当前位置:文档之家› 化学镀法制备银包覆超细铜粉反应工艺研究

化学镀法制备银包覆超细铜粉反应工艺研究

化学镀法制备银包覆超细铜粉反应工艺研究
化学镀法制备银包覆超细铜粉反应工艺研究

第30卷 第1期

2008年1月武 汉 理 工 大 学 学 报JOURNA L OF WUHAN UNIVERSIT Y OF TECHN OLOG Y Vol.30 No.1 Jan.2008

化学镀法制备银包覆超细铜粉反应工艺研究

徐 锐1,2,周康根1,王 飞3

(1.中南大学冶金科学与工程学院,长沙410083;2.河南科技大学化工与制药学院,洛阳471003;

3.洛阳单晶硅厂,洛阳471000)

摘 要: 反应体系中引入强还原剂水合肼,通过反应条件的控制抑制置换反应,使银氨溶液优先发生液相还原反应,制备了与原铜粉粒径和形貌大致相同的铜2银双金属粉;采用XRD 、EDX 、激光粒度分析仪等检测方法对包覆双金属粉的晶相组成及含量、表面包覆层相组成及含量以及粒径分布等加以研究。研究表明:溶液的p H 、反应温度、PVP 加入量以及水合肼浓度是工艺的主要影响因素;水合肼还原法经过3次包覆后,铜粉表面形成连续的银膜,克服了置换反应消耗过多的铜粉、制备的铜2银双金属粉呈胶状不易洗涤、干燥后易于结块等不足。

关键词: 水合肼; 超细铜粉; 双金属粉; 工艺

中图分类号: TF 123文献标识码: A 文章编号:167124431(2008)0120024204

R esearch on the T echnics of Silver 2coating U ltra 2f ine Coppers

via Electroless Plating

X U R ui 1,2,ZHO U Kang 2gen 1,W A N G Fei 3

(1.School of Metallurgy Science and Engineering ,Central S outh University ,Changsha 410083,China ;

2.School of Chemical and Pharmaceutical Engineering ,Henan University of Science and Technology ,

Luoyang 471003,China ;3.Luoyang Single Crystal Silic Factory ,Luoyang 471000,China )

Abstract : 

Cu 2Ag bimetallic powders whose grain size was similar to the copper powders ,were prepared by reduction reac 2tion with hydrazine as the reducing agent by means of inhibiting substitution https://www.doczj.com/doc/df12048486.html,position and content for the coated copper powders ,composition and content of the coated 2surface and particle size distribution are characterized in turn by XRD ,EDX and MICRD 2PLUS.The investigation shows that the main influence factors on technics are p H in solution ,temperature ,the adding of PVP ,concentration of hydrazine and so on ;a continuous silver film is formed on the surface of copper powder by three 2times coating ,the problem on consumption of copper powder itself ,colloid Cu 2Ag bimetallic powder which is not easily washed agglomerate after drying overcome.

K ey w ords : hydrazine ; ultra 2fine copper ; bimetallic powders ; technics

收稿日期:2007209219.

基金项目:国家自然科学基金(50474047).

作者简介:徐 锐(19682),男,博士生.E 2mail :xrxr2001@https://www.doczj.com/doc/df12048486.html,

非电镀包覆技术是利用还原剂将溶液中的金属盐还原成金属状态,在此过程中不需要利用电压[1],包覆技术广泛应用于微电子学、计算机工程、催化以及航空技术等等[224],其特点在于对于任何形状的金属、电介质以及半导体的颗粒均能获得均匀的包覆,而且能够控制包覆层的物理化学性质(导电性、化学和磁力性质)。由于可作为真空沉淀技术和化学气相沉积(CVD )的替代方法或补充技术,非电镀包覆引起了广泛关注。目前小尺寸大容量多层陶瓷电容器(MLCC )贱金属化已成为一种趋势,作为铜、镍等贱金属取代贵金属钯、银充当内电极材料是一种降低MLCC 价格的有效措施;然而,铜内电极在烧结过程中易于氧化,生成难

导电的氧化物,其应用受到大大的限制。超细铜粉表面包覆抗氧化性银可解决上述问题。

目前制备核壳型铜2银双金属粉的方法主要是置换法,即用铜粉去置换[Ag (N H 3)2]+,该法又被称为化学镀法[529]。采用铜粉直接置换[Ag (N H 3)2]+的银,由于反应体系中铜粉本身作为还原剂参与反应,生成的Cu 2+在体系中生成[Cu (N H 3)4]2+,微细铜粉具有很高的表面吉布斯自由能,易发生竞争吸附,且优先吸附铜氨配离子,排斥银氨配离子与铜粉的接触,制止了银在其表面沉积,一次性包覆只能得到点缀型结构;另外制备的铜2银双金属粉呈胶体状,不易洗涤,干燥易于结块。

文中介绍了一种新的包覆技术即液相还原法,该法在反应体系中引入还原剂水合肼,通过反应条件的控制使[Ag (N H 3)2]+优先发生还原反应,抑制置换反应,解决了上述置换反应的不足,该体系易于得到包覆结构,又不消耗过多铜粉。

1 实 验

1.1 主要试剂

微米级铜粉:浙江省新昌县恒升金属纳米材料有限公司,筛分得到200—300目铜粉;硝酸银:上海精细化工材料研究所,分析纯;氯化亚锡:广东汕头市西陇化工厂,分析纯。

1.2 微米级铜粉预处理铜粉表面氧化膜的除去:取一定量的微米级铜粉用5%(质量分数)稀硫酸洗涤,然后用蒸馏水洗涤至无Cu 2+为止(六氰合铁酸钾检测)。铜粉表面敏化及活化处理:除去氧化膜的铜粉加入到含10g ?L -1SnCl 2?2H 2O 的盐酸溶液中,常温下搅拌2h ,洗涤后转移至10g ?L -1AgNO 3氨溶液中,搅拌2h ,过滤、充分洗涤至无Cl -。

1.3 核壳型铜2银双金属粉的制备

1)将5g 预处理的铜粉、若干PVP 置于乙醇和水混合溶液中,搅拌分散1h ;2)称取适量硝酸银用氨水溶解,形成银氨溶液;3)将反应器中溶液加水定容至200mL ,搅拌30min ,滴加还原剂水合肼溶液,待反应完毕后过滤、水洗、乙醇洗,40℃真空下干燥,得到铜2银双金属粉。随着反应条件不同,得到铜2银双金属组分含量和结构亦不相同。

1.4 铜2银双金属粉表征

日本理学D/max 22500型X 2ray 表征包覆双金属粉的晶相组成;日本电子公司J SM 26369LV 型光电子能谱表征铜2银双金属粉表面的相组成及含量;英国Malvern Instruments Ltd 型号M ICRD 2PL US 表征铜2银双金属粉的粒径分布。

2 结果与讨论

2.1 pH 影响

水合肼作为强还原剂,廉价易得,还原能力强,它的氧化产物是极为干净的N 2,不致引进有害杂质。水合肼液相还原法制备铜2银双金属粉是作为还原剂的水合肼将溶液中的银氨溶液中的Ag +还原析出金属银的过程。从反应过程来看,总反应是由2个半反应组成的氧化还原电池反应:

还原反应Ag (N H 3)+2+e =Ag ↓+2N H 3

(1)电极电动势

φ0=0.373V 氧化反应

N 2H 4+4OH -=N 2↑+4H 2O (2)电极电动势φ0=[-0.334-0.059p H]V

总电池电动势E =[0.707+0.059p H]V

式(2)及总电动势中均涉及氢氧根离子,溶液的p H 势必影响总电池电动势。另外在液相还原体系中,由于金属铜比银活性强,溶液中存在置换反应,且反应电动势较大,为0.348V 。为了充分发挥氧化还原反应,抑制置换反应,就必须增加总电动势,也就是增加溶液的p H ,因此反应体系选择在碱性溶液,且p H 大于9为宜。当p H 小于8时,反应液呈浅蓝色,证明置换反应没有得到充分抑制。

