当前位置:文档之家› 乳液聚合基本原理

乳液聚合基本原理

乳液聚合基本原理
乳液聚合基本原理

乳液聚合基本原理

2016-10-23 作者Ronald Lewarchik

乳液聚合是由固特异轮胎橡胶公司在上世纪20年代发明的。乳液聚合过程产生乳胶粒子,这是一种聚合物的水分散体。主要使用乳液聚合物的水性涂料是全球范围使用最大的涂料技术类型,占总涂料市场的百分之一,并预计会持续增长。

在乳液聚合中,单体首先分散在水相中。引发剂的自由基在水相中产生并迁移进入和单体分子一起溶胀的皂基胶束中。随着聚合反应的进行,更多的单体进入胶束使得聚合继续进行。

图1:乳液聚合的机理【2】

在结束反应前,只要有一个自由基存在于胶束中,就有形成近似百万甚至更高分子量的可能。不像溶剂型聚合物,乳液的粘度取决于含有分散粒子的介质(连续介质)。通过加入

链转移剂来控制分子量。得到的乳液粒子是一种水包油的乳状液。单体在水相中。

一个不太常用的乳化技术称为反相乳液聚合过程,是将水溶性的单体分散在非水相。

乳液聚合可以使用间歇工艺,半连续工艺或连续工艺。商业化乳液聚合物使用半连续或连

续工艺甚过简单的间歇工艺,这是因为在一个大的反应釜中乳液间歇工艺产生的热量是不

可控的。在半连续间歇工艺中,单体和引发剂以可控的速率按比例加入可快速聚合。这种

方法便于控制温度,因为单体浓度较低,也可以说单体处在饥饿状态下。种子乳液聚合反

应的开始也使用这种方法。

在连续工艺中,反应体系以一定速率在合适的反应釜内连续进出,这样发生反应体系的总

体积在任何时刻都是恒定的。

细乳液是利用混合的乳化剂体系由强力的机械搅拌或均化方式使单体分散在水中而得到的。所用的混合乳化剂体系包括经典的乳化剂和与水不相溶的助表面活性剂,如长链脂肪醇或

烷烃(如鲸蜡醇或鲸蜡烷)。最终的聚合物颗粒几乎和初始单体液滴的大小相同。相比用常规手段制得的乳液,它们的粒径分布更广泛。【4】

表1.乳液聚合中原材料的选择

在微乳液聚合中,初始系统是由经典的乳化剂,例如月桂基磺酸钠的帮助下在水中分散成10到100纳米液滴的单体,助表面活性剂,如低分子量醇(戊醇或己醇)组成。微乳液是热力学稳定的和光学透明的单相溶液。反应速率通常非常快。微乳液聚合过程中产生乳液颗粒小于50纳米。一般的微乳液粒子只含有一个平均分子量超过一百万的聚合物分子。【3】

表2:各种水性树脂的特性【1】

关于水性涂料的更多信息可以参考以下赛百库专家文章:

水性树脂技术理论

改善常温固化乳胶漆的性能

在水性涂料中使用分散&润湿疏水性颜填料来预防颜料的溢色&浮花

参考资料:

1.Lewarchik, R. Fundamentals of Waterborne Resin Technology. 2015 Sept 18.

Overland Park (KS): UL Prospector; [accessed 2016 Jun

8]. https://www.doczj.com/doc/df11484103.html,/3069/pc-fundamentals-waterborne-re sin-technology/

2.Nanostructured, Nonuniform and Core-Shell Polyurethane Dispersions.

2005 Oct 1. Troy (MI): PCI Magazine; [accessed 2016 Jun

8]. https://www.doczj.com/doc/df11484103.html,/articles/83072-nanostructured-nonuniform-and-c ore-shell-polyurethane-dispersions

3.Micro-Emulsion. c2016. Derby (UK): Enviroquest; [accessed 2016 Jun

8].https://www.doczj.com/doc/df11484103.html,/content/micro-emulsion.html

4.Poehlein, GW. Encyclopedia of Polymer Science and Engineering, 2nd Edn.,

Mark, HF, et al., Eds. 1986. Vol. 6: 1

5G时代终端射频前端发展趋势

射频前端——手机通信重要模块 1、射频前端基本架构与运作原理 手机终端的通信模块主要分为天线、射频前端模块、射频收发模块、基带信号处理。射频前端是移动智能终端产品的核心组成部分,它是模拟电路中应用于高频领域的一个重要分支。按照设备中产品形态分类,射频器件可分为分立器件和射频前端模组。分立器件即功放、滤波器、天线开关等各个独立器件;射频前端模组则是将器件集成在一起,随着通信技术的进步,集成化和小型化技术趋势已使射频前端模组倍受推崇。 射频前端介于天线与射频收发之间,可以分为接收通道和发射通道,元件主要包括滤波器(Filters)、低噪声放大器(LNA,Low Noise Amplifier),功率放大器(PA,PowerAmplifier)、射频开关(RF Switch)、天线调谐开关(RF Antenna Switch)、双工器。 从线路看信号传输: 其接收通道:信号—天线—天线开关—滤波器/双工器—LNA—射频开关—射频收发—基带; 其发射通道:基带—射频收发—射频开关—PA—滤波器/双工器—天线开关—天线—信号。 天线用于无线电波的收发;射频开关用于实现射频信号接收与发射的切换、不同频段间的切换;LNA用于实现接收通道的射频信号放大;PA用于实现发射通道的射频信号放大;滤波器用于保留特定频段内的信号,而将特定频段外的信号滤除;双工器用于将发射和接收信号的隔离,保证接收和发射在共用同一天线的情况下能正常工作。

