列的,一样管脚,只是AD9742是12bit,AD9744 16bit) REFLO——内部参考基准源地端。当使用内部1.2V参考基准源时,接AGND。当使用外部参考源时,接AVDD REFIO——参考基准源输入输出/输入端。 REFLO=AVDD,内部参考基准源无效,REFIO用作外部参考基准源输入。 REFLO=AGND=ACOM,REFIO用作内部基准源1.2V输出(100nA),REFIO 接0.1μF接ACOM(AGND)。

基本知识介绍_电压等级的划分及电压等级的选择--转载

基本知识介绍 ———电压等级的划分及电压等级的选择 汤继东 1.电压等级的划分 1.1中低压电压等级 低压系统标称电压见表1。 表1 低压系统标称电压(V) 50HZ 我国标准I EC推荐标准 60HZ 220/380230/400120/240(单相三线)277/488 380/660400/690347/600 1000600 在低压系统中,国外有的采用240/415V,如果采用I EC推荐标准230/400V系统,对于我国及使用240/415V的国家来说,在过渡期内,只要调一下电力变压器的接头即可,而电气设备也不必作改动,完全能适应新系统的要求。 中压系统的标称电压见表2。 表2 交流50HZ(60HZ)系统标 称电压及设备的最高电压 系统标称电压(kV) 系列1系列2 设备的最高电压(kV) 3 3.3 3.6 6 6.67.2 101112 1517.5 202224 3336 3540.2 表2的数据是根据I EC60038给出的数据,我国采用系列1的参数,对于33kV与35kV级,I EC正考虑制定一个统一标准。 设备的最高电压实际上规定为设备的额定电压,这里所讲的“设备”,不是指电动机,电动机的额定电压应与系统电压一致,例如在3k V、6k V及10k V 系统中,所用电动机的额定电压也分别为3k V、6k V 及10k V。这里所指“设备”为成套开关柜、熔断器、电压及电流互感器及各种开关设备而言,设备的最高电压或额定工作电压与标称电压系列2相比,一般不高出10%(约为9%),与标称电压系列1相比,一般不高出20%。 不论中压还是低压,在我国尚有些电压等级亟需尽快普及与推广。例如,在中压系统中,20kV电压等级应用得不够普遍,笔者认为,作为中压配电, 20kV比10k V优越。由于20kV比10k V电压高一倍,输出同样功率,线路有功损耗只为10kV线路的1/4。在同样的线路电压损失下,输送同样的功率20kV比10k V电压输送距离高出1倍,或者输送距离一样情况下,20kV比10k V输送容量增加一倍。 目前推行使用20kV电压系统,不论从技术还是从设备上皆不存在问题,传输电缆有专用此电压等级用的12/20(24)kV级电缆,至于成套中压柜,额定电压35k V级早已成熟。生产20kV系统用的额定电压24k V的成套开关柜更无问题,由于20k V 系统尚无普及,与此相适的额定电压24k V成套开关柜生产厂家很少,但可采用40.5kV开关壳体,作为过渡阶段使用,完全能满足使用要求,不过外形体积大了一些罢了。 目前采用660V级标称电压,更没有技术及设 信息技术  电气工程应用2009.245