52第30卷 第1期 徐 锐,等:化学镀法制备银包覆超细铜粉反应工艺研究

2.2 温度的影响

化学镀是一个共轭点化学过程,它包括银离子的阴极沉积和还原剂水合肼的阳极氧化。对于化学镀的研究已有许多报道,Gutzeit G 的初生态理论[10]认为,水合肼并非真正的还原剂,由它分解产生的氢原子或氢气才是真正的还原剂。化学镀银过程首先为水合肼在铜原子表面的化学吸附和还原剂中C —N 键的断裂[11]。

根据化学吸附常数K =Ae -E a/(R T ),温度越高,颗粒表面的吸附

常数越大,有利于水合肼的吸附;同时在化学反应过程中快速的搅

拌,固体颗粒表面产生局部的高温和高压[12],这些能量以热能的形

式释放反应体系,有利于表面吸附和C —N 键的断裂。实验中发现:

当反应温度较低时,由于不能提供足够供C —N 键的能量,水合肼分

解产生的氢原子或氢气量少,Ag +还原不完全,溶液中有少量呈黑色

的Ag 2O 固体颗粒,图1为反应温度30℃下获得的铜2银双金属粉

XRD 图谱。图1中仅有银、铜的特征峰,尽管试验发现Ag 2O 固体颗粒,但由于其单独相存在,量少,洗涤过程中易于损失,XRD 图谱检测不出。另外反应温度也不宜过高,温度过高易导致还原剂水合肼分解产生氮气和氢气,即消耗还原剂,又不利于形成致密的包覆膜,反应温度以45—55℃为宜。

2.3 PVP 加入量的影响

超细粉体具有较大的比表面积,表面上原子或离子数的比例大大提高,因而其表面活性增强,颗粒之间吸引力增大,外表杂质如水的存在易引起超细粉体的团聚[13]。体系中引入PVP 高聚物,吸附于超细铜粉表面的高聚物层产生空间斥力势能,依据空间位阻效应,吸附于铜粉颗粒表面的高分子将颗粒隔开,铜颗粒直接碰撞、团聚的机会大大减小,从而也影响粉体的粒径大小。图2为预处理后铜粉及PVP 用量分别为1.5g 、4.0g 铜2银双金属粉的粒径分布图。预处理后超细铜粉的平均粒径为15μm ,PVP 用量为1.5g 、4.0g 铜2银双金属粉的平均粒径分别为50μm 、30μm ,由此可见PVP 用量对粒径大小有影响,随着分散剂PVP 用量增加,有利于防止颗粒间团聚,颗粒的粒径越小

分散剂PVP 在颗粒表面的吸附有一最佳值,只有在分散剂达到饱和吸附量时,悬浮液体系才稳定,因此PVP 加入量不宜过多。另外PVP 加入量过多,反应体系粘度增大,液相传质系数随之变小,不利于传质和反应的完全进行,体系中残余的Ag +增多。

2.4 水合肼浓度的影响

水合肼是反应体系强还原剂,从式(2)的电极电位可知水合肼浓度的增加有利于总电动势的提高,即有利于增大液相还原的速率。由于反应体系水合肼浓度本身已过量,再增加其浓度对反应速率影响不大,也不经济,故水合肼浓度一般控制在2.5—3mol/L 为宜。

2.5 壳核结构铜2银双金属粉的表征

铜粉表面经过活化、敏化处理,铜粉表面点缀分布催化剂Ag 0,充当液相还原反应的催化剂,降低了反应活化能;另外引入强还原剂水合肼,提高其浓度皆有利于液相还原反应。按1.3步骤,在N H 2—N H 2—

[Ag (N H 3)2]+液相还原反应体系,N —H 键均裂产生的氢原子将溶液中Ag +还原为Ag 0沉积在铜粉表面,从而制备铜2银双金属粉。图3为制备双金属粉的XRD 图谱,图中衍射峰的d =2.3595(2.3591),2.0435(2.0431),1.4452(1.4447),1.2325(1.2320),1.1796(1.1803)为银的特征峰,证明银包覆层的存在。

6

2 武 汉 理 工 大 学 学 报 2008年1月

图4为包覆后铜2银双金属粉的SEM 能谱图,从图4可见,体系中置换反应虽得以抑制,但不可完全避免,一次包覆所得到的镀层结构中银原子在铜粉表面没有形成连续的银膜而是点缀在铜粉表面。除去表面吸附的铜氨配合物,按1.3方法多次包覆,提高铜粉表面银含量。图5是3次包覆所得双金属粉的EDX 图谱,由图5看出,铜原子表面银原子占了绝对优势,在铜粉表面形成了连续的银膜,可以认为银在铜粉表面形成包覆结构,由于银具有高温抗氧化性,解决了MLCC 贱金属化的问题。

3 结 语

液相体系通过引入强还原剂水合肼,控制反应条件抑制置换反应,使还原反应充分发挥,经过3次包覆制得了包覆结构的铜2银双金属粉,克服了置换反应的不足,解决了MLCC 贱金属化过程中铜内电极易于氧化的难题。研究表明:溶液的p H 、反应温度、分散剂的加入量以及水合肼浓度是整个工艺的主要影响因素。

参考文献

[1] Omallory G ,Haidn J B.Electroless Plating 2fundamental and Application[M ].Willian Andrew Publishing ,1990.

[2] Xu Xinrui ,Luo Xiaojun.Electroless Silver Coating on Fine Copper Powder and Its E ffects on Oxidation Resistance[J ].Materi 2

als Letters ,2003,57:398723991.

[3] Tamagawa H ,Nogata F.Influence of Metal Plating Treatment on the Electric Response of Nafion[J ].Journal of Materials

Science ,2003,38:103921044.

[4] Ling Guoping ,He J unhui ,Huang Lei.Size Control of Silver Nanoparticles Deposited on Silica Dielectric Spheres by Electroless

Plating Technique[J ].Journal of Materials Science ,2004,39:295522957.

[5] 解 芳,梁 浩,高保娇.微米级镀银铜粉常温抗氧化性能的表征方法[J ].太原理工大学学报,2002,33(1):1092111.

[6] Xu Xinrui ,Luo Xiaojun.Electroless Silver Coating on Fine Copper Powder and It E ffects on Oxidation Resistance[J ].Material

Letters ,2003,57:398723991.

[7] 刘志杰,赵 斌,赵宗涛,等.超细核壳铜2银双金属粉末的制备[J ].无机化学学报,1996,12(1):30233.

[8] 高保娇,高建峰,蒋红梅,等.微米级铜2银双金属粉镀层结构及其抗氧化性[J ].物理化学学报,2002,18(6):5972599.

[9] 刘志杰,赵 斌,赵宗涛,等.超细核壳铜2银双金属粉末的抗氧化性研究[J ].无机化学学报,2000,16(4):32237.

[10] 周荣廷.化学镀镍的原理和工艺[M ].北京:国防工业出版社,1975.