1.1天线与射频开关 天线用于无线电波的收发,连接射频前端,是接收通道的起点与发射通道的终点。天线按功能分类包括主天线、GPS定位天线、Wifi天线、NFC天线、FM天线等。天线的应用包括基站侧与终端侧,本文主要介绍手机终端情况。随着信息技术的不断发展,无线网络频段增加、频率升高,驱使手机天线的使用增加,同时,为实现高速、多频率、少损耗的传输,终端天线通过材料、结构、工艺的不断改进实现性能的提升。 射频开关的作用是控制多路射频信号中的一路或几路实现逻辑连通,达到不同信号路径的切换的目的,包括接收与发射的切换、不同频段间的切换等,最终可以共用天线、节省终端产品成本。射频开关的主要包括移动通信传导开关、WiFi 开关、天线调谐开关等。 它的运作原理如下:当射频开关的控制端口加上不同电压时,射频开关各端口将呈现不同的连通性。以单刀双掷射频开关为例,当控制端口加上正电压时,连接端口1与端口3的电路导通,同时连接端口2与端口3的电路断开;当控制端口加上零电压时,连接端口1与端口3的电路断开,同时连接端口2与端口3的电路导通。通过控制电压,实现了不同电路的连通。 1.2滤波器 滤波器主要是通过电容、电感、电阻等元件组合移除信号中不需要的频率分量,保留所需要的频率分量,传输特定的筛选后的信号,消除频带间相互干扰。目前手机中常用的滤波器包括声表面波滤波器(Surface Acoustic Wave Filter,

聚合反应器技术及应用

聚合反应器技术及应用31 聚合反应工艺及设备分类;郝静祖;摘要:以聚乙烯为例简单介绍了聚合反 应的工艺流程,;1、聚合反应工艺流程及主要控制回路简介;聚合反应机理复杂,是强放热反应,过程具有大滞后、;其一般流程图如下:;图1聚合反应流程图;系统主要由聚合反应器(C4001)、循环汽冷却器;以聚乙烯合成为例[1],聚合反应在硫化床反应器(;温度控制回路,主要依靠进入反应器入口的循环汽 温度 聚合反应工艺及设备分类 郝静祖 摘要:以聚乙烯为例简单介绍了聚合反应的工艺流程,及聚合反应器的一般 分类关键词:聚合反应器聚合反应 1、聚合反应工艺流程及主要控制回路简介 聚合反应机理复杂,是强放热反应,过程具有大滞后、大惯性、非线性等特性。温度、压力、浓度及催化剂的活性与牌号等都对化学平衡产生重要影响。其中,反应器床层温度对产品的质量、产率影响最大。 其一般流程图如下: 图1 聚合反应流程图 系统主要由聚合反应器(C4001)、循环汽冷却器(E4002)和循环汽压缩机组成。反应循环汽体在压缩机的作用下,连续经过被硫化的树脂反应床和冷却器,同时移走反应产生的热量。冷却器是单程壳式换热器,汽体走管程,调温水走壳层。 以聚乙烯合成为例[1],聚合反应在硫化床反应器(C4001)中进行,反应压力为2.1MPa,反应温度88℃左右,具体数值视产品牌号而定。反应用料乙烯、H2、T2、CH及其共聚单体等从反应器底部加入,一部分转化为聚乙烯,大部分单体和共聚单体从反应器顶部作为循环汽又返回到反应器。循环汽冷却器(E4002)的

调温水由水泵加入,从循环器冷却器出来的调温水带出大量的热量。催化剂Cat 来自加料器STC4036。反应器有两套出料循环系统,一 路排出料粉进入出料缸C4101,另一路从塔顶排出,循环反应。 温度控制回路,主要依靠进入反应器入口的循环汽温度来调节,循环汽的温度由冷却水流量控制,而水流量的控制为分程控制。控制系统结构为串级控制,主调节器4001T26,副调节器4001T46。 循环汽流量控制:反应器流量由4001FIC检测并发出调节信号给入口导向阀4003FV,通过调节入口导向阀的开度来控制循环汽流量。 反应器温度400126.PV在负荷平稳、催化剂加料均匀、活性好的情况下基本能维持稳定的正常88℃±1℃。当工况负荷有变化,或其它未知扰动的影响时,会造成温度的大范围波动,甚至出现高高限报警。如:由于产品牌号的变化,操作员为保证产品质量而改变催化剂加料量,一不小心就会导致聚合反应的剧烈变化,表现为反应器温度的剧烈波动。另外,由于循环汽压泵的故障,常会引发循环汽流量的波动,而流量回路由于时间常数小,短时间即可恢复稳定,但由此而导致的反应器温度波动却迟迟不能恢复稳定,有可能会产生振荡。总的来说,反应器温度控制通道具有大惯性、大滞后、非线性等特征,目前普遍采用的PID 控制有不尽如意之处,有待改进。 2、聚合反应器 以溶聚丁苯橡胶连续聚合工艺为线索,介绍了我国目前应用于聚合反应生产的反应器。 2.1连续聚合用反应釜 采用相向两侧进料的反应釜[2],釜内设有轴向和径向搅拌器,搅拌速度35 0 r/min,4块挡板用来强化混合,适当改善物料在釜内的停留时间分布。单体和引发剂溶液由湍流区相对两侧的入口管线的3个孔进入体系,从而防止新鲜引发剂直接与高浓度的单体接触,以便减轻挂胶及凝胶的生成;另外要在反应物料中加入适量1,2-丁二烯。各种物料的组成(质量份)如下:单体溶液中丁二烯100,环己烷475,THF 0.04,1,2-丁二烯0.04;引发剂溶液中正丁基锂0.065,环己烷

LTE网络20M+20M载波聚合开发项目测试报告

LTE网络20M+20M载波聚合开发项目 测试报告 2014年2月

目录 1概述 (1) 1.1.测试目的 (2) 1.2.测试依据..................................................................................... 错误!未定义书签。 1.3.测试总体情况说明 (2) 2.测试环境 (3) 2.1.测试设备连接与组网 (3) 2.2.测试系统配置 (5) 2.3.测试工具及仪表 (5) 2.4.测试系统基本配置 (6) 3.测试项目 (6) 3.1.激活/去激活辅载波 (6) 3.1.1.激活辅载波 (6) 3.1.1.1.测试目的 (6) 3.1.1.2.测试配置 (6) 3.1.1.3.测试原理 (6) 3.1.1.4.测试方法 (7) 3.1.1.5.测试结果分析 (7) 3.1.1.6.测试小结 (7) 3.1.2.去激活辅载波 (8) 3.1.2.1.测试目的 (8) 3.1.2.2.测试配置 (8) 3.1.2.3.测试原理 (8) 3.1.2.4.测试方法 (8) 3.1.2.5.测试结果分析 (8) 3.1.2.6.测试小结 (9) 3.2.载波聚合和非载波聚合终端近、中点下行速率测试 (9) 3.2.1.测试目的 (9) 3.2.2.测试配置 (9) 3.2.3.测试原理 (10) 3.2.4.测试方法 (10) 3.2.5.测试结果分析 (10) 3.2.6.测试小结 (13) 3.3.载波聚合和非载波聚合终端覆盖性能对比测试 (13) 3.3.1.测试目的 (13) 3.3.2.测试配置 (13) 3.3.3.测试原理 (13) 3.3.4.测试方法 (13) 3.3.5.测试结果分析 (13) 3.3.6.测试小结 (14) 3.4.双载波与双载波小区的切换 (14)

