当前位置:文档之家› 高考数学一轮复习 第二章 函数的概念与基本初等函数

高考数学一轮复习 第二章 函数的概念与基本初等函数

高考数学一轮复习 第二章 函数的概念与基本初等函数
高考数学一轮复习 第二章 函数的概念与基本初等函数

第二章函数的概念与基本初等函数Ⅰ

第一节函数及其表示

一、基础知识

1.函数与映射的概念

2.函数的有关概念

(1)函数的定义域、值域:

在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

求函数定义域的策略

(1)确定函数的定义域常从解析式本身有意义,或从实际出发.

(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.

(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.

(2)函数的三要素:定义域、值域和对应关系.

(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.

两函数值域与对应关系相同时,两函数不一定相同.

(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.

3.分段函数

若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.

关于分段函数的3个注意

(1)分段函数虽然由几个部分构成,但它表示同一个函数.

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

(3)各段函数的定义域不可以相交.

考点一 函数的定义域

[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1

x 的定义域是( )

A .[-1,0)∪(0,1)

B .[-1,0)∪(0,1]

C .(-1,0)∪(0,1]

D .(-1,0)∪(0,1)

(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.????-1,-1

2 C .(-1,0)

D.????12,1

[解析] (1)由题意得????

?

1-x >0,x +1>0,

x ≠0,

解得-1

所以原函数的定义域为(-1,0)∪(0,1).

(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1

2.

[答案] (1)D (2)B [解题技法]

1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;

(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π

2

(k ∈Z);

(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题

(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;

(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.

[题组训练] 1.函数f (x )=

1

ln

x +1

+4-x 2的定义域为( ) A .[-2,0)∪(0,2]

B .(-1,0)∪(0,2]

C .[-2,2]

D .(-1,2]

解析:选B 由????

?

x +1>0,ln (x +1)≠0,

4-x 2≥0,

得-1

2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)

x -1的定义域是________________.

解析:因为y =f (x )的定义域是[1,2 019],

所以若g (x )有意义,应满足?

????

1≤x +1≤2 019,

x -1≠0,

所以0≤x ≤2 018,且x ≠1.

因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}

考点二 求函数的解析式

[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法

因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .

因为f (2x +1)=4x 2-6x +5, 所以????

?

4a =4,4a +2b =-6,

a +

b +

c =5,

解得????

?

a =1,

b =-5,

c =9,

所以f (x )=x 2-5x +9(x ∈R). 法二:换元法

令2x +1=t (t ∈R),则x =t -1

2,

所以f (t )=4??

?

?t -122

-6·t -12+5=t 2-5t +9(t ∈R),

所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法

因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).

(2)解方程组法

由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-

x ,② ①×2-②,得3f (x )=2x +

1-2-

x . 即f (x )=2x +

1-2-

x

3

.

故f (x )的解析式是f (x )=2x +

1-2-

x

3(x ∈R).

[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法

先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.

(2)换元法

对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.

(3)配凑法

由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.

(4)解方程组法

已知关于f (x )与f ????1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).

[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.

[题组训练]

1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.

解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,

得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,

所以?

????

2a +b =b +1,a +b =1,解得a =b =12.

所以f (x )=12x 2+1

2x (x ∈R).

答案:12x 2+1

2

x (x ∈R)

2.[口诀第3句]已知f ????2x +1=lg x ,则f (x )=________________.

解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )

=lg

2

x -1(x >1). 答案:lg

2

x -1

(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ????

1x =3x ,则f (x )=________. 解析:∵2f (x )+f ????1x =3x ,①

把①中的x 换成1x ,得2f ????1x +f (x )=3x

.② 联立①②可得??

?

2f (x )+f ????

1x =3x ,

2f ????1x +f (x )=3x

解此方程组可得f (x )=2x -1

x

(x ≠0).

答案:2x -1

x (x ≠0)

考点三 分段函数

考法(一) 求函数值

[典例] (2019·石家庄模拟)已知f (x )=?