[11] 李 宁.化学镀实用技术[M ].北京:化学工业出版社,2003.7

2第30卷 第1期 徐 锐,等:化学镀法制备银包覆超细铜粉反应工艺研究

无氧铜生产工艺流程

第四章工艺技术方案 4.1工艺技术方案 本项目采用的原材料为含铜量99%的电解铜,选用目前国内先进的蓄热式熔化炉和中频炉,用上引法连铸工艺方法生产氧的含量不大于0.02%,杂质总含量不大于0.05%,含铜量99.5%以上无氧铜杆。 4.2工艺流程简述 1、生产准备 本项目使用的电解铜在江西省内购买。

图4-1 项目生产工艺流程图 2、上引法连铸工艺流程 本项目采用上引法连铸工艺生产无氧铜杆。上引法连铸铜杆

的基本特点是“无氧”,即氧含量在10ppm以下。 上引法与连铸连轧和浸涂法相比,其特点是: 1)由于拉扎工艺和铸造工艺不是连续的,拉扎是在常温下进行的,不需要气体保护,钢材也不会被氧化。因此设备投资小,厂房布置也灵活。 2)单机产量变化范围大,年产量可以从几百吨到几万吨,可供不同规模的厂家选用不同型号的上引机组。此外,由于连铸机是多头的,可以很容易的通过改变铸造规格(铸杆直径),来改变单位时间的产量,因此其产量可视原材料的供应情况和产品的需求情况来确定,便于组织生产、节约能源。 3)只需更换结晶器和改变石墨模的形状,即可生产铜管、铜排等异型铜材,并可在同一机器上上产不同规格、品种的铜材,灵活机动,这是上引法的中最大特点。 上引法连铸工艺流程:原料通过加料机加入融化炉进行熔化、氧化、扒渣处理后,熔融的铜液经过一段时间的静置还原脱氧并达到一定的温度后,通过有CO气体保护的流槽经过渡腔(铜液在此进一步还原脱氧、清除渣质),进而平稳的流入中频炉保温静置,铜液的温度由热电偶测量,温度值由仪表显示,温度控制在1150℃±10℃。连铸机固定于中频保温炉的上方,连铸机铜液在结晶器中快速结晶连续不断地生产出铜杆,最后经双头挠杆机等辅助设备装盘成产品。 ⑴加料:原料一般用加料机加入,炉头多加、炉尾少加。加

化学镀工艺流程

化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。 化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 机械粗化:用机械法或化学方法对工件表面进行处理(机械磨损或化学腐蚀),从而在工件表面得到一种微观粗糙的结构,使之由憎水性变为亲水性,以提高镀层与制件表面之间结合力的一种非导电材料化学镀前处理工艺。 1.1 化学除油 镀件材料在存放、运输过程中难免沾有油污,为保证预处理效果,必须首先进行除油处理,去除其表面污物,增加基体表面的亲水性,以确保基体表面能均匀的进行金属表面活化。化学除油试剂分有机除油剂和碱性除油剂两种;有机除油剂为丙酮(或乙醇)等有机溶剂,一般用于无机基体如鳞片状石墨、膨胀石墨、碳纤维等除油;碱性除油剂的配方为:NaOH:80g/l,Na2CO3(无水):15g/l,Na3PO4:30g/l,洗洁精:5ml/l,用于有机基体如聚乙烯、聚氯乙烯、聚苯乙烯等除油;无论使用哪种除油试剂,作用时都需要进行充分搅拌。 1.2 化学粗化 化学粗化的目的是利用强氧化性试剂的氧化侵蚀作用改变基体表面微观形状,使基体表面形成微孔或刻蚀沟槽,并除去表面其它杂质,提高基体表面的亲水性和形成适当的粗糙度,以增强基体和镀层金属的结合力,以保证镀层有良好的附着力。粗化是影响镀层附着力大小的很关键的工序,若粗化效果不好,就会直接影响后序的活化和化学镀效果。化学粗化试剂的配方为:CrO3:40g/l,浓H2SO4:35g/l,浓H3PO4(85%):5g/l。化学粗化的本质是对基体表面的轻度腐蚀作用;因此,有机基体采用此处理过程,无机基体因不能被粗化液腐蚀而不需此处理。 1.3 敏化 敏化处理是使粗化后的有机基体(或除油后的无机基体)表面吸附一层具有还原性的二价锡离子Sn2+,以便在随后的活化处理时,将银或钯离子由金属离子还原为具有催化性能的银或钯原子。敏化液配方为:SnCl2·2H2O:20g/l,浓HCl:40ml/l,少量锡粒;加入锡粒的目的是防止二价锡离子的氧化。 1.4 活化 活化处理是化学镀预处理工艺中最关键的步骤, 活化程度的好坏,直接影响后序的施镀效果。化学镀镀前预处理的其它各个工序归根结底都是为了优化活化效果,以保证催化剂在镀件表面附着的均匀性和选择性,从而决定化学镀层与镀件基体的结合力以及镀层本身的连续性。活化处理的目的是使活化液中的钯离子Pd2+或银离子Ag+离子被镀件基体表面的Sn2+离子还原成金属钯或银微粒并紧附于基体表面,形成均匀催化结晶中心的贵金属层, 使化学镀能自发进行。目前,普遍采用的活化液有银氨活化液和胶体钯活化液两种;化学镀铜比较容易,用银即能催化;化学镀钴、化学镀镍较困难,用银不能催化,必须使用催

纳米铜粉.纳米铜粉的作用

纳米铜粉.纳米铜粉的作用 关键词: 纳米铜粉 时间:2011-11-18来源:金粉点击:25次 摘要:纳米铜粉的研制是一项可能带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。纳米铜粉的研究还处于开发阶段,而其广泛的用途将使得纳米铜粉的研究具有更好的市场价值和市场前景。 超细颗粒材料是指其颗粒尺寸在1~1 00 nm之间的粉末,也称为纳米颗粒材料(在应用中有人将超细颗粒材料扩展到几微米)。纳米粒子具有小尺寸效应,大的比表面和宏观量子隧道效应,因而纳米微粉显示出许多优良的性能是微米级粉末所没有的。纳米铜粉的比表面大、表面活性中心数目多,在冶金和石油化工中是优良的催化剂。 在汽车尾气净化处理过程中,纳米铜粉作为催化剂可以用来部分地代替贵金属铂和钌,使有毒性的一氧化碳转化为二氧化碳,使一氧化氮转变为二氧化氮。 随着电子工业的发展,由纳米铜粉制备的超细厚膜浆料将在大规模集成电路中起着重要的作用,同时价格比贵金属银粉、钯粉低廉,具有广阔的应用前景。 在高分子聚合物的氢化和脱氢反应中,纳米铜粉催化剂有极高的活性和选择性,在乙炔聚合反应用来制作导电纤维的过程中,纳米铜粉是很有效的催化剂。 超细铜粉是导电率好、强度高的纳米铜材不可缺少的基础原料。由于其优异的电气性能,广泛应用于导电胶、导电涂料和电极材料,近年来研究发现可用于制作催化剂、润滑油添加剂,甚至可以用于治疗骨质疏松、骨折等。 纳米铜粉的研制是一项可能带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。纳米铜粉的研究还处于开发阶段,而其广泛的用途将使得纳米铜粉的研究具有更好的市场价值和市场前景。 目前采用的还原剂包括甲醛、抗坏血酸、次磷酸钠、硼氯化钠、水合肼等,但是这些还原剂有的有剧毒,有的还原能力差,有的成本太高,还有的反应过程易引入其他杂质,因此,寻找更为合适的还原剂或复合还原剂,研究更为理想的反应体系成为纳米铜粉制备研究的重要课题。此外,由于纳米铜粉的粒径较小,表面活性较大,易于团聚,并且粉末表面易被氧化成Cu20,因此如何改善纳米铜粉的分散性及怎样防止铜粉被氧化也是一个重要研究方向。 目前,工业生产超细微材料方法有:冷冻干燥法、沉淀转化法、*相合成法、超声波法、水解法、机械合金化技术、均匀沉淀法、还原一保护法等。上述各法中,有的需要庞大的设备,有的复杂,有的制备成本高,有的合格率及产量低。而液相化学还原法制备纳米铜粉有其独到的优点,如设备简单、艺流程短、投资小、产量大、成本低、易工业化生产等。 纳米铜润滑油添加剂是以纳米摩擦学为理论指导、以纳米技术为支撑的一种新型的润滑油添加剂产品,它具有优良的抗磨减摩和节能环保功效。将纳米铜润滑油添加剂添加到汽车

(完整版)PCB化学镀铜工艺流程解读(一)