高分子科学简明教程课后习题与试题答案(补充版)

▲为08年6月考试题目 *为14年6月考题 第一章概述 3. 说出10种你在日常生活中遇到的高分子的名称。 答:涤纶、聚四氟乙烯、聚乙烯、聚丙烯、PET、蛋白质、核酸、涂料、塑料、合成纤维 6.下列物质中哪些属于聚合物?(1)水;(2)羊毛;(3)肉;(4)棉花;(5)橡胶轮胎;(6)涂料 答:羊毛、棉花、橡胶轮胎、涂料、肉 *7.写出下列高分子的重复单元的结构式:(1)PE;(2)PS;(3)PVC;(4)POM;(5)尼龙;(6)涤纶 答:(1)PE——聚乙烯-CH2-CH2- (2)PS——聚苯乙烯 (3)PVC——聚氯乙烯 (4)POM——聚甲醛-O-CH2- (5)尼龙——聚酰胺-NH(CH2)5CO- (6)涤纶——聚对苯二甲酸乙二醇酯P7 名称结构单元单体单元 H2 C C CH3 H3COOC 聚甲基丙烯酸甲酯一样一样 H2 C H C H3COOC 聚丙烯酸甲酯一样一样 —NH(CH2)6NHCO(CH)4CO—尼龙-66 —NH(CH2)6NH— —CO(CH)4CO— 无 H2 C C H3C H C C H2 聚异戊二烯一样一样 ▲ (1)高分子;(2)链节;(3)聚合度;(4)多分散度;(5)网状结构;(6)共聚物 答:(1)高分子也叫聚合物分子或大分子,具有高的相对分子量,其结构必须是由多个重复单元所组成,并且这些重复单元实际是或概念上是由相应的小分子衍生而来的。 (2)链节是指结构重复单元,重复组成高分子分子结构的最小结构单元。 (3)聚合度是单个聚合物分子所含单体单元的数目。

(4)多分散性:除了蛋白质、DNA等外,高分子化合物的相对分子质量都是不均一的 (5)网状结构是交联高分子的分子构造。 (6)共聚物:由一种以上单体聚合而成的聚合物。 14、平均相对分子质量为100万的超高相对分子质量PE的平均聚合度是多少? P=100×10000/28=35700 ▲21、高分子结构有哪些层次?各层次研究的内容是什么? 答:高分子结构由4个层次组成: a、一级结构,指单个大分子内与基本结构单元有关的结构,包括结构单元的化学组成、链接方式,构型,支化和交联以及共聚物的结构 b、二级结构,指若干链节组成的一段链或整根分子链的排列形状。 c、三级结构在二级的基础上许多这样的大分子聚集在一起而形成的结构,包括结晶结构,非晶结构,液晶结构和取向结构。 d、四级结构,指高分子在材料中的堆砌方式。 22、什么是高分子的构型?什么是高分子的构象?请举例说明。 答:构型是指分子中由化学键所固定的原子在空间的排列;高分子链由于单键内旋转而产生分子在空间的不同形态称为构象。构象与构型的根本区别在于,构象通过单键内旋转可以改变,而构型无法通过内旋转改变。 26、用粗略示意图表示:(1)线型聚合物(2)带短支链聚合物(3)交联XX(4)星形聚合物 27、试分析线形、支化、交联高分子的结构和性能特点。 线形高分子的分子间没有化学键结合,在受热或受力时可以互相移动,因而线形高分子在适当溶剂中可以溶解,加热时可以熔融,易于加工成形。 交联高分子的分子间通过支链联结起来成为了一个三锥空间网状大分子,高分子链不能动弹,因而不溶解也不熔融,当交联度不大时只能在溶剂中溶胀。 支化高分子的性质介于线形高分子和交联(网状)高分子之间,取决于支化程度。 第三章链式聚合反应 1.下列烯类单体适于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。 CH2=CHCl CH2=CCl2 CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2 CH2=CHC6H5 CF2=CF2 CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 解:CH=CHCl适于自由基聚合,Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CCl2适于自由基聚合和阴离子聚合。Cl原子是吸电子基团,也有共轭效应。2个Cl原子的吸电子性足够强。 CF2=CF2适合自由基聚合,F原子体积小,结构对称。 CH2=CHC6H5 与CH2=CH-CH=CH2可进行自由基聚合、阳离子聚合以及阴离子聚合。因为共轭体系п电子的容易极化和流动。 CH2=CHCN适合自由基聚合和阴离子聚合。-CN是吸电子基团,并有共轭效应。 CH2=C(CN)2适合阴离子聚合。2个-CN是强吸电子基团。 CH2=C(CH3)2适合阳离子聚合。CH3为供电子基团,CH3与双键有超共轭效应。 CH2=C(CN)COOR适合阴离子聚合,两个吸电子基的吸电子性很强。 CH2=CCH3COOR适合自由基聚合和阴离子聚合。因为是1,1二取代基,甲基体积较小,COOR为吸

高分子化学课程考试大纲

《高分子化学》课程考试大纲 (四年制本科) 课程编号:03021203 课程性质:专业限选课 使用专业:应用化学 开设学期:第五学期 考核方式:考试或考查 一、课程考核目的 促进学生认真复习巩固所学的知识,通过本课程的考核,了解学生掌握高分子化学的基础知识和基本原理、基础理论的情况;检验学生灵活运用所学知识、综合分析和解决问题的能力、进一步自学文献书刊的能力。 二、学时数及分配 本课程总学时为45(15周,周课时3), 三、教材与主要参考书 教材 1、潘才元,《高分子化学》,中国科技大学出版社,1997 主要参考书 1、潘祖仁(浙大),《高分子化学(第二版)》,化工出版社,1997 2、《高分子化学》林尚安编,科学出版社 3、《聚合物化学导论》[美国] R.B.西摩著,新时代出版社 4、《Principles of Polymerization》Georgn Odian