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

110KV变电站设计,110kv,35kv,10kv,三个电压等级

第1章原始资料及其分析 1.1 绪论 电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。 由于电能在工业及国民经济的重要性,电能的输送和分配是电能应用于这些领域不可缺少的组成部分。所以输送和分配电能是十分重要的一环。变电站使电厂或上级电站经过调整后的电能输送给下级负荷,是电能输送的核心部分。其功能运行情况、容量大小直接影响下级负荷的供电,进而影响工业生产及生活用电。若变电站系统中某一环节发生故障,系统保护环节将动作。可能造成停电等事故,给生产生活带来很大不利。因此,变电站在整个电力系统中对于保护供电的可靠性、灵敏性等指标十分重要。 变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。这就要求变电所的一次部分经济合理,二次部分安全可靠,只有这样变电所才能正常的运行工作,为国民经济服务。 变电站是汇集电源、升降电压和分配电力场所,是联系发电厂和用户的中间环节。变电站有升压变电站和降压变电站两大类。升压变电站通常是发电厂升压站部分,紧靠发电厂,降压变电站通常远离发电厂而靠近负荷中心。这里所设计得就是110KV降压变电站。它通常有高压配电室、变压器室、低压配电室等组成。 变电站内的高压配电室、变压器室、低压配电室等都装设有各种保护装置,这些保护装置是根据下级负荷的短路、最大负荷等情况来整定配置的,因此,在发生类似故障是可根据具体情况由系统自动做出判断应跳闸保护,并且,现在的跳闸保护整定时间已经很短,在故障解除后,系统内的自动重合闸装置会迅速和闸恢复供电。这对于保护下级各负荷是十分有利的。这样不仅保护了各负荷设备的安全有利于延长使用寿命,降低设备投资,而且提高了供电的可靠性,这对于提高工农业生产效率是十分有效的。工业产品的效率提高也就意味着产品成本的降低,市场竞争力增大,进而可以使企业效益提高,为国民经济的发展做出更大的贡献。生活用电等领域的供电可靠性,可以提高人民生活质量,改善生活条件等。可见,变电站的设计是工业效率提高及国民经济发展的必然条件。

常用煤质指标和常用基准解析

常用煤质指标和常用基准 一、煤炭运销常用煤质指标、含义与表示 (一)水分(Moisture) 水分符号:M,单位:%,是一项重要的煤质指标,煤的水分对其加工利用、贸易、运输和储存都有很大的影响。一般说来,水分高要影响煤的质量。在煤的利用中首先遇到的是煤的破碎问题,水分高的煤就难以破碎;在锅炉燃烧中,水分高就影响燃烧稳定性和热传导;在炼焦时,水分高会降低焦产率;而且由于水分大量蒸发带走热量而延长焦化周期;在煤炭贸易中,水分也是一个定质和定量的主要指标,故在签订销煤合同时,用户一般都会提出煤中水分的限值。 煤的水分简单地说分为:全水分、内在水分、外在水分、结晶水和分解水,在实际测定中只能测煤的全水分、内在水分、外在水分和最高内在水分,而不测定结晶水和分

解水。 日常所说的煤的水分是指,在环境温度和湿度下,煤与大气达到接近平衡时所失的那部分水(外在水)和留下来的内在水分,它们的测值随测定环境的温度和湿度改变而发生变化,这也是为什么矿发煤与用户的水分往往有较大差异的原因。 煤炭运销中常用的水分指标有:全水(符号:Mt),全水分包括外在水分和内在水分;一般分析煤样水分(也称空干基水分,符号:Mad ),它是指分析用煤样(<0.2mm)在实验室大气中达到平衡后所保留的水分,也可以认为是内在水分。有时用户也会要求使用收到基水分(符号:Mar),一般可认为Mar=Mt。 (二)灰分(Ash ) 煤中灰分符号:A,单位:%,是另一项在煤质特性和利用中起重要作用的指标,它与含碳量、发热量、结渣性、可磨性等有不同程度的依赖关系。在煤燃烧和气化中,根据煤的灰分以及灰熔融性、灰粘度、导电性、化学组成等特性来预测燃烧和气化中可能出现的腐蚀、沾污、结渣等问

产生稳定电压的基准电压元件

产生稳定电压的基准电压元件 技术分类:电源技术 | 2010-12-28 Paul Rako,EDN技术编辑: EDN China 基准电压元件是低输出功率的线性稳压电源,它提供一个固定的(或恒定的)电压,而与器件负载、电源变动、温度变化以及时间无关。基准电压元件遍布于电源稳压器、数据采集系统、ADC、DAC,以及其它各种测量与控制系统中。虽然基准电压元件无处不在,但性能却有很大不同。例如,一款用于计算机电源的稳压器可能要将其值稳定在标称值附近的几个百分点以内,而实验室基准电压元器件的精度与稳定性要以百万分之一计。 几十年前的基准电压元器件提供的初始精度只有±10%,而现代的基准电压IC可以提供100 ppm(即0.01%)的初始精度。Analog Devices公司应用工程经理Reza Moghimi指出:“我们试图要让器件对线路、负载和温度的变动不敏感,以用于工业、科研与医疗市场中高要求的任务。”这些市场中的专业公司也可以很容易地进入对精度要求很严格军用市场与汽车市场。] 稳压芯片亦有串联与并联之分(图1与参考文献1)。串联稳压器有两只分别用于输入电源与地的管脚;第三只管脚输出一个固定的或可调的电压。双端并联稳压器工作在一个限流的固定电压下。实际上每个稳压器采用的都是并联架构,因为一个串联基准电压元件也不过是一个并联基准电压元件加上一个电流馈送电路和一个缓冲输出。