PCB化学镀铜工艺流程解读(一) 化学镀铜(Eletcroless Plating Copper)通常也叫沉铜或孔化(PTH)是一种自身催化性氧化还原反应。首先用活化剂处理,使绝缘基材表面吸附上一层活性的粒子通常用的是金属钯粒子(钯是一种十分昂贵的金属,价格高且一直在上升,为降低成本现在国外有实用胶体铜工艺在运行),铜离子首先在这些活性的金属钯粒子上被还原,而这些被还原的金属铜晶核本身又成为铜离子的催化层,使铜的还原反应继续在这些新的铜晶核表面上进行。化学镀铜在我们PCB制造业中得到了广泛的应用,目前最多的是用化学镀铜进行PCB的孔金属化。PCB孔金属化工艺流程如下: 钻孔→磨板去毛刺→上板→整孔清洁处理→双水洗→微蚀化学粗化→双水洗→预浸处理→胶体钯活化处理→双水洗→解胶处理(加速)→双水洗→沉铜→双水洗→下板→上板→浸酸→一次铜→水洗→下板→烘干 一、镀前处理 1.去毛刺 钻孔后的覆铜泊板,其孔口部位不可避免的产生一些小的毛刺,这些毛刺如不去除将会影响金属化孔的质量。最简单去毛刺的方法是用200~400号水砂纸将钻孔后的铜箔表面磨光。机械化的去毛刺方法是采用去毛刺机。去毛刺机的磨辊是采用含有碳化硅磨料的尼龙刷或毡。一般的去毛刺机在去除毛刺时,在顺着板面移动方向有部分毛刺倒向孔口内壁,改进型的磨板机,具有双向转动带摆动尼龙刷辊,消除了除了这种弊病。 2.整孔清洁处理 对多层PCB有整孔要求,目的是除去钻污及孔微蚀处理。以前多用浓硫酸除钻污,而现在多用碱性高锰酸钾处理法,随后清洁调整处理。 孔金属化时,化学镀铜反应是在孔壁和整个铜箔表面上同时发生的。如果某些部位不清洁,就会影响化学镀铜层和印制导线铜箔间的结合强度,所以在化学镀铜前必须进行基体的清洁处理。最常用的清洗液及操作条件列于表如下:

铸铜工艺流程

铸铜工艺流程 铸铜等铸造类雕塑首先是泥塑的塑造,然后翻制阴模,翻制阴模后再翻制成阳模,实际上是一个材料转换的过程,即从可塑性泥制品转换到石膏和玻璃钢进行定型、最后送到专业铸造厂进行最后的铸造过程。每件铸铜艺术品都是需要经过最少11道复杂严谨的工序制作而成,这些工序中既有传统手工艺的痕迹,也有精密铸造的现代技术精彩所在。。。。 工艺流程之一:泥塑(每件产品的前身都需要一个泥塑原型,泥塑都是经过雕塑师在原创设计稿的基础上反复揣摩、推敲之后进行的再创作,泥塑的造型好坏、神韵的体现与否、意图的表达呈现直接影响今后的产品好坏,所以优秀的泥塑离不开优秀的雕塑师) 第一步天然特殊胶泥备料筛选,喷水醒泥48小时以上,圆雕焊接雕塑钢筋造型骨架,在骨架上缠绕十字型木条托泥装置,雕塑骨架上大间隙铺设金属网,可减少用泥量减少总重量保证雕塑不垮塌。如是浮雕需木工板铺设底板在板上每隔15公分钉钉子,钉子钉入一半另外一半露出方便挂泥,另在钉子上纵横缠绕细铁丝同样方便挂泥料。 第二步上大泥覆盖雕塑造型。上泥完毕一边用木槌砸实一边补平泥间空袭。全部上泥后对大造型进行不断的调整。造型不准需要返工对骨架进行休整直到满意,以上必须由专业雕塑师来完成。从此阶段开始雕塑必须经常喷水保持不开裂,半途公休要覆盖塑料薄膜进行保湿直到雕塑模完成后。 第三部塑形,专业雕塑师来完成,塑形过程雕塑师中随时喷水随时塑造,具体细节其它工序简略。 第四步雕塑大型完成,通知甲方对大造型进行审核和提出意见或修改。继续不断的推敲调整和细节塑造达到完美,全部完成造型后进行整体推光泥塑,使用刮片进行推光。 第五步进入翻制阶段,在泥塑上用切片进行区块模具分割设计,然后喷洒肥皂水作为隔离防护。专业翻制技师配比石膏浆上于雕塑覆盖,具体石膏浆外层内层不同的水配比量由专业人员掌握和来完成。待石膏硬化干燥后开始脱模,脱模前要在区块上固定抓手,抓手用石膏麻木桩来制作。 第六步脱模后去掉分块模具上的残留泥,完毕后对石膏模进行细致修模,补磨。然后用金属铜网进行打磨。 第七部上玻璃钢,调配好树脂加入催化剂固化剂和填料与显色剂等。头层树脂上浆,二层配合玻璃丝布树脂一同上浆,一般需要三到五层上浆过程。形成厚度根据雕塑选择。 第八步拼合玻璃钢分体模块进行组合。拼合后进行缝隙的补平和加固,内部要建立永久性钢筋支持体系骨架。最后进行打磨,配合不同砂纸型号进行粗磨细磨水磨,大部分必须手工完成机器打磨无法圆润自然也难以完全无痕迹,所以必须手工砂带纸打磨。 工艺流程之二:矽xi胶开模(矽胶,英文名Silicon,此原料通常用作制作模具,精致度高,哪怕发丝粗细都可体现出来)

化学镀工艺流程详解.

化学镀工艺流程 化学镀是一种在无电流通过的情况下,金属离子在同一溶液中还原剂的作用下通过可控制的氧化还原反应在具有催化表面(催化剂一般为钯、银等贵金属离子的镀件上还原成金属,从而在镀件表面上获得金属沉积层的过程,也称自催化镀或无电镀。化学镀最突出的优点是无论镀件多么复杂,只要溶液能深入的地方即可获得厚度均匀的镀层,且很容易控制镀层厚度。与电镀相比,化学镀具有镀层厚度均匀、针孔少、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点;但化学镀镀层质量不很好,厚度上不去,且可镀的品种不多,故主要用于不适于电镀的特殊场合。 近年来, 化学镀技术得到了越来越广泛的应用,在各种非金属纤维、微球、微粉等粉体材料上施镀成为研究的热点之一;用化学镀方法可以在非金属纤维、微球、微粉镀件表面获得完整的非常薄而均匀的金属或合金层,而且镀层厚度可根据需要确定。这种金属化了的非金属纤维、微球、微粉镀件具有良好的导电性,作为填料混入塑料时能获得较好的防静电性能及电磁屏蔽性能,有可能部分取代金属粉用于电磁波吸收或电磁屏蔽材料。美国国际斯坦福研究所采用在高聚物基体上化学镀铜来研制红外吸收材料。毛倩瑾等采用化学镀的方法对空心微珠进行表面金属化改性研究,发现改性后的空心微珠具有较好的吸波性能,可用于微波吸收材料、轻质磁性材料等领域。 化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 需进行化学镀的镀件一般不溶于水或者难溶于水。化学镀工艺的关键在于预处理,预处理的目的是使镀件表面生成具有显著催化活性效果的金属粒子,这样才能最终在基体表面沉积金属镀层。由于镀件微观表面凸凹不平,必须进行严格的镀前预处理,否则易造成镀层不均匀、密着性差,甚至难于施镀的后果。

超细铜粉规模为10000吨年

超细铜粉规模为10000吨/年 一、产品概述 超细铜粉,是指粒径介于10~10-5m的微小铜粒子,常温下为棕 色或略带紫色的微细粉末。超细铜粉具有导电导热性能好、粒径小、耐腐蚀、表面光洁、流动性强等特点, 在力学、电学、化学和电极材 料的制造等领域有许多特异性能和极大的潜在应用价值。 超细铜粉大约55%用来制成青铜轴承,13%和铁混合用作粉末冶 金的工业零件,12%用作浸渗粉,10%加入黄铜,10%用作它用。我 国铜粉的消费结构主要在金刚石工具、粉末冶金零件和电碳行业三大 领域,占整个铜粉消费量的95%,另外5%用于其他行业,主要是高 催化活性和选择性催化剂、纳米铜润滑油、医药、黏结剂、导电涂料 等领域。 二、市场简析 a. 国际市场 2002年世界超细铜粉的产量高达59000-64000t,并且以每年5%以上的速度在递增,其生产和消费主要集中在在北美、西欧和东亚这三个地区,分别占全球总产能的30%、30%和40%。预计到2014年,全球总生产能力约为10万吨/年,其中欧美和日本等地区发展较慢,亚洲,主要是除日本外的东亚、东南亚发展较快,特别是中国大陆超过每年10%的增速。图30是日本和北美超细铜粉产量图。