5、《高分子科学简明教程》夏炎主编,科学出版社 6、《高分子化学的理论及应用进展》金关泰主编,中国石化出版社 7、《Macromalecules》Hans-Georg Elias 四、考核的知识点与考核目标 本考试大纲根据上饶师范学院《高分子化学》课程教学大纲的教学要求,以四年制本科人才培养规格为目标,按照高分子化学学科的理论知识体系,提出了考核的知识点和考核的目标。考核目标分为三个层次;了解、理解(或熟悉)、掌握(或会、能),三个层次依次提高。 第一章绪论 考核知识点 1、高分子化合物的基本概念、分类及命名原则; 2、聚合物的平均分子量、分子量分布、大分子微结构等基本概念; 3、聚合物的物理状态和主要性能;高分子科学及其工业发展历史和前景。 考核要求 1、了解聚合物的物理状态和主要性能; 2、了解高分子科学及其工业发展历史和前景; 3、掌握高分子化合物的基本概念、分类及命名原则; 4、掌握聚合物的平均分子量、分子量分布、大分子微结构等基本概念。 第二章自由基聚合反应 考核知识点 1、连锁聚合的单体; 2、自由基聚合机理;

第七章 配位聚合

第七章配位聚合 思考题7.1如何判断乙烯、丙烯在热力学上能否聚合?采用哪一类引发剂和条件,才能聚合成功? 答可根据聚合自由能差?G=?H—T?S<0,作出判断。大部分烯类单体的?S近于定值,约-100~120J·mol-1,在一般聚合温度下(50~100℃),-T/?S=30~42kJ·mol-1,因此当-?H≥30kJ·mol-1时,聚合就有可能。乙烯和丙烯的-?H分别为950kJ·mol-1、858kJ·mo1-1,所以在热力学上很有聚合倾向。 在100~350MPa的高压和160-270℃高温下,采用氧气或有机过氧化物作引发剂,乙烯按自由基机理进行聚合,得到低密度的聚乙烯(LDPE);若采用TiCl4—Al(C2H5)3,为催化剂,在汽油溶剂中,进行配位聚合,则得高密度的聚乙烯(HDPE)。采用。A-TiCl3-Al(C2H5)3为催化剂,于60~70℃下和常压或稍高于常压的条件下,丙烯进行配位聚合可制得等规聚丙烯。 思考题7.2 解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 答配位聚合:是指单体分子首先在活性种的空位处配位,形成某些形式的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)键中增长形成大分子的过程,所以也可称作插入聚合。 络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 插入聚合:烯类单体与络合引发剂配位后,插入Mt-R链增长聚合,故称为插入聚合。 定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 有规立构聚合:是指形成有规立构聚合物为主的聚合反应。任何聚合过程或聚合方法,只要是形成有规立构聚合物为主,都是有规立构聚合。 思考题7.3区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 答构型:指分子中原子由化学键固定在空间排布的结构,固定不变。要改变构型,必须经化学键的断裂和重组。 构象:由于。单键的内旋转而产生的分子在空间的不同形态,处于不稳定状态,随分子的热运动而随机改变。 光学异构:即分子中含有手性原子(如手性C‘),使物体与其镜像不能叠合,从而具有不同旋光性,这种空间排布不同的对映体称为光学异构体。 几何异构:又称顺、反异构,是指分子中存在双键或环,使某些原子在空间的位置不同而产生的立体结构。 聚丙烯可聚合成等规聚丙烯、间规聚丙烯和无规聚丙烯三种立体异构体。 聚丁二烯有顺式-1,4-结构、反式-1,4-结构和全同-1,2-结构、间同-1,2-结构四种立体异构。 思考题7.4什么是聚丙烯的等规度? 答聚丙烯的等规度是指全同聚丙烯占聚合物总量的百分数。聚丙烯的等规度或全同指数IIP(isotactic index)可用红外光谱的特征吸收谱带来测定。波数为975cm-1是全同螺旋链段的特征吸收峰,而1460cm-1是与CH3基团振动有关、对结构不敏感的参比吸收峰,取两者吸收强度(或峰面积)之比乘以仪器常数K即为等规度。

LTE载波聚合

首先介绍几个基本概念 Primary Cell(PCell):主小区是工作在主频带上的小区。UE在该小区进行初始连接建立过程,或开始连接重建立过程。在切换过程中该小区被指示为主小区(见36.331的3.1节) Secondary Cell(SCell):辅小区是工作在辅频带上的小区。一旦RRC连接建立,辅小区就可能被配置以提供额外的无线资源(见36.331的3.1节) Serving Cell:处于RRC_CONNECTED态的UE,如果没有配置CA,则只有一个S erving Cell,即PCell;如果配置了CA,则S erving Cell集合是由PCell和SCell组成(见36.331的3.1节) CC:Component Carrier;载波单元 DL PCC :Downlink Primary Component Carrier;下行主载波单元 UL PCC :Uplink Primary Component Carrier;上行主载波单元 DL SCC :Downlink Secondary Component Carrier;下行辅载波单元 UL SCC :Uplink Secondary Component Carrier;上行辅载波单元 一. 简介 为了满足LTE-A下行峰速1 Gbps,上行峰速500 Mbps的要求,需要提供最大100 MHz的传输带宽,但由于这么大带宽的连续频谱的稀缺,LTE-A提出了载波聚合的解决方案。 载波聚合(Carrier Aggregation, CA)是将2个或更多的载波单元(Component Carrier, CC)聚合在一起以支持更大的传输带宽(最大为100MHz)。 每个CC的最大带宽为20 MHz。 为了高效地利用零碎的频谱,CA支持不同CC之间的聚合(如图1) ·相同或不同带宽的CCs ·同一频带内,邻接或非邻接的CCs ·不同频带内的CCs 图1:载波聚合 从基带(baseband)实现角度来看,这几种情况是没有区别的。这主要影响RF实现的复杂性。 CA的另一个动力来自与对异构网络(heterogeneous network)的支持。后续会在跨承载调度(cross-carrier scheduling)中对异构网络进行介绍。 Rel-10中的所有CC都是后向兼容的(backward-compatible),即同时支持Rel-8的UE。 ?R10版本UE支持CA,能够同时发送和接收来自多个CC(对应多个serving cell)的数据 ?R8版本UE只支持在一个serving cell内,从一个CC接收数据以及在一个CC发送数据 简单地做个比较:原本只能在一条大道(cell或cc)上运输的某批货物(某UE的数据),现在通过CA能够在多条大道上同时运输。这样,某个时刻可以运输的货物量(throughput)就得到了明显提升。每条大道的路况可能不同(频点、带宽等),路况好的就多运点,路况差的就少运点。 二.PCell / SCell / Serving Cell / CC