????

log 3x ,x >0,

a x +

b ,x ≤0(0

则f (f (-3))=( )

A .-2

B .2

C .3

D .-3

[解析] 由题意得,f (-2)=a -

2+b =5,① f (-1)=a -

1+b =3,②

联立①②,结合0

2

,b =1,

所以f (x )=?????

log 3

x ,x >0,????12x +1,x ≤0,

则f (-3)=????12-3

+1=9,f (f (-3))=f (9)=log 39=2. [答案] B

[解题技法] 求分段函数的函数值的策略

(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;

(2)当出现f (f (a ))的形式时,应从内到外依次求值;

(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.

考法(二) 求参数或自变量的值(或范围)

[典例] (2018·全国卷Ⅰ)设函数f (x )=?

????

2-

x ,x ≤0,1,x >0,则满足f (x +1)

围是( )

A .(-∞,-1]

B .(0,+∞)

C .(-1,0)

D .(-∞,0)

[解析] 法一:分类讨论法

①当?

????

x +1≤0,

2x ≤0,即x ≤-1时,

f (x +1)

-(x +1)

<2

-2x

即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].

②当?????

x +1≤0,2x >0时,不等式组无解.

③当?

????

x +1>0,2x ≤0,即-1

f (x +1)

-2x

,解得x <0.

因此不等式的解集为(-1,0).

④当?

????

x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.

综上,不等式f (x +1)

∵f (x )=?

????

2-

x ,x ≤0,

1,x >0,

∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)

?

x +1<0,2x <0,

2x

或????

?

x +1≥0,2x <0,

∴x <0,故选D. [答案] D

[解题技法]

已知函数值(或范围)求自变量的值(或范围)的方法

(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;

(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.

[题组训练]

1.设f (x )=???

x ,0<x <1,2(x -1),x ≥1,

若f (a )=f (a +1),则f ????

1a =( ) A .2 B .4 C .6

D .8

解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =1

4或a =0(舍去).

∴f ????1a =f (4)=2×(4-1)=6.

当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ????1a =6.

2.已知函数f (x )=?????

2x ,x ≤1,f (x -1),x >1,

则f (f (3))=________.

解析:由题意,得f (3)=f (2)=f (1)=21=2,

∴f (f (3))=f (2)=2. 答案:2

3.(2017·全国卷Ⅲ)设函数f (x )=?

????

x +1,x ≤0,2x ,x >0,则满足f (x )+f ????x -1

2>1的x 的取值范围是________.

解析:由题意知,可对不等式分x ≤0,01

2讨论.

①当x ≤0时,原不等式为x +1+x +12>1,解得x >-1

4,

故-1

4

②当0

2>1,显然成立.

③当x >12时,原不等式为2x +2x -1

2>1,显然成立.

综上可知,所求x 的取值范围是????-1

4,+∞. 答案:???

?-1

4,+∞ 4.设函数f (x )=?????

????12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.

解析:若a <0,则f (a )<1?????12a

-7<1?????12a <8,解得a >-3,故-3

[课时跟踪检测]

1.下列所给图象是函数图象的个数为( )

A .1

B .2

C .3

D .4

解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;

②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.

2.函数f (x )=2x -1+1

x -2

的定义域为( ) A .[0,2)

B .(2,+∞)

C .[0,2)∪(2,+∞)

D .(-∞,2)∪(2,+∞)

解析:选C 由题意得?

????

2x -1≥0,

x -2≠0,解得x ≥0,且x ≠2.

3.已知f ????1

2x -1=2x -5,且f (a )=6,则a 等于( ) A.7

4 B .-7

4

C.43

D .-4

3

解析:选A 令t =1

2x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,

则4a -1=6,解得a =7

4

.

4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =1

3x -1

D .y =x +1

x -1

解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2

x -1,定义域为(-∞,

1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).

5.(2018·福建期末)已知函数f (x )=?????

log 2x +a ,x >0,

4x -2-1,x ≤0.

若f (a )=3,则f (a -2)=( )

A .-15

16

B .3

C .-63

64

或3

D .-15

16

或3

解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -

2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-

2-1=-1516

.

6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)

log 2(x +1)

的定义域是( )

A .[1,2]

B .(-1,1] C.???

?-1

2,0 D .(-1,0)

解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,

需满足????

?

-1≤2x +1≤1,x +1>0,

x +1≠1,

解得-1

7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2

D .f (x )=-2x

解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.

8.已知具有性质:f ????1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1

x ;③f (x )=?????

x ,0

0,x =1,-1

x ,x >1.