图30 日本及北美铜粉及铜合金粉产量分布图 b. 国内市场 2008年,我国铜粉及铜合金粉的产量为22500t,年产2500t以上的企业有北京有研粉末、金川集团、衡水润泽、重庆华浩等4家,提供超细铜粉、片状铜粉、导电铜粉、银包铜粉等,主要生产工艺为电解法和雾化法。电解法生产的铜粉纯度高、呈树枝状、成形性好,但生产成本较高、环境污染较严重,电解粉末因其特有的性能还不能被其它工艺制备的粉末所替代。2008年电解铜粉产量约13500t,占全国总产量22500t 的60%;其它企业只有1000t甚至几百吨的生产能力,且技术设备条件落后、产品质量不稳定。雾化法具有生产工艺简单、成分易合金化、成本低、污染小等优点,正在取代部分电解铜粉工艺而得到应用。为了增加雾化粉末的表面积,完全取代电解铜粉,国外从20世纪60年代开始使

镀铜的工艺过程.

/yiw紫气东来 化学镀铜化还原反应。

体钯活化液过早聚沉。因此,在活化处理前要先在含有Sn2+的酸性溶液中进行预浸处理1~2min,取出后直接浸入胶体钯活化液中进行活化处理。配制时应首先将盐酸与水相混合,然后再加入SnCl2?2H2O ,搅拌溶解,这样可防止SnCl2水解。 酸基胶体钯预浸液配方: 氯化亚锡(SnCl2.2H2O)70~100g/L 盐酸37%(体积)200-300ml/L 盐基胶体钯预浸液配方: SnCl2.2H2O30g/L HCl30ml/l NaCl200g/l O ║ H2N-C-NH250g/l b.活化处理-在室温条件下处理3~5min,在处理过程中应不断移动覆铜箔板,使活化液在孔内流动,以便在孔壁上形成均匀的催化层。 c.解胶处理-活化处理后,在基材表面吸附着以钯粒子为核心,在钯核的周围,具有碱式锡酸盐的胶体化合物。在化学镀铜前,应将碱式锡酸盐去除,使活性的钯晶核充分暴露出来,从而使钯晶核具有非常强而均匀的活性。经过解胶处理再进行化学镀铜,不但提高了胶体钯的活性,而且也显著提高化学镀铜层与基材间的结合强度。常用的解胶处理液是5%的氢氧化钠水溶液或1%氟硼酸水溶液。解胶处理在室温条件下处理 1~2min,水洗后进行化学镀铜。 d.胶体铜活化液简介: 明胶2g/l CuSO4.5H2O20g/l DMAB(二甲胺基硼烷)5g/l 水合肼10 g/l 钯20ppm PH7.0 配制过程:首先分别将明胶和硫酸铜用温水(40度C)溶解后将明胶加入至硫酸铜的溶液中,用25%H2SO4将PH值调至2..5当温度为45度C 时,将溶解后DMAB在搅拌条件下缓慢加入上述的混合溶液中,并加入去离子稀释至1升,保温40~45度C,并搅拌至反应开始(约5~10分钟)溶液的颜色由蓝再变成绿色。放置24小时颜色变成红黑色后加入水合肼,

化学镀镍工艺

化学镀镍工艺 化学镀镍机理: 1)原子氢析出机理。原子氢析出机理是1946年提出的,核心是还原镍的物质是原子氢,其反应过程如下: H2P02-+H20→HP032-+H++2H Ni2++2H→Ni+2H+ H2P02-+H++H→2H20+P 2H→H2 水和次磷酸根反应产生了吸附在催化表面上的原子氢,吸附氢在催化表面上还原镍离子。同时,吸附氢在催化表面上也产生磷的还原过程。原子态的氢相互结合也析出氢气。2)电子还原机理(电化学理论)电子还原机理反应过程如下: H2P02-+H20→HP032-+H++2e Ni2++2e→Ni H2P02-+2H++e→2H20+P 2H++2e→H2 酸性溶液中,次磷酸根与水反应产生的电子使镍离子还原成金属镍。在此过程中电子也同时使少部分磷得到还原。 3)正负氢离子机理。该理论最大特点在于,次磷酸根离子与磷相连的氢离解产生还原性非常强的负氢离子,还原镍离子、次磷酸根后自身分解为氢气。 H2P02-+H20→HP032-+H++H- Ni2++2H-→Ni+H2 H2P02-+2H++H-→2H20+P +1/2H2 H-+H+→H2 分析上述机理,可以发现核心在于次磷酸根的P-H键。次磷酸根的空间结构是以磷为中心的空间四面体。空间四面体的4个角顶分别被氧原子和氢原子占据,其分子结构式为: 各种化学镀镍反应机理中共同点是P-H键的断裂。P-H键吸附在金属镍表面的活性点上,在镍的催化作用下,P-H键发生断裂。如果次磷酸根的两个P-H键同时被吸附在镍表面的活性点上,键的断裂难以发生,只会造成亚磷酸盐缓慢生成。对于P-H键断裂后,P-H间共用电子对的去向,各种理论具有不同的解释。如电子在磷、氢之间平均分配,这就是原子氢析出理论;如果电子都转移至氢,则属于正负氢理论;而电子还原机理则认为电子自由游离出来参与还原反应。因此,可以根据化学镀镍机理的核心对各种宏观工艺问题进行分析解释。 化学镀镍工艺过程 化学镀镍前处理工艺 一:除油:

铜粉分类及报价

规格相近的超细铜粉报价: 1、中文别名:纳米铜;超微铜粉;纳米铜粉 英文别名:Copper powder; ultrafine copper powder;Superfine copper powder; nano-copper powder CAS 号:7440-50-8 海关编码:7406101000(HS编码) 最新价格:¥580 元/公斤 产品规格:0.2-1μm(大于10000目) 产品说明 分子式:C u 分子量:63.55 物化性质:紫褐色或褐色粉末 产品用途:用做微电子器件的生产,用于制造多层陶瓷电容器的终端。 也可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。还 可用做石油润滑剂及医药、电镀、涂料行业等。 包装运输:铝箔包装,500克、1公斤。要求包装密封。贮存于阴凉干 燥处。勿与氧化剂接触。按照普通货物运输。 结构式:无 执行标准:企标 |2、超微细高纯球型铜粉 质量指标: 超微细铜粉能够替代一般电解铜粉、雾化铜粉等在硬质合金、金刚石工具、焊接电极、摩擦材料、催化剂等领域,会带来产品质量明显的变化;

作为一种超细、高纯金属粉体材料,满足电子、医学和生物领域新品开发的需要,比如0.5~1.0um超微细铜粉可用于人体抗老化与治疗老年痴呆药物的研制; 与锌粉、锡粉、铝粉等按比例球磨合可生产高品质铜金粉、青铜粉,用于导电膏、导电涂料、抗电磁波干扰涂料、装饰涂料与导电油墨等领域。 报价:580.00元/公斤 3、其他铜粉分类及报价 品名:电解铜粉 产地:美国 单价:63元/公斤 铜不小于%:99.5 规格: -100目、-150目、-200目、-300目、-400目 品名:纯铜粉 产地:美国 单价:66元/公斤 铜不小于%:99.8 规格: -200目、-300目 品名:青铜粉(660、663) 产地:美国 单价:66元/公斤 规格: -100~-500目 品名:黄铜粉 产地:美国 单价:63元/公斤 规格: -100目、-200目、-300目 品名:白铜粉 产地:美国 单价:98元/公斤 规格: -100目、-200目、