习题答案资料

习题答案

思考题 2. 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答:本体法制备有机玻璃板过程中,有散热困难、体积收缩、产生气泡诸多问题;本体法制备通用级聚苯乙烯存在散热问题。前者采用预聚合、聚合和高温处理三阶段来控制;后者采用预聚和聚合两阶段来克服。 3. (略) 4. 悬浮聚合和微悬浮聚合在分散剂选用、产品颗粒特性上有何不同? 答:悬浮聚合分散剂主要是水溶性高分子和不溶于水的无机粉末,而微悬浮聚合在分散剂是特殊的复合乳化体系,即由离子型表面活性剂和难溶助剂组成;悬浮聚合产品的粒度一般在50μm~2000μm之间,而悬浮聚合产品的粒度介于0.2μm~1.5μm之间。 5.苯乙烯和氯乙烯悬浮聚合在过程特征、分散剂选用、产品颗粒特性上有何不同? 答:苯乙烯悬浮聚合的初始体系属于非均相,其中液滴小单元则属均相,最后形成透明小珠状,故有珠状(悬浮)聚合之称,而氯乙烯悬浮聚合中,聚氯乙烯将从单体液滴中沉析出来,形成不透明粉状产物,故可称作沉淀聚合或粉状(悬浮)聚合。 聚苯乙烯要求透明,选用无机分散剂为宜,因为聚合结束后可以用稀硫酸洗去,而制备聚氯乙烯可选用保护能力和表面张力适当的有机高分子作分散剂,有时可添加少量表面活性剂。 聚苯乙烯为透明的珠状产品,聚氯乙烯为不透明的粉状产物。 6. 比较氯乙烯本体聚合和悬浮聚合的过程特征、产品品质有何不同? 答:氯乙烯本体聚合除了悬浮聚合具有的散热、防粘特征外,更需要解决颗粒疏松结构的保持问题,多采用两段聚合来解决。本体法聚氯乙烯的颗粒特性与悬浮法树脂相似,疏松,但无皮膜,更洁净。 7. 简述传统乳液聚合中单体、乳化剂和引发剂的所在场所,链引发、链增长和链终止的场所和特征,胶束、胶粒、单体液滴和速率的变化规律。 答:单体的场所:水中、增溶胶束、单体液滴 乳化剂的场所:水中、胶束、增溶胶束、单体液滴表面 引发剂的场所:水中 引发的场所:增溶胶束 增长的场所:乳胶粒内 终止的场所:乳胶粒内

LTE的载波聚合技术

LTE的载波聚合技术 人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。 我们先来看看全球CA发展历程。 1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。LGU+一个月后跟进。 2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。 3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。

刚开始,载波聚合部署仅限于2载波。2014年,韩国SK电信、LGU+成功演示了3载波聚合。随着技术的不断演进,相信未来还有更多CC的载波聚合。当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。

载波聚合的分类 载波聚合主要分为intra-band 和inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。 对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。 对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。 3GPP关于载波聚合的定义

高分子化学选择题教程文件

1.一对单体共聚时,r1=1,r2=1,其共聚行为是( A )? A.理想共聚 B.交替共聚 C.恒比点共聚 D.非理想共聚。 2.两对单体可以共聚的是( AB )。 A.Q和e值相近 B.Q值相近而e值相差大 C.Q值和e值均相差大 D.Q值相差大而e值相近 3.能采用阳离子、阴离子与自由基聚合的单体是( B )? A.MMA B.St C.异丁烯 D.丙烯腈 4.在高分子合成中,容易制得有实用价值的嵌段共聚物的是( B )? A.配位阴离子聚合 B.阴离子活性聚合 C.自由基共聚合 D.阳 离子聚合。 5.乳液聚合的第二个阶段结束的标志是( B )? A.胶束的消失 B.单体液滴的消失 C.聚合速度的增加 D.乳胶粒的形成。 6.自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可采用( A )聚合方法? A.乳液聚合 B.悬浮聚合 C.溶液聚合 D.本体聚合。 7.在缩聚反应的实施方法中对于单体官能团配比等物质量和单体纯度要求不是很严格的缩聚是( C )。 A.熔融缩聚 B.溶液缩聚 C.界面缩聚 D.固相缩聚。 8.合成高分子量的聚丙烯可以使用以下( C )催化剂? A.H2O+SnCl4 B.NaOH C.TICl3+AlEt3 D.偶氮二异丁腈。 9.阳离子聚合的特点可以用以下哪种方式来描述( B )?