其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③

D .①

解析:选B 对于①,f (x )=x -1x ,f ????1x =1x

-x =-f (x ),满足题意;对于②,f ????1x =1x +x =f (x ),不满足题意;对于③,f ????1x =?????

1x ,0<1

x

<1,0,1x =1,

-x ,1x >1,

即f ????

1x =????

?

1

x

,x >1,0,x =1,

-x ,0

故f ????1x =

-f (x ),满足题意.

综上可知,满足“倒负”变换的函数是①③.

9.(2019·青岛模拟)函数y =ln ????1+1

x +1-x 2的定义域为________. 解析:由?

????

1+1x >0,1-x 2≥0??????

x <-1或x >0,

-1≤x ≤1?0

所以该函数的定义域为(0,1]. 答案:(0,1]

10.(2019·益阳、湘潭调研)若函数f (x )=???

lg (1-x ),x <0,

-2x ,x ≥0,则f (f (-9))=________.

解析:∵函数f (x )=???

lg (1-x ),x <0,

-2x ,x ≥0,

∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.

答案:-2

11.(2018·张掖一诊)已知函数f (x )=?

????

2x ,x >0,

x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等

于________.

解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-3

12.已知f (x )=?????

12x +1,x ≤0,

-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.

解析:由题意知?

????

x ≤0,12x +1≥-1或?????

x >0,

-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]

13.设函数f (x )=?

????

ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).

(1)求函数f (x )的解析式;

(2)在如图所示的直角坐标系中画出f (x )的图象.

解:(1)由f (-2)=3,f (-1)=f (1),得?????

-2a +b =3,

-a +b =2,

解得????? a =-1,b =1,所以f (x )=?

????

-x +1,x <0,

2x ,x ≥0.

(2)函数f (x )的图象如图所示.

第二节函数的单调性与最值

一、基础知识

1.增函数、减函数

定义:设函数f(x)的定义域为I:

(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1

(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数.

增(减)函数定义中的x1,x2的三个特征

一是任意性;二是有大小,即x1x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间

若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.

有关单调区间的两个防范

(1)单调区间只能用区间表示,不能用不等式表示.

(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.

3.函数的最值

设函数y=f(x)的定义域为I,如果存在实数M满足:

(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.

(2)存在x0∈I,使得f(x0)=M.

那么,我们称M是函数y=f(x)的最大值或最小值.

函数最值存在的两条结论

(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.

(2)开区间上的“单峰”函数一定存在最大(小)值.

二、常用结论

在公共定义域内:

(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;

(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;

(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1

f (x )

的单调性相反;

(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.

考点一 确定函数的单调性(区间))

[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1

(a ≠0)在(-1,1)上的单调性.

[解] (1)易知f (x )=?????

-x 2+2x +1,x ≥0,

-x 2-2x +1,x <0

=?

????

-(x -1)2+2,x ≥0,

-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).

(2)法一:定义法 设-1

???

?x -1+1x -1=a ???

?1+1x -1,

则f (x 1)-f (x 2)=a ????1+1x 1-1-a ????1+1

x 2-1

a (x 2-x 1)(x 1-1)(x 2-1)

.

由于-1

所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;

当a <0时,f (x 1)-f (x 2)<0,即f (x 1)

f ′(x )=(ax )′(x -1)-ax (x -1)′

(x -1)2

a (x -1)-ax (x -1)2

=-a

(x -1)2

. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.

[解题技法] 判断函数单调性和求单调区间的方法

(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.

(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.

(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.

(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.

[题组训练]

1.下列函数中,满足“?x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x

-x

D .f (x )=ln(x +1)

解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1

x 与y =-

x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.

2.函数f (x )=log 1

2(x 2-4)的单调递增区间是( )

A .(0,+∞)

B .(-∞,0)

C .(2,+∞)

D .(-∞,-2)

解析:选D 令t =x 2-4,则y =log 12t .因为y =log 1

2t 在定义域上是减函数,所以求原函

数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).

3.判断函数f (x )=x +a

x (a >0)在(0,+∞)上的单调性.

解:设x 1,x 2是任意两个正数,且x 1

则f (x 1)-f (x 2)=????x 1+a x 1-????x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0

所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)

综上可知,函数f (x )=x +a

x (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.