锻铜工艺流程

锻铜工艺流程 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锻铜工艺流程 锻铜是一种区别于铸铜的工艺,是在铜板上进行创作,利用铜板加热后质地变软,锤打后又恢复坚硬的特性,重复这一过程,最终制作出锻铜浮雕、锻铜雕塑等圆雕艺术作品或其它生活、工业用品。随着人民生活水平和审美情趣的提升,锻铜这一传统工艺尤其在工艺美术领域受到越来越多设计师和大众的喜爱。 锻铜工艺讲究的就是一个锻字,任何造型就是通过锻造出来的,其工艺复杂程度远超于铸铜。火、锤子和錾子是锻铜的三个重要元素。 小型锻铜工艺作品或大型锻铜作品局部加工可以采取氧气加乙炔产生的高温加热,大型作品就需要生炉火鼓风加热。加热这一环节相对容易。加热后的铜板要用皮锤敲打平整。然后根据铜板上描绘的线条使用锤子和錾子刻基础线。锤子和錾子的运用则是整个锻铜工艺的关键,这即是”锻铜“又被称为”錾铜“的原因。每个锻铜师傅手中都有上百把形式各样的錾子,在铜板上用这些錾子勾勒出高低起伏的线条叫”走线“,快速准确的按图纸走线是需要下几年的功夫的,尤其是一些关键部分,比如人物的面部特征等。大型锻铜作品需要多名锻铜工匠的配合和集体创作,一些工艺过程要求工匠的配合要十分默契,比如有时需要将铜板悬挂起来,锻铜师傅们在铜板的两侧同时作业,使每一个高低错落的线条达到完美。 如遇到细节较多且表面光滑的锻造作品可用适当比例的松香和土等原料放在容器内熔化后,将其倒入四周有3-5厘米高起边沿的工作台上,用于固定加热后的铜板。然后在由锻铜师傅细心锻造。 首先锻造雕塑或壁画需有泥塑师根据图纸制作出1:1大小的泥塑造型。然后在翻出石膏模具。石膏模具制作后需仔细检查,讲沙眼或缺口补平补齐。在翻制树脂模具用于锻造之用。 模具制作好后,需由美工师绘画出模具放样图纸,贴于铜板上使用切割机械割出放样后的铜板原料。 之后锻造师傅就利之前介绍的锻造手法手工锻造。锻造好的雕塑或壁画局部,在根据1:1的模具或图纸进行拼装焊接。将分散的部件连成一个整体,在焊接处需要打磨,修边。然后在整体锻造调整。由零到整、由小变大,雕塑或壁画就这样变成锻铜成品。 最后为让雕塑或壁画的整体效果统一协调,还需要在作品表面统一做色。局部高光区还需打磨出来。以达到美观、立体的效果。 锻铜工艺的好坏最主要就是在锻造技术上,我公司多年来培养出大批具有丰富锻造经验的锻造师,锻出的作品能保持原来泥塑的造型和韵味,而且因锻

废铜生产电解铜粉工艺流程

电解法制取的铜粉纯度高、物理规格好、活性高,广泛应用于电碳制品、摩擦材料、含油轴承和粉末冶金零件等方面,在我国得到了迅速的发展。用电解法制取铜粉的方法,前苏联于1934年即已研究成功。我国起步较晚,到1970年才兴建了第一条电解铜粉的生产线。目前,我国生产规模超过lO00t/a的厂家主要有重冶集团、北京有研粉末、天津瑞尔普以及上海901。江铜集团新材料公司(以下简称新材料公司)于2002年开发了电解铜粉产品,现每年的产量为200t。2电解法制粉工艺流程电解法制取铜粉的经典流程是:铜原料一熔铸—电解一铜粉一洗涤--干燥---筛分一成品。 电解出来的铜粉经洗涤后,进入还原炉,在氢气氛下进行干燥、还原处理,再经筛分得到产品。在原有生产工艺的基础上。开发出生产电解铜粉的新工艺,其流程如下:阳极、阴极、电解液一电解一铜粉一洗涤—离心甩干—筛分一成品。 新工艺具有以下特点:其一,阳极不需要进行熔铸处理,简化了操作;其二,由于新工艺省略了熔铸工序,从而大幅度降低了电解铜粉的生产成本,在市场上具有较强的竞争优势。阳极:采用废铜作为阳极,随着电解的进行而被溶解。阴极:电解铜粉生产用的阴极可以采用铅合金板,可以生产出松比低于1.Og/cm。的电解铜粉。 电解法制取金属铜粉: 1铜离子浓度电解实验证实:只有金属离子的浓度迅速降低到一定值时,才能析出松散的粉末。在能析出粉末的浓度范围内,铜离子浓度越低,粉末颗粒愈细。电流效率随着铜离子浓度增大而提高,松装密度也随着铜离子浓度增大而增高。 2酸度提高酸度有利于氢的析出,得到松散的粉末沉积物,但酸浓度太高,会导致钝化,影响电流效率。酸度的影响较复杂,要针对不同的电解条件进行适当调整。 3电流密度据资料介绍采用铜离子浓度为13L的电解液时,要得到粉末,则电流密度至少在1000A/m以上。电流密度愈高,在阴极上单位时间内放电的离子数目愈多,金属离子的沉积速度远大于晶粒长大的速度,从而形成的晶核数也愈多,故粉末愈细。 4电解液温度提高电解液温度,扩散速度增加,晶粒长大速度也增大,所以粉末变粗。高温作业可提高电流效率和降低槽电压,但温度高于60',酸雾蒸发量增大,作业环境恶化。 5刷粉周期刷粉时间延长时,松装密度增大,粉末变粗。因为长时间不刷粉,阴极表面积增大,相对降低了电流密度。通常,粉末是用刷子机械刷下来的,另一种方法是采用硫酸十二烷基钠自动从阴极上除粉。 6添加剂在电解液中添加胶体材料,例如,骨胶或葡萄糖可生成细粉状沉积物。这可能是由于胶体阻碍在阴极上析出氢所致。电解液中加入少量氯化铜,可增强粉末颗粒的枝晶特征;同时由于氯化物离子的极化效应,细粉的获得率增高。

铸铜工艺流程

铸铜工艺流程——失蜡铸造法 大铜世界的每件铸铜艺术品都是需要颠末11道复杂严谨的工序制作而成,这些工序中既有传统手工艺的痕迹,也有精密铸造的现代技术精彩所在。。。。 我们在这里向大家介绍的是今朝铸造行业至多用到的铸造手法,“失蜡铸造法”亦叫“脱蜡铸铜”。通常的失蜡铸造法工艺简略的概括为如下流程,仅供热爱铸造艺术的朋友们参考。 工艺流程之一:泥塑(每件产品的前身都需要1个目结土的雕塑原形,雕塑都是颠末雕塑师在原创设计稿的基础上反复揣摩、推敲之后行的再创编,泥塑的造型好坏、神韵的体现与否、意图的表达呈现直接影响此后的产品好坏,所以,我们的雕塑师都是业界中出类拔萃的高手) 工艺流程之二:矽胶开模(矽胶,英文名矽利康Silicon,此化学原料通经常使用作制作模具,精致度高,姑且有发丝粗细都可体现出来) 工艺流程之三:制作树脂原形(聚乙烯,又称波丽Polyethylene。矽胶模具制作完成之后,就可以灌制出雕塑原形的树脂胚体)工艺流程之四:修整树脂胚体(对胚体表面进行最后的打磨及肌理效果的处理及调整) 工艺流程之五:再制作矽胶模具(将修整好的树脂胚体再次制作成矽胶模具) 工艺流程之六:制作石蜡原形(再次制作出来的矽胶模具已很完