A.慢引发,快增长,速终止; B.快引发,快增长,易转移,难终止; C. 快引发,慢增长,无转移,无终止; D.慢引发,快增长,易转移, 难终止; 10.下面哪种组合可以制备无支链高分子线形缩聚物( B ) A.1-2官能度体系; B.2-2官能度体系; C.2-3官能度体系; D.3-3 官能度体系。 11.自由基共聚合可得到( A D )共聚物。 A. 无规共聚物 ; B.嵌段共聚物 ; C. 接技共聚物 ; D.交替共 聚物 12.为了得到立构规整的PP,丙烯可采用( D )聚合。 A. 自由基聚合 B. 阴离子聚合 C. 阳离子聚合 D.配位 聚合 13.工业上为了合成聚碳酸酯可采用( A、B )聚合方法。 A.熔融缩聚 B.界面缩聚 C.溶液缩聚 D.固相缩聚 14.聚合度基本不变的化学反应是( A) A.PVAc的醇解 B.聚氨酯的扩链反应 C.高抗冲PS的制备 D.环氧树脂的固化 15.表征引发剂活性的参数是(B、D ) A. Kp B. t1/2 C. kt D. kd 16.使自由基聚合反应速率最快的聚合方式是( C )。 A.引发聚合 B.光聚合 C.光敏聚合 D. 热聚合 17.在自由基聚合反应中,链自由基的( D )是过氧类引发剂引发剂

配位聚合

第七章配位聚合 1. 简要解释以下概念和名词: (1)配位聚合和插入聚合 (2)有规立构聚合和立构选择聚合 (3)定向聚合和Ziegler-Natta聚合 (4)光学异构、几何异构和构象异构 (5)全同聚合指数 答:(1)配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(M t)—碳(C)键中增长形成大分子的过程。这种聚合本质上是单体对增长链M t—R键的插入反应,所以又常称插入聚合。 (2)有规立构聚合。按照IUPAC(国际纯粹与应用化学联合会)的规定,有规立构聚合是指形成有规立构聚合物为主的聚合过程。因此任何聚合过程(包括自由基、阴离子、阳离子或配位聚合等)或任何聚合方法(如本体、悬浮、乳液和溶液聚合等),只要它是以形成有规立构聚合物为主,都是有规立构聚合。而引发剂能优先选择一种对映体进入聚合物链的聚合反应,则称为立构选择聚合。(3)定向聚合和有规立构聚合是同义语,二者都是指形成有规立构聚合物为主的聚合过程。Ziegler-Natta聚合通常是指采用Ziegler-Natta型引发剂的任何单体的聚合或共聚合,所得聚合物可以是有规立构聚合物,也可以是无规聚合物。它经常是配位聚合,但不一定都是定向聚合。 (4)分子式相同,但是原子相互联结的方式和顺序不同,或原子在空间的排布方式不用的化合物叫做异构体。异构体有两类:一是因结构不同而造成的异构现象叫结构异构(或称同分异构);二是由于原子或原子团的立体排布不同而导致的异构现象称为立体异构。根据导致立体异构的因素不同,立体异构又分为:光学异构,即分子中含有手性原子(如手性C*),使物体与其镜像不能叠合,从而使之有不同的旋光性,这种空间排布不同的对映体称为光学异构体;几何异构(或称顺、反异构)是指分子中存在双键或环,使某些原子在空间的位置不同,从而导致立体结构不同(例如聚丁二烯中丁二烯单元的顺式和反式构型);光学异构和几何异构均为构型异构。除非化学键断裂,这两种构型是不能相互转化的。构象异构:围绕单键旋转而产生的分子在空间不同的排列形式叫做构象。由单键内旋转造成的立体异构现象叫构象异构。和构型一样,构象也是表示分子中原子在空间的排布形式,不同的是构象可以通过单键的内旋转而相互转变。各种异构体一般不能分离开来,但当围绕单键的旋转受阻时也可以分离。 (5)根据IUPAC建议的命名法,光学异构体的对映体构型用R(右)或S(左)表示。即将手性中

微通道反应器的分类介绍

微反应器,即微通道反应器,利用精密加工技术制造的特征尺寸在10到300微米(或者1000微米)之间的微型反应器,微反应器的“微”表示工艺流体的通道在微米级别,而不是指微反应设备的外形尺寸小或产品的产量小。微反应器中可以包含有成百万上千万的微型通道,因此也实现很高的产量。 微反应器又可分为气固相催化微反应器、液液相微反应器、气液相微反应器和气液固三相催化微反应器等。 1.气固相催化微反应器 由于微反应器的特点适合于气固相催化反应,迄今为止微反应器的研究主要集中于气固相催化反应,因而气固相催化微反应器的种类最多。最简单的气固相催化微反应器莫过于壁面固定有催化剂的微通道。复杂的气固相催化微反应器一般都耦合了混合、换热、传感和分离等某一功能或多项功能。运用最广的甲苯气-固催化氧化。 2.液液相反应器 到目前为止,与气固相催化微反应器相比较,液相微反应器的种类非常少。液液相反应的一个关键影响因素是充分混合,因而液液相微反应器或者与微混合器耦合在一起,或者本身就是一个微混合器。专为液液相反应而设计的与微混合器等其他功能单元耦合在一起的微反应器案例为数不多。主要有BASF设计的维生素前体合成微反应器和麻省理工学院设计的用于完成Dushman化学反应的微反应器。 3.气液相微反应器 一类是气液分别从两根微通道汇流进一根微通道,整个结构呈T

字形。由于在气液两相液中,流体的流动状态与泡罩塔类似,随着气体和液体的流速变化出现了气泡流、节涌流、环状流和喷射流等典型的流型,这一类气液相微反应器被称做微泡罩塔。 另一类是沉降膜式微反应器,液相自上而下呈膜状流动,气液两相在膜表面充分接触。气液反应的速率和转化率等往往取决于气液两相的接触面积。这两类气液相反应器气液相接触面积都非常大,其内表面积均接近20000m2/m3,比传统的气液相反应器大一个数量级。4.气液固三相催化微反应器 气液固三相反应在化学反应中也比较常见,种类较多,在大多数情况下固体为催化剂,气体和液体为反应物或产物,美国麻省理工学院发展了一种用于气液固三相催化反应的微填充床反应器,其结构类似于固定床反应器,在反应室(微通道)中填充了催化剂固定颗粒,气相和液相被分成若干流股,再经管汇到反应室中混合进行催化反应。 上海惠和化德生物科技有限公司,是一家专注于微反应器连续工艺开发及工业化的创新性高科技公司。公司于2015年6月在中国(上海)自由贸易试验区内成立,随着业务的发展,公司于2019年10月整体搬迁至上海化学工业园内。公司上海本部实验室配备十余套微反应器,并与梅特勒托利多共建化学过程联合实验室、与沈阳化工研究院和上海化工研究院共建过程安全联合体、与南大淮安高新技术研究院共建特殊反应实验室等。公司主要服务于国内外精细化工企业,帮助客户进行微反应器连续流工艺咨询与评估、工艺开发、工业化项目投资和管理等。公司立足于客户具体项目,以“以终为始”的项目