考点二 求函数的值域(最值))

[典例] (1)(2019?深圳调研)函数y =|x +1|+|x -2|的值域为________.

(2)若函数f (x )=-a

x

+b (a >0)在????12,2上的值域为????12,2,则a =________,b =________. (3)函数f (x )=?

????

-x 2-4x ,x ≤0,

sin x ,x >0的最大值为________.

[解析] (1)图象法

函数y =????

?

-2x +1,x ≤-1,3,-1

2x -1,x ≥2.

作出函数的图象如图所示.

根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法

∵f (x )=-a

x +b (a >0)在????12,2上是增函数, ∴f (x )min =f ????12=12,f (x )max =f (2)=2.

即???

-2a +b =12

-a

2+b =2,

解得a =1,b =5

2

.

(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.

[答案] (1)[3,+∞) (2)1 5

2

(3)4

[提醒] (1)求函数的最值时,应先确定函数的定义域.

(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.

[题组训练]

1.函数f (x )=x 2+4

x 的值域为________.

解析:当x >0时,f (x )=x +4

x ≥4,

当且仅当x =2时取等号; 当x <0时,-x +????-4

x ≥4, 即f (x )=x +4

x ≤-4,

当且仅当x =-2取等号,

所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)

2.若x ∈????-π6,2π

3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.

解析:令t =sin x ,因为x ∈????-π6,2π

3, 所以t ∈???

?-1

2,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =3

2,所以当t ∈????-12,1时,函数f (t )单调递减,

所以当t =-1

2时,y max =6;

当t =1时,y min =-9. 答案:6 -9

3.已知f (x )=x 2+2x +a

x ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,

则实数a 的取值范围是________.

解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.

又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,

又∵a ≤1,∴-3

考点三 函数单调性的应用

考法(一) 比较函数值的大小

[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )

A .f (π)>f (-3)>f (-2)

B .f (π)>f (-2)>f (-3)

C .f (π)

D .f (π)

[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A

[解题技法] 比较函数值大小的解题思路

比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.

考法(二) 解函数不等式

[典例] 设函数f (x )=?????

2x ,x <2,x 2,x ≥2.

若f (a +1)≥f (2a -1),则实数a 的取值范围是( )

A .(-∞,1]

B .(-∞,2]

C .[2,6]

D .[2,+∞)

[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B

[解题技法] 求解含“f ”的函数不等式的解题思路

先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )

考法(三) 利用单调性求参数的范围(或值)

[典例] (2019?南京调研)已知函数f (x )=x -a x +a

2

在(1,+∞)上是增函数,则实数a 的

取值范围是________.

[解析] 设11. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a

2-????x 2-a x 2+a 2 =(x 1-x 2)????

1+a x 1x 2<0.

∵x 1-x 2<0,∴1+a

x 1x 2

>0,即a >-x 1x 2.

∵11,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)

[解题技法]

利用单调性求参数的范围(或值)的方法

(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;

(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.

[题组训练]

1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2

-x 1)<0恒成立,设a =f ???

?-1

2,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b

D .b >a >c

解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ????-12=f ????5

2.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .

2.已知函数f (x )=?????

ax 2-x -14,x ≤1,

log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是

( )

A.????

14,12 B.????

14,12 C.???

?0,12 D.????12,1

解析:选B 由对数函数的定义可得a >0,且a ≠1.

又函数f (x )在R 上单调,而二次函数y =ax 2-x -1

4的图象开口向上,

所以函数f (x )在R 上单调递减,

故有?????

0

12a

≥1,a ×12

-1-14

≥log a

1-1,即?????

0

a ≥14.

所以a ∈????

14,12.

[课时跟踪检测]

A 级

1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1

D .f (x )=-|x |

解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈????0,3

2时,f (x )=x 2-3x 为减函数,当x ∈????32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1

x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.

2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )

A .(2,+∞)

B .(-∞,2)

C .(4,+∞)

D .(-∞,4)

解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .

因为a <0,所以g (x )在(-∞,2)上单调递增.

3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ????

13的x 的取值范围是( )

A.????

13,23 B.????

13,23 C.????12,23

D.????12,23

解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ????

13.

