当前位置:文档之家› 工程热力学 第五章 热力学第二定律

工程热力学 第五章 热力学第二定律

第五章--热力学基础Word版

第五章 热力学基础 一、基本要求 1.掌握理想气体的物态方程。 2.掌握内能、功和热量的概念。 3.理解准静态过程。 4.掌握热力学第一定律的内容,会利用热力学第一定律对理想气体在等体、等压、等温和绝热过程中的功、热量和内能增量进行计算。 5.理解循环的意义和循环过程中的能量转换关系。掌握卡诺循环系统效率的计算,会计算其它简单循环系统的效率。 6.了解热力学第二定律和熵增加原理。 二、本章要点 1.物态方程 理想气体在平衡状态下其压强、体积和温度三个参量之间的关系为 RT M m PV = 式中是m 气体的质量,M 是气体摩尔质量。 2.准静态过程 准静态过程是一个理想化的过程,准静态过程中系统经历的任意中间状态都是平衡状态,也就是说状态对应确定的压强、体积、和温度。可用一条V P -曲线来表示 3.内能 是系统的单值函数,一般气体的内能是气体温度和体积的函数),(V T E E =,而理想气体的内能仅是温度的函数)(T E E =。 4.功、热量 做功和传递热量都能改变内能,内能是状态参量,而做功和传递热量都与过程有关。气体做功可表示为 ?=2 1 V V PdV W 气体在温度变化时吸收的热量为 T C M m Q ?= 5.热力学第一定律 在系统状态发生变化时,内能、功和热量三者的关系为 W E Q +?= 应用此公式时应注意各量正负号的规定:0>Q ,表示系统吸收热量,0?E 表示内能增加,0W 系统对外界做功,0

6.摩尔热容 摩尔热容是mol 1物质在状态变化过程中温度升高K 1所吸收的热量。对理想气体来说 dT dQ C V m V = , dT dQ C P m P =, 上式中m V C ,、m P C ,分别是理想气体的定压摩尔热容和定体摩尔热容,两者之差为 R C C m V m P =-,, 摩尔热容比:m V m P C C ,,/=γ。 7.理想气体的几个重要过程 8.循环过程和热机效率 (1)循环过程 系统经过一系列变化后又回到原来状态的过程,称为循环过程。 (2)热机的效率 吸 放吸 净Q Q Q W - == 1η (3)卡诺循环 卡诺循环由两个等温过程和两个绝热过程组成。其效率为 1 2 1T T - =η 工作在相同的高温热源和相同低温热源之间的热机的效率与工作物质无关,且以可逆卡诺热机的效率最高。

工程热力学课后作业答案(第十章)第五版

10-1蒸汽朗肯循环的初参数为16.5MPa 、550℃,试计算在不同背压p2=4、6、8、10及12kPa 时的热效率。 解:朗肯循环的热效率 3 121h h h h t --= η h1为主蒸汽参数由初参数16.5MPa 、550℃定 查表得:h1=3433kJ/kg s1=6.461kJ/(kg.K) h2由背压和s1定 查h-s 图得: p2=4、6、8、10、12kPa 时分别为 h2=1946、1989、2020、2045、2066 kJ/kg h3是背压对应的饱和水的焓 查表得。 p2=4、6、8、10、12kPa 时饱和水分别为 h3=121.41、151.5、173.87、191.84、205.29 kJ/kg 故热效率分别为: 44.9%、44%、43.35%、42.8%、42.35% 10-2某朗肯循环的蒸汽参数为:t1=500℃、p2=1kPa ,试计算当p1分别为4、9、14MPa 时;(1)初态焓值及循环加热量;(2)凝结水泵消耗功量及进出口水的温差;(3)汽轮机作功量及循环净功;(4)汽轮机的排汽干度;(5)循环热效率。 解:(1)当t1=500℃,p1分别为4、9、14MPa 时初焓值分别为: h1=3445、3386、3323 kJ/kg 熵为s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa(s2=s1)对应的排汽焓h2:1986、1865、1790 kJ/kg 3点的温度对应于2点的饱和温度t3=6.98℃、焓为29.33 kJ/kg s3=0.106 kJ/(kg.K) 3`点压力等于p1,s3`=s3, t3`=6.9986、7.047、7.072℃ 则焓h3`分别为:33.33、38.4、43.2 kJ/kg 循环加热量分别为:q1=h1-h3`=3411、3347、3279.8 kJ/kg (2)凝结水泵消耗功量: h3`-h3 进出口水的温差t3`-t3 (3)汽轮机作功量h1-h2 循环净功=0w h1-h2-( h3`-h3) (4)汽轮机的排汽干度 s2=s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa 对应的排汽干度0.79、0.74、0.71 (5)循环热效率1 0q w =η=