乳液聚合的特点及应用

乳液聚合的特点及应用 和其它聚合反应的实施方法——本体聚合、溶液聚合和悬浮聚合相比较,乳液聚合法有如下的重要特点: 1.易散热 众所用知,烯类单体聚合反应的传热特点是 ①热负荷大,其聚合热约为60一100KJ/MOLl; ②在聚合过程中放热不均衡,高峰期要比平均放热速率高2—3倍; ③传热条件差.对本体聚合来说,反应后期体系粘度可达几十万mpa.s.传热系数大大降低; ④为了控制聚合反应速率与聚合物分于量及其分布,聚合过程常常对反应温度有着非常苛刻的要求。 为了解决散热问题,即使采用高效搅拌和换热装置,也很难将所产牛的聚合热及时排除,所以聚合过程的散热问题是一个关键问题,常常因为散热问题得不到合理解决而使实验室研究成果不能投人工业生产而转化为生产力。散热问题也严重地影响着安全生产和产品质量,因为散热不好而在聚合体系中造成局部过热,轻则使相对分子质量分布变宽,还会引起支化、交联和碳化,使产品质量变坏,重则会引起爆发性聚合,使产品报废,甚至发生事故。 与本体聚合不同,乳液聚合体系的连续相是水,聚合反应发生在分散于水相中的乳胶粒内部,尽管乳胶粒内粘度很高,但整个反应体系的粘度并不高,基本上接近于连续相水的粘度,并且在聚合过程中体系粘度也不会发生大幅度的变化,因为同本体聚合相比,乳液聚合体系易散热,不会出现局部过热,更不易发生爆聚。 乳液聚合不仅比本体聚合容易散热,而且也比溶液聚合和悬浮聚合更容易散热,许多阅澈热问题得不到解决而上升不到大生产的聚合过程,常常可以很容易地用乳液聚合法进行生产。 2.既可制得高分子量的聚合物,又有高的聚合反应速率 本体聚合、溶液聚合与悬浮聚合遵循共向的动力学规律,即在引发剂浓度一定时,要想提高聚合反应速率,就要提高反应温度,而反市温度的提高会加速引发剂的分解,使自由基浓度增大,从而导致了链终止速率的增大,使聚合物平均相对分子量减小;反过来,要想提高聚合物平均相对分子量,就必须降低反应温度,这义会造成聚合反应速率的降低。就是说,要想提高聚合物平均相对分子量,就必须降低聚合反应速率;而要想提高反应速率,就必须牺牲相对分子量的提高,即两者是矛盾的。而乳液聚合可以把两者统一起来,即乳液聚合既可以具有高的聚合反应速率,又可以得到高分子量的聚合物。这是因为乳液聚合是遵循和其它聚合方法不同的动力学规律而进行的。 乳液聚合中的自由基终止速率要比本体聚合中的低,在反应温度和引发剂浓度不变的前提下,终止反应速率低必会导致自由基浓度提高,故乳液聚合体系中的自由基浓度要比本体聚合体系中的大,因而乳液聚合要比本体聚合反应速率高。 采用乳液聚合方法既可以提高聚合反应速率,又可以制得高分子量的聚合物,高的反应速率会使生产成本降低,而高分子量则是生产高弹性合成橡胶和其他许多产品所必需的。这正是和其它聚合方法相比乳液聚合法的独到之处。 3.以水代替溶剂是发展的方向 由乳液聚合法制成的聚合物乳液是聚合物以乳胶粒的形式在水中的分散体,介质水不燃、不爆、无毒、无味,不污染环境,生产安全,对人体无伤害,大大改善聚合车间、后处理车间及其后应用过程中的劳动条件。水便宜、易得,可显若降低成本,而且避免了采用溶液聚合法溶剂回收的麻烦。随着世界各因环境保护法的相继出台和强化,对易造成环境污染的有机溶剂的用量严加控制,以水代替溶剂来制造各种聚合物的乳液聚合法倍受青睐,故具有强大的生命力,成为今后发展的方向。 4.生产灵活性大

配位聚合反应

从聚合热力学上分析,乙烯、丙烯是很有聚合倾向的单体,但是在很长一段时间内,未能将该单体聚合成聚乙烯和聚丙烯,这主要是动力学上的原因。 1938~1939年,英国I.C.I.公司在高温(180~200℃)、高压(180~200MPa)下,以氧作引发剂,使乙烯经自由基聚合制得聚乙烯。在高温下聚合易发生链转移反应,所得聚乙烯带有在空间作无规排布的许多支链,致使其结晶度低、熔点低、密度也低,俗称低密度聚乙烯。根据过程特征,也叫做高压聚乙烯。 1953年德国K. Ziegler等从一次以AlEt3为引发剂从乙烯合成高级烯烃的失败实验出发,意外地发现以乙酰丙酮的锆盐和AlEt3引发时得到的是高分子量的乙烯聚合物,并在此基础上开发了的乙烯聚合的引发剂四氯化钛-三乙基铝(TiCl4-AlEt3),在较低的温度(50~70℃)和较低的压力下,聚合得无支链、高结晶度、高熔点的高密度聚乙烯。1954年,意大利G. Natta以四氯化钛-三乙基铝(TiCl4- AlEt3)作引发剂,使丙烯聚合得等规聚丙烯(熔点175℃),其中甲基侧基在空间等规定向排布。Ziegler-Natta所用的引发剂是金属有机化合物/过渡金属化合物的络合体系,单体配位而后聚合,聚合产物呈定向立构,从这三角度考虑,因而分别有络合聚合、配位聚合、定向聚合之称,但三者有所区别。根据聚合机理的特征,本节采用配位聚合一词。 随后,Goodrich-Gulf公司采用四氯化钛/三乙基铝体系使异戊二烯聚合成高顺式1,4(95%~97%)聚异戊二烯,成功地合成得天然橡胶。几乎同时,Firestone轮胎和橡胶公司用锂或烷基锂作引发剂,也聚合得高顺式1,4(90%~94%)聚异戊二烯。此外,先后来用钛、钴、镍或钨、钼络合引发体系,合成得高顺式1,4(94%~97%)聚丁二烯橡胶(简称顺丁橡胶)。 虽然早在1947年,C. E. Schildknecht以BF3(OC2H5)2作引发剂,于丙酮中-78℃下,已使丁基乙烯醚聚合成立构规整聚合物,但Ziegler-Natta在络合引发体系、配位聚合机理、有规立构聚合物的合成、微结构、性能等方而研究的成就,在高分子科学领域内起着里程碑的作用。因而获得了诺贝尔奖金。 过渡金属化合物/金属有机化合物的一系列络合体系可以统称为Ziegler-Natta引发剂,目前已用来生产多种塑料和橡胶,例如高密度聚乙烯、等规聚丙烯、全同聚1-丁烯、全同聚4-甲基-1-戊烯、反式l,4-聚异戊二烯等可用作塑料,顺式1,4-聚丁二烯、顺式1,4聚异戊二烯、乙丙共聚物、反式聚环戊烯等可用作橡胶。其总年产量高达几千万吨。因此,研究配位聚合具有重要的理论和实际意义。