考研---基本初等函数知识汇总-必看

一、三角公式总表 ⒈L 弧长=αR=n πR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y = θ θ cos sin =θθsec sin ? ②θθθθθcsc cos sin cos ?== =y x ctg ③θθθtg r y ?==cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=+b a b a (其中辅助角?与点(a,b )在同一象限,且 a b tg = ?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T= ω π 2, 频率f=T 1, 相位?ω+?x ,初相? ⒎五点作图法:令?ω+x 依次为ππ ππ 2,2 3,,2 0 求出x 与y , 依点()y x ,作图 ⒏诱导公试

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高中数学基本初等函数知识点梳理

第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇 数时,a 的n n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n 为奇数时, a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分 数指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈

【2.1.2】指数函数及其性质(4)指数函数

〖2.2〗对数函数 【2.2.1】对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫 做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10a =,log 1a a =,log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中数学必修1第二章基本初等函数测试题(含答案)人教版

《基本初等函数》检测题 一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m n m n a a += B .1 1m m a a = C .log log log ()a a a m n m n ÷=- D 43 ()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2 (,2)3 3.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12 D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .12 2lg x x x >> B .12 2lg x x x >> C .12 2lg x x x >> D .12 lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A . (3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞ 6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年 后的价格与原来价格比较,变化的情况是 ( )

A .减少1.99% B .增加1.99% C .减少4% D .不增不减 7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2 x x f x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞ 10.若2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是 ( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625??= . 12.已知函数3log (0)()2(0) x x x >f x x ?=?≤?, , ,则1[()]3 f f = . 13. 若 3())2 f x a x bx =++,且 (2) f =,则 (2f - = . 14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

高中数学函数的定义域教案人教版必修一

第二章--------函数的定义域 函数的独立元素:解析式 定义域 值域 性质 一、由函数解析式求定义域 基础练习A: 1.求下列函数的定义域: (1)y=lg(4x+3) (2)y=1/lg(4x+3) (3)y=(5x-4)0 (4)y=x 2/lg(4x+3)+(5x-4)0 2.用长为L 的铁丝弯成下部的矩形,上部分为半圆的框架(如图),若矩形的底边长为2x ,求此框架围成面积y 与x 的函数,写出的定义域。 例1、求下列函数的定义域 变1:使解析式 无意义的x 的取值范围是 变2:已知y 是x 的函数t t t t t t y x -+----+=+=222244,22其中t ∈R ,求 y=f(x)的函数解析式及其定义域 x x y )2lg(1-=、02)45()34lg(2-++=x x x y 、)39lg(|2|713x x y -+--=、3)12(23log )(4-=-x x f x 、x x y cos lg 2552+-=、C B 3442log 22+-+--x x x x

二、由y=f(x)的定义域,求复合函数y=f(g(x))的定义域;或者反过 来。 例2、设函数f(x)的定义域为[-2,9),求下列函数的定义域: (1)f(x+2) (2)f(3x) (3)f(x2) (4)f(lgx+5) (5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,求x的范围。 变:已知函数f(x)的定义域为[-1,1),则F(x)=f(1―x)+f(1―x2)的定义域为__。 例3、(1) 函数f(3x-2)的定义域是[-2,1),则f(x)的定义域为 (2)函数f(x2)的定义域是[-1,1),则f(x)的定义域为 x)的定义域为 (3)函数f(x2)的定义域是[-1,1],则f(log 2 ______ 例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义域为 实质:由中间变量u=g(x)的值域求f(x)的定义域

高中数学必修1基本初等函数常考题型幂函数

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y=xα叫做幂函数.其中x是自变量,α是常数. 2.常见幂函数的图象与性质 (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴;当x趋于+∞时,图象在x轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】(1)下列函数:①y=x3;②y= 1 2 x ?? ? ?? ;③y=4x2;④y=x5+1;⑤y=(x-1)2; ⑥y=x;⑦y=a x(a>1).其中幂函数的个数为() A.1B.2