备及完好了,加热熔化的石蜡被加压射入矽胶模具来制造出1个腊胚,此腊胚乃为将生产产品的真实外形复制品) 工艺流程之七:石蜡原形修整(从矽胶模具中灌制并剥离出来的石蜡原形,表面遗留模具的模线及少许的损坏,所以石蜡原形需要再对照流程三的树脂原形胚体作修整,这是很重要的一环,是以环节会直接影响到产品最后的造型及表面效果) 工艺流程之八:砂模(陶壳)制作(把腊胚数个组成树串,连续多次重复浸入泥浆(或称石浆),外层包埋并除湿干燥,将陶壳制成9mm(5-7层)厚,再将此树串放入高热140-160℃烘箱或高压蒸气锅内溶解腊胚直到成中空陶壳) 工艺流程之九:铸造(上一道儿工序的中空陶壳被放入烧结炉依不同合金材料以1000℃-1150℃烧结,将铜液立刻铸入陶壳,冷却后将外层陶壳震破,剥离出来的就是铜质的产品粗胚体) 工艺流程之十:产品铸件修整及处理(对铸造出来的铜产品作喷砂及清洁,并作切割,研磨、热处理、整形、机加工、抛光等最后处理) 工艺流程之十一:表面效果处理及保护(在产品表面处理需要的效果,通常有冷作色以及热作色之分,具体的作色区分及特点,我们会在此后的文章中逐一介绍给各位朋友,最后再做打蜡保护及抛光) 如上概括出的工艺流程,还有众多细节可加以更多纤悉的描述。

Global Ultra Fine copper powder(超细铜粉)market value will reach 510 million US dollars in 2025

The global Ultra Fine copper powder(超细铜粉)market value will reach 510 million US dollars in 2025 In the last several years, global market of Ultra Fine Copper Powder developed steadily, with an average growth rate of 5.8%. In 2016, global revenue of Ultra Fine Copper Powder is nearly 300 M USD; the actual production is about 4000MT. Ultra Fine copper powder is refers to the small copper particle size ranged from 10-9 to 10-6 m, including nano copper particles and micro copper particles, and the proportion of micro Copper Particles Powder in 2016 is about 96%. It can be widely used in many industries. Survey results showed that 54.4% of the Ultra Fine copper powder market is electronic industry, 19.7% is chemical industry, 13.6% is mechanical industry, and 4.65% is Pharmaceutical Industry. With the development of economy, these industries will need more Ultra Fine copper powder. So, Ultra Fine copper powder has a huge market potential in the future. Japan is the largest supplier of Ultra Fine Copper Powder, with a production market share nearly 49.5% in 2016. Europe is the second largest supplier of Ultra Fine Copper Powder, enjoying production market share nearly 26.2% in 2016. QYResearch

化学镀

无电镀 14.1 无电镀(Electroless Plating) 无电镀又称之为化学镀(chemical plating)或自身催化电镀(autocatalyticplating)。无电镀是指于水溶液中之金属离子被在控制之环境下,予以化学还元,而不需电力镀在基材(substrate)上。ASTM B374之标准定义为Autocatalyticplating -〝deposition of a metallic coating by a controlled chemicalreduction that is catalyzed by the metal or alloy being deposited〞。其过程(process)不同于浸镀(immersion plating),它的金属镀层是连续的(continu-ous)、自身具有催化性的(autocatalytic)。 14.2 无电镀的特性 优点: 1. 镀层非常均匀,也就是均一性(throwing power)非常好,因它没有电流分布不均的困难,镀件内外都显出均匀,锐边及角等节状镀层(nodular deposits )情形可完全消除。 2.镀层孔率较少,其耐蚀性比电镀为佳。 3.电源、电器接线、导电棒、汇流及电器仪表都可省略,减少装架及各种附属设备。 4 可镀在非导体上(需做适当前处理)。 5 镀层具有独特的物理、化学、机械性质及磁性。 6 复合镀层(co-deposit),多元合金(polyalloy)可形成。 7 密着性、耐磨性良好。 8操作较简单。 9精密零件、管子、深孔内部可完全镀上。应用在如轴心、半导体制造。 10制品与导体接触也可完全镀上。 缺点: 1.价格较贵。 2.镀层厚度受限制(理论上应无限制)。 3.工业上应用较多、装饰性光泽较不易达成。 应用: 1. 非导体的电镀,如塑料电镀。 2. 精密零件,如轴心。 3. 半导体、印刷电路板、电子零件。 4. 须特别耐蚀的化学机械零件,如管件内部。 5. 复合、多元合金镀层制作。 14.3 无电镀浴的组成及其作用 1.金属离子(metal ions)为镀层金属的来源。 2.还元剂(reducing agent):将金属离子还原成金属。 3. 催化剂(catalyst):使基材表面具有催化性。 4.错合剂(complexing agent):防止氢氧化物沉淀、调节析出速率、防止镀浴分解,使镀浴安定。 5. 安定剂(stabilizer):吸着微粒杂质防止镀浴自然分解,以延长镀浴寿命。 6. 缓冲剂(buffer):控制pH值在操作范围内。

纳米铜粉的制备进展

纳米铜粉的制备进展 黄 东,南 海,吴 鹤 (北京航空材料研究院,北京100095) 作者简介:黄东(1971-) ,男,工程师,主要从事金属材料的研究与开发工作。摘 要:本文较系统地介绍了用于制备纳米铜粉的各种方法,对这些方法的制备过程、优缺点及其应用情况进行了 评述,并指出了存在的问题及未来的发展方向。关键词:纳米铜粉;制备;进展中图分类号:T B 44;T F 123.72 文献标识码:A 文章编号:1005-$192(2004)02-0030-05 D eVel o p m ent on pre p arati on f or nanocr y st alli ne Co pp er powder ~UANG on g ,NAN ~ai ,W u ~e (B e i j i n g I nstitute o f A eronautical m aterials ,B e i j i n g 100095,Ch i na ) ABSTRACT :T he m et hods f or p re p ari n g nanocr y stalli ne co pp er p oW der are revieW ed s y nt heticall y .T he p rocess o f p re p ara-tion and t he ir advanta g es and d isadvanta g es are i ntroduced.A nd t he ir a pp lication s ituation is i ntroduced also.B es i des ,t he p rob le m and f uture deve lo p m ent o f m et hods are p o i nted out. KEY W ORD S :nanocr y stalli ne co pp er p oW der ;p re p aration ; deve lo p m ent 1 前言 纳米材料一般是指颗粒尺寸在1!100n m 之间的材料,由于存在着小尺寸效应、表面界面效应、量子尺度效应及量子隧道效应等基本特征,使其具有许多与相同成分的常规材料不同的性质,在力学、电学、磁学及化学等领域有许多特异性能和极大的潜 在应用价值〔1〕。纳米铜粉可用于高级润滑剂,其以 适宜的方式分散于各种润滑油中形成一种稳定的悬浮液,这种润滑剂每升含有数百万个超细的金属微粒,它们与固体表面结合形成一个光滑的保护层,同 时将微划痕填塞,可大幅度降低磨损和摩擦〔2〕,尤 其在重载、低速和高温振动情况下作用更加显著。1995年,I Bm 的Pekka 〔3〕 等指出纳米铜由于其低电 阻而可被用于电子连接后,其性质引起电子界的很大兴趣。纳米铜粉可用于制造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化起重要作用。P.G .s anders 〔4〕等得到了纳米铜材(晶粒尺寸 10! 100n m ) 的拉伸力学性能,发现其屈服强度是一般退火铜(晶粒尺寸20"m )的10倍,其延伸率也可达$%以上, 纳米铜粉是高导电率、高强度的纳米铜材不可缺少的基础原料。因此纳米铜粉的研制是一项可以带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。 纳米铜粉的制备技术 近年来,有关纳米铜粉的制备研究,国内外都有不少报道,如气相蒸气法、#-射线法、等离子法、机械化学法等,但是制备纳米铜粉较为活跃的方法是液相还原法,现将对各种制备方法的制备过程、优缺点及其应用情况进行评述。 .1 气相蒸气法 〔5!6〕该方法是制备金属粉末最直接、最有效的方法,法国的Lairli C usd 公司采用感应加热法,用改进的气 相蒸气法制粉技术制备了铜超微粉末,产率为0.5k g /h 。感应加热法是将盛放在陶瓷坩埚内的金属材料在高频或中频电流感应下,靠自身发热而蒸 第11卷第2期2004年4月金属功能材料m etallic Functional m aterials V o l .11,N o.2 A p ril ,2004