在电子业的早期,工程师们是采用霓虹辉光管作基准电压元件(图2)。霓虹辉光管是一个有两只导电端子的玻璃容器,其中填充了稀薄的惰性气体(具有类似特性的化学元素)。在标准情况下,惰性气体都是无嗅、无色的单原子气体,化学活性低。自然界存在的六种惰性气体是:氦、氖、氩、氪、氙和氡。当在这些气体上施加66V?200V的直流电压时,它们会被电离。一旦发生了离子击穿,则辉光管两侧的电压就降至直流48V?80V的维持电压。如果跨辉光管的电压跌至低于这个维持电压,灯就会熄灭,必须再次为其施加离子击穿电压,使之发光(图3)。一只霓虹辉光管工作时通过的电流低至10A?12A,或1 pA。1996年,Signalite做出了可以在±0.5V内稳压的辉光管(参考文献2)。 不过到了20世纪70年代,齐纳二极管(为并联式基准电压元件)取代了这些冷阴极辉光管(图4)。齐纳二极管的名称源于研究者Clarence Zener,他发现了这个效应(参考文献3)。虽然一些工程师将齐纳二极管看作雪崩二极管,但这两种二极管的物理原理并不相同(参考文献4、5、6)。齐纳击穿源于通过一个PN结产生量子力学隧道效应的电荷载流子。这种击穿出现在重掺杂的节点。PN结上的大电场加速电荷载流子,使之形成雪崩击穿。这些高速载流子造成碰撞电离,随之又造成了电荷载流子的倍增。这种效应出现在轻掺杂的PN结。齐纳二极管制造商通过改变PN

我国电压等级

我国最高交流电压等级是750KV(兰州---官亭线),其下有500、330、220、110、(60)、35、10KV,380/220V,国家电网公司正在实验1000KV特高压交流输电; 我国最高直流电压等级为正负500KV(葛洲坝---上海南桥线、天生桥---广州线、贵州---广东线、三峡---广东线),另有正负50KV(上海---嵊泗群岛线),100KV(宁波---舟山线),南方电网公司将建设正负800KV特高压直流输电线。 目前我国常用的电压等级:220V、380V、6kV、10kV、35kV、110kV、220kV、330kV、500kV。电力系统一般是由发电厂、输电线路、变电所、配电线路及用电设备构成。通常将35kV及35kV以上的电压线路称为送电线路。10kV及其以下的电压线路称为配电线路。将额定1kV以上电压称为“高电压”,额定电压在1kV以下电压称为“低电压”。我国规定安全电压为36V、24V、12V三种。 随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,特别是静止变流器,从低压小容量家用电器到高压大容量用的工业交直流变换装置,由于静止变流器是以开关方式工作的,会引起电网电流、电压波形发生畸变,引起电网的谐波“污染”。另外,冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等运行中不仅会产生大量的高次谐波,而且使得电压波动、闪变、三相不平衡日趋严重,这些对电网的不利影响不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,造成对电网的“公害”,为此,国家技术监督局相继颁布了涉及电能质量五个方面的国家标准,即:供电电压允许偏差,供电电压允许波动和闪变,供电三相电压不允许平衡度,公用电网谐波,以及供电频率允许偏差等的指标限制。 1.电压允许偏差 用电设备的运行指标和额定寿命是对其额定电压而言的。当其端子上出现电压偏差时,其运行参数和寿命将受到影响,影响程度视偏差的大小、持续的时间和设备状况而异,电压偏差计算式如下: 电压偏差(%)=(实际电压-额定电压)/额定电压×100% (1) 《电能质量供电电压允许偏差》(GB12325-90)规定电力系统在正常运行条件下,用户受电端供电电压的允许偏差为: (1)35kV及以上供电和对电压质量有特殊要求的用户为额定电压的+5%~-5%; (2)10kV及以下高压供电和低压电力用户为额定电压的+7%~-7%; (3)低压照明用户为额定电压的+5%~-10%。 为了保证用电设备的正常运行,在综合考虑了设备制造和电网建设的经济合理性后,对各类用户设备规定了如上的允许偏差值,此值为工业企业供配电系统设计提供了依据。 在工业企业中,改善电压偏差的主要措施有三: (1)就地进行无功功率补偿,及时调整无功功率补偿量,无功负荷的变化在电网各级系统中均产生电压偏差,它是产生电压偏差的源,因此,就地进行无功功率补偿,及时调整无功功率补偿量,从源上解决问题,是最有效的措施。 (2)调整同步电动机的励磁电流,在铭牌规定植的范围内适当调整同步电动机的励磁电流,使其超前或滞后运行,就能产生超前或滞后的无功功率,从而达到改善网络负荷的功率因数和调整电压偏差的目的。 (3)采用有载调压变压器。从总体上考虑无功负荷只宜补偿到功率因数为0.90~0.95,仍然有一部分变化无功负荷要电网供给而产生电压偏差,这就需要分区采用一些有效的办法来解决,采用有载调压变压器就是有效而经济的办法之一。 2.公用电网谐波 谐波(Harmonic)即对周期性的变流量进行傅里叶级数分解,得到频率为大于1的整数倍基