化学反应器分类及其特点

化学反应器的分类及特点 秦财德 (中南大学、化学化工学院、化工1002班) 摘要: 反应器的应用始于古代,制造陶器的窑炉就是一种原始的反应器。近代工业中的反应器形式多样。化学反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。本文主要介绍化学反应器的分类和特点 关键词:化学反应器特点典型反应 现在的化工反应器在向高精端方向发展,在化工反应中处于主要地位,化学反应器是化学反应的载体,是化工研究、生产的基础,是决定化学反应好坏的重要因素之一,因此反应器的设计、选型是十分重要的。反应器的种类很多,设计和选型很重要,座椅应该按照实际情况来设计制造。 一.釜式反应器 (一)反应器的简介 一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 (二)反应器的特点 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。反应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 (三)典型反应: 在等温间歇反应器中进行乙酸乙酯皂化反应: CH3COOC2H5+NaOH CH3COONa+ C2H5OH 二.管式反应器 (一)反应器的简介 管式反应器一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),

《高分子化学》教学大纲

《高分子化学》教学大纲 一、课程基本信息 课程名称(中、英文):《高分子化学》(POLYMER Chemistry) 课程号(代码):300019040 课程类别:专业必修课 学时:64 学分:4 二、教学目的及要求 高分子化学是高分子类专业基础课。以有机化学和物理化学等为基础,又为后继课程:聚合反应工程、聚合物合成工艺学等打下理论基础。高分子化学是研究聚合物的合成原理及其化学反应的一门科学。它的任务是通过课堂教学,使学生掌握高分子的基本概念,合成高分子化合物的基本原理及控制聚合反应速度和分子量的方法,高分子化学反应的特征及聚合方法的选择。 第一章 5 学时第二章11学时 第三章18学时第四章8学时 第五章 6 学时第六章6学时 第七章3学时第八章3学时 第九章4学时 对毕业要求及其分指标点支撑情况: (1)毕业要求1,分指标点1.4; (2)毕业要求2,分指标点2.4 三、教学内容(含各章节主要内容、学时分配,并红字方式注明重点难点) 第一章绪论(5学时) 掌握高分子化合物的基本概念、分类及命名原则,高分子聚合反应的分类。 掌握聚合物的平均分子量、分子量分布、结构性能的基本概念。 1、高分子化合物的基本概念(4学时) 2、聚合物的分子量及其分布、结构性能的基本概念(2学时) 要点:高分子的定义和聚合反应分类 分子量的统计平均意义

第二章逐步聚合(11学时) 掌握逐步聚合反应的特点;反应程度、官能度、线型缩聚、体型缩聚的概念;线型缩聚中影响聚合度的因素及控制聚合度的方法;体型缩聚中凝胶点的预测。了解线型缩聚动力学,逐步聚合的实施方法。 1、平衡缩聚的特点及影响缩聚平衡的因素;(1学时) 2、Flory等活性理论;(1学时) 3、反应程度和平均聚合度的概念,计算公式及相互关系;(1.5学时) 4、平均聚合度与平衡常数的关系及缩聚平衡方程;(1学时) 5、缩聚反应动力学;(1学时) 6、影响缩聚反应的因素;(1学时) 7、线型缩聚产物分子量的控制和分布;(1学时) 8、体型缩聚;(1.5学时) 9、不平衡缩聚;(1学时) 10、逐步聚合反应实施方法。(1学时) 第三章自由基聚合反应(18学时) 掌握单体结构与聚合机理的关系,自由基聚合反应机理及特征;自由基聚合低转化率动力学及影响聚合速率和分子量的因素;高转化率下的自动加速现象及其产生原因;主要引发剂类型及引发机理,阻聚和缓聚的基本概念。了解光、热、辐射等其他引发作用,聚合热力学及分子量分布。 1、连锁聚合的单体结构特征;(1.5学时) 2、自由基聚合热力学,从热力学的角度研究单体的聚合能力与单体结构的关系;(2学时) 3、自由基聚合反应机理;(3学时) 4、引发剂与引发作用;(2学时) 5、自由基聚合反应速率;(2学时) 6、高转化率下的自动加速现象、产生的原因及结果;(2学时) 7、分子量:无链转移和有链转移的情况下计算分子量的公式;(2学时) 8、影响自由基聚合的因素;(2学时) 9、阻聚作用和缓聚作用;(1学时) 10、分子量分布(0.5学时) 第四章自由基共聚合(8学时) 掌握二元共聚物微分组成与单体组成的关系,竞聚率的意义,典型的共聚物微分组成曲线类型以及共聚物组成与转化率的关系,共聚物组成均一性的控制方法,自由基及单体的活性与取代基的关系及对反应速率的影响。了解Q-e方程的物理意义及用途。 1、研究共聚合反应的意义;(0.5学时) 2、二元共聚物微分组成与原料单体组成的关系:共聚物组成的微分方程的推导,共聚物组成方程式的其他表达形式;(2学时)

相关主题
文本预览
相关文档 最新文档