C .3 D .4 (2)已知幂函数y =( ) 22 23 1m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y =() 2 223 1m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x - 3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x - 3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法 判断一个函数是否为幂函数的依据是该函数是否为y =x α (α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件. 【对点训练】 函数f(x)=( ) 22 3 1m m m m x +---是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,求f(x)的 解析式. 解:根据幂函数的定义得 m 2-m -1=1.解得m =2或m =-1. 当m =2时,f(x)=x 3在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3 在(0,+∞)上是减函数,不符合要求. 故f(x)=x 3. 题型二、幂函数的图象 【例2】 (1)如图,图中曲线是幂函数y =x α 在第一象限的大致图象,已知α取-2,-12,1 2,2四个值,则相应于曲线C 1,C 2,C 3,C 4 的α的值依次为( ) A .-2,-12,1 2 ,2 B .2,12,-1 2 ,-2

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

高一数学知识点总结:函数的定义域

高一数学知识点总结:函数的定义域 导语:高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。以下是为大家精心的高一数学知识点总结:函数的定义域,欢迎大家参考! 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 “范围”与“值域”相同吗? “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

2020年高考理科数学原创专题卷:《基本初等函数》

原创理科数学专题卷 专题 基本初等函数 考点07:指数与指数函数(1—3题,8—10题,13,14题,17-19题) 考点08:对数与对数函数(4—7题,8—10题,15题,17题,20-22题) 考点09:二次函数与幂函数(11,12题,16题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1.【来源】2017届黑龙江虎林一中高三期中 考点07 易 函数 2212x x y -+??= ? ?? 的值域是( ) A.R B.1,2??+∞???? C.()2,+∞ D.()0,+∞ 2. 【来源】2017届黑龙江虎林一中高三期中 考点07 中难 设函数 ()1221,0,0 x x f x x x -?-≤? =??>? 如果 ()01f x >,则0x 的取值范围是( ) A. () 1,1- B. ()() 1,01,-+∞U C. ()(),11,-∞-+∞U D.()(),10,1-∞-U 3.【2017课标1,理11】 考点07 难 设x 、y 、z 为正数,且235x y z ==,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2x D .3y <2x <5z 4.【来源】2016-2017学年黑龙江虎林一中月考 考点08 易 已知函数()()3log 472a f x x =-+(0a >且1a ≠)过定点P ,则P 点坐标( ) A .()1,2 B .7 ,24?? ??? C.()2,2 D .()3,2 5.【来源】2016-2017学年河北定州中学周练考点08 易 若函数[)[]?? ???∈-∈=1,0,40,1,41)(x x x f x x )( ,则411log 33f f ??? ?=?? ?? ???( ) A.3 1 B.3 C.4 1 D.4

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

2015高考数学(文)一轮方法测评练:2-方法强化练——函数与基本初等函数

方法强化练——函数与基本初等函数 (建议用时:75分钟) 一、填空题 1.(2014·珠海模拟)函数y =(x +1)0 2x +1的定义域为______. 解析 由??? x +1≠0,2x +1>0,得x ∈? ???? -12,+∞. 答案 ? ?? ?? -12,+∞ 2.(2013·金华十校联考)下列函数中既不是奇函数也不是偶函数的是________. ①y =2|x |;②y =lg(x +x 2+1);③y =2x +2-x ;④y =lg 1 x +1 . 解析 根据奇偶性的定义易知①、③为偶函数,②为奇函数,④的定义域为{x |x >-1},不关于原点对称. 答案 ④ 3.(2013·山东省实验中学诊断)已知幂函数f (x )的图象经过(9,3),则f (2)-f (1)=________. 解析 设幂函数为f (x )=x α,则f (9)=9α=3,即32α=3,所以2α=1,α=12,即f (x )= =x ,所以f (2)-f (1)=2-1. 答案 2-1 4.(2014·无锡调研)已知方程2x =10-x 的根x ∈(k ,k +1),k ∈Z ,则k =________. 解析 设f (x )=2x +x -10,则由f (2)=-4<0,f (3)=1>0,所以f (x )的零点在(2,3)内. 答案 2 5.(2014·天水调研)函数f (x )=(x +1)ln x 的零点有________个. 解析 函数的定义域为{x |x >0},由f (x )=(x +1)ln x =0得,x +1=0或ln x =0,即x =-1(舍去)或x =1,所以函数的零点只有一个. 答案 1 6.(2014·烟台月考)若a =log 20.9,b = ,c = ,则a 、b 、c 大小

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

(完整word版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

相关主题
文本预览
相关文档 最新文档