电压基准芯片大全

LM236D-2-5:2.5V基准电压源 400uA~10mA宽工作电流 LM236DR-2-5:2.5V基准电压源 400uA~10mA宽工作电流 LM236LP-2-5:2.5V基准电压源 400uA~10mA宽工作电流 LM285D-1-2:微功耗电压基准. 10uA~20mA宽工作电流 LM285D-2-5:微功耗电压基准. 10uA~20mA宽工作电流 LM285LP-2-5:微功耗电压基准. 10uA~20mA宽工作电流 LM336BD-2-5:2.5V基准电压源. 10uA~20mA宽工作电流 LM336BLP-2-5:2.5V基准电压源 LM385BD-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流 LM385BD-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流 LM385BLP-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流LM385BLP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流LM385BPW-1-2:微功耗电压基准. 15uA~20mA宽工作电流 LM385BPW-2-5:微功耗电压基准. 15uA~20mA宽工作电流 LM385D-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流 LM385DR-1-2:1.2V精密电压基准. 15uA~20mA宽工作电流 LM385DR-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流 LM385LP-2-5:2.5V精密电压基准. 15uA~20mA宽工作电流 LM385PW-1-2:1.2V微功率基准电压源. 15uA~20mA宽工作电流LM385PW-2-5:2.5V微功率基准电压源. 15uA~20mA宽工作电流REF02AP:+5V精密电压基准 REF02AU:+5V精密电压基准 REF02BP:+5V精密电压基准 REF02BU:+5V精密电压基准 REF1004I-2.5:+2.5V精密电压基准 REF102AP:10V精密电压基准 REF102AU:10V精密电压基准 REF102BP:10V精密电压基准 REF200AU:双电流基准 REF2912AIDBZT:1.2V电压基准 REF2920AIDBZT:2V电压基准 REF2925AIDBZT:2.5V电压基准 REF2930AIDBZT:3V电压基准 REF2933AIDBZT:3.3V电压基准 REF2940AIDBZT:4V电压基准 REF3012AIDBZT:1.25V,50ppm/℃,50uASOT23-3封装电压基准REF3020AIDBZT:2.048V,50ppm/℃,50uASOT23-3封装电压基准REF3025AIDBZT:2.5V,50ppm/℃,50uASOT23-3封装电压基准

相关主题
文本预览
相关文档 最新文档