阴极铜的生产工艺流程

铜精矿、冰铜、阴极铜的生产流程及主要工艺 铜冶金技术的发展是个漫长的过程,欧洲在公元前二十世纪中期已采用硫化铜矿炼铜,到公元初期的罗马帝国即已普及。16世纪阿里科拉(G.Arricola)在《冶金论》一书中叙述了铜的熔炼和精炼工艺。17世纪末,美国人赖特(D.Wright)用反射炉炼铜,产出锍(冰铜)。1880年开始用转炉吹炼锍,这是炼铜技术的重大进步。铜电解精炼技术也在此阶段发明。 目前冶炼方法主要有火法冶炼与湿法冶炼,前者多用于硫化矿的冶炼,后者一般用于氧化矿的冶炼。冶炼的纯铜可拉成很细的铜丝,制成很薄的铜箔。能与锌、锡、铅、锰、钴、镍、铝、铁等金属形成合金,形成的合金主要分成三类:黄铜是铜锌合金,青铜是铜锡合金,白铜是铜钴镍合金。 一、火法冶炼主要分采矿、选矿、熔炼、电解等步骤。 ⒈阴极铜火法冶炼过程 采矿就是将矿石与废石分离的过程。分离后的矿石运往选矿厂进行选矿。 选矿就是将采矿得到的矿石进行破碎、筛选获得品位较高的铜精矿的过程,包括破碎、浮选、分离、浓缩、脱水等步骤。矿石经过旋回破碎机、中细碎圆锥破碎机进行三级破碎后变成细颗粒状,再经球磨机碾磨成粉状进入浮选池。浮选池内加入药剂,经浮选机不断搅拌,金属吸附在搅拌后形成的泡沫上,泡沫悬浮在池的表面,金属随泡沫流入浮选池边上的槽内得到分离。分离后的矿浆经浓缩和过滤相结合的脱水手段,最后形成铜精矿。通过此过程,含铜量可由原矿的0.5%提高到30%(在干燥状态下)。 熔炼就是将铜精矿冶炼成合格的阳极铜,包括预干燥、闪速熔炼、转炉吹炼、阳极炉精炼及阳极浇铸等工序。

经过预干燥,矿的水分降至13%以下;干燥后,矿的水分降至3%以下。经闪速炉熔炼后的产物称“冰铜”,液体状,铜含量50%--75%,与硫混合。“冰铜”经转炉吹炼后的产物是“粗铜”,铜含量98.5%左右。粗铜再经阳极炉精炼并经过圆盘浇铸机浇铸,即形成阳极铜。阳极铜外型与阴极铜相似,但表面缺少光泽,厚度一般为阴极铜的2―3倍,是下一道工序电解中的阳极。 电解就是利用氧化-还原反应原理,阳极的铜电解进入电解液成为Cu离子,Cu离子带正电,流向阴极,在阴极富集,还原为金属铜,吸附在阴极上,阴极铜的纯度高于阳极。一般经过12天(阴极的反应周期)的电解反应,阴极上的铜就是所谓的“阴极铜”。阳极的反应周期24天。刚出炉的阴极铜呈砖红色,表面平整而光亮,铜的含量达99.95%以上。而阳极铜含多种其他元素,经电解后,这些元素在阳极沉淀下来,成为“阳极泥”。阳极泥再经处理可以得到金、银、粗硒和精碲等副产品。 电解的阴极,又称“始极片”,由专门的加工厂生产。始极片有三种:①由阴极铜制成,这种始极片电解后成为阴极铜的一部分;②钛板; ③不锈钢板。后两种可以重复使用,又称“永久阴极”。 ⒉ 火法冶炼的主要工艺 20 世纪70年代以前,火法冶炼普遍采用的炼铜设备是鼓风炉、反射炉和电炉。这几种工艺的共同缺点是能耗高、硫利用率低和污染环境。由于全球性的能源和环境问题突出,促使铜冶金技术从80年代起获得飞速发展。传统的冶炼方法逐渐被淘汰,随之兴起的是以闪速熔炼和熔池熔炼为代表的强化冶炼技术,其中最重要的突破是氧气的广泛应用。 ⑴ 闪速熔炼 包括国际镍公司闪速炉、奥托昆普闪速炉和旋涡顶吹熔炼3种。 奥托昆普闪速炉自1949年在芬兰Harjavalta冶炼厂投产以来,至今已投产42座。用此法生产的粗铜约占世界粗铜产量的45%左右,居

化学镀法制备银包覆超细铜粉反应工艺研究

第30卷 第1期 2008年1月武 汉 理 工 大 学 学 报JOURNA L OF WUHAN UNIVERSIT Y OF TECHN OLOG Y Vol.30 No.1 Jan.2008 化学镀法制备银包覆超细铜粉反应工艺研究 徐 锐1,2,周康根1,王 飞3 (1.中南大学冶金科学与工程学院,长沙410083;2.河南科技大学化工与制药学院,洛阳471003; 3.洛阳单晶硅厂,洛阳471000) 摘 要: 反应体系中引入强还原剂水合肼,通过反应条件的控制抑制置换反应,使银氨溶液优先发生液相还原反应,制备了与原铜粉粒径和形貌大致相同的铜2银双金属粉;采用XRD 、EDX 、激光粒度分析仪等检测方法对包覆双金属粉的晶相组成及含量、表面包覆层相组成及含量以及粒径分布等加以研究。研究表明:溶液的p H 、反应温度、PVP 加入量以及水合肼浓度是工艺的主要影响因素;水合肼还原法经过3次包覆后,铜粉表面形成连续的银膜,克服了置换反应消耗过多的铜粉、制备的铜2银双金属粉呈胶状不易洗涤、干燥后易于结块等不足。 关键词: 水合肼; 超细铜粉; 双金属粉; 工艺 中图分类号: TF 123文献标识码: A 文章编号:167124431(2008)0120024204 R esearch on the T echnics of Silver 2coating U ltra 2f ine Coppers via Electroless Plating X U R ui 1,2,ZHO U Kang 2gen 1,W A N G Fei 3 (1.School of Metallurgy Science and Engineering ,Central S outh University ,Changsha 410083,China ; 2.School of Chemical and Pharmaceutical Engineering ,Henan University of Science and Technology , Luoyang 471003,China ;3.Luoyang Single Crystal Silic Factory ,Luoyang 471000,China ) Abstract :  Cu 2Ag bimetallic powders whose grain size was similar to the copper powders ,were prepared by reduction reac 2tion with hydrazine as the reducing agent by means of inhibiting substitution https://www.doczj.com/doc/df12048486.html,position and content for the coated copper powders ,composition and content of the coated 2surface and particle size distribution are characterized in turn by XRD ,EDX and MICRD 2PLUS.The investigation shows that the main influence factors on technics are p H in solution ,temperature ,the adding of PVP ,concentration of hydrazine and so on ;a continuous silver film is formed on the surface of copper powder by three 2times coating ,the problem on consumption of copper powder itself ,colloid Cu 2Ag bimetallic powder which is not easily washed agglomerate after drying overcome. K ey w ords : hydrazine ; ultra 2fine copper ; bimetallic powders ; technics 收稿日期:2007209219. 基金项目:国家自然科学基金(50474047). 作者简介:徐 锐(19682),男,博士生.E 2mail :xrxr2001@https://www.doczj.com/doc/df12048486.html, 非电镀包覆技术是利用还原剂将溶液中的金属盐还原成金属状态,在此过程中不需要利用电压[1],包覆技术广泛应用于微电子学、计算机工程、催化以及航空技术等等[224],其特点在于对于任何形状的金属、电介质以及半导体的颗粒均能获得均匀的包覆,而且能够控制包覆层的物理化学性质(导电性、化学和磁力性质)。由于可作为真空沉淀技术和化学气相沉积(CVD )的替代方法或补充技术,非电镀包覆引起了广泛关注。目前小尺寸大容量多层陶瓷电容器(MLCC )贱金属化已成为一种趋势,作为铜、镍等贱金属取代贵金属钯、银充当内电极材料是一种降低MLCC 价格的有效措施;然而,铜内电极在烧结过程中易于氧化,生成难

相关主题
文本预览
相关文档 最新文档