工程热力学第三版电子教案第5章

第5章热力学第二定律 5.1 本章基本要求 (45) 5.2 本章重点: (45) 5.3 本章难点 (45) 5.4 例题 (46) 5.5思考及练习题 (55) 5.6 自测题 (60)

5.1 本章基本要求 理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。 熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无的概念。 5.2 本章重点: 学习本章应该掌握以下重点内容:, l.深入理解热力学第二定律的实质,它的必要性。它揭示的是什么样的规律;它的作用。 2.深入理解熵参数。为什么要引入熵。是在什么基础上引出的。怎样引出的。它有什么特点。 3.系统熵变的构成,熵产的意义,熟练地掌握熵变的计算方法。 4.深入理解熵增原理,并掌握其应用。 5.深入理解能量的可用性,掌握作功能力损失的计算方法 5.3 本章难点 l.过程不可逆性的理解,过程不可逆性的含义。不可逆性和过程的方向性与能量可用性的关系。 2.状态参数熵与过程不可逆的关系。 3.熵增原理的应用。 4.不可逆性的分析和火用分析.

5.4 例题 例1:空气从P1=0.1MPa ,t1=20℃,经绝热压缩至P2=0.42MPa ,t2=200℃。求:压缩过程工质熵变。(设比热为定值)。 解:定压比热: k kg kJ R C P ?=?== /005.1287.027 27 由理想气体熵的计算式: k kg kJ P P R T T C S P ?=-=-=?/069.01.042 .0ln 287.0293473ln 005.1ln ln 121212 例2:刚性容器中贮有空气2kg ,初态参数P1=0.1MPa ,T1=293K ,内装搅拌器,输入轴功率WS=0.2kW ,而通过容器壁向环境放热速率为kW Q 1.0. =。求:工作1小时后孤立系统熵增。 解:取刚性容器中空气为系统,由闭系能量方程:U Q W s ?+=. . 经1小时, () 12. .36003600T T mC Q W v s -+=()K mC Q W T T v 5447175.021.02.036002933600..12=?-+=? ?? ??-+ = 由定容过程: 1 2 12T T P P =, MPa T T P P 186.0293 5441.0121 2=?== 取以上系统及相关外界构成孤立系统: sur sys iso S S S ?+?=? K kJ T Q S sur /2287.1293 1 .036000=?== ? K kJ S iso /12.22287.18906.0=+=? 例3:压气机空气由P1=100kPa ,T1=400K ,定温压缩到终态P2=1000kPa ,过程中实际

工程热力学思考题答案,第二章

第二章热力学第一定律 1.热力学能就是热量吗? 答:不是,热是能量的一种,而热力学能包括内位能,内动能,化学能,原子能,电磁能,热力学能是状态参数,与过程无关,热与过程有关。 2.若在研究飞机发动机中工质的能量转换规律时把参考坐标建在飞 机上,工质的总能中是否包括外部储能?在以氢氧为燃料的电池系统中系统的热力学能是否包括氢氧的化学能? 答:不包括,相对飞机坐标系,外部储能为0; 以氢氧为燃料的电池系统的热力学能要包括化学能,因为系统中有化学反应 3.能否由基本能量方程得出功、热量和热力学能是相同性质的参数 结论? 答:不会,Q U W ?为热力学能的差值,非热力学能,热=?+可知,公式中的U 力学能为状态参数,与过程无关。 4.刚性绝热容器中间用隔板分为两部分,A 中存有高压空气,B 中保持真空,如图2-1 所示。若将隔板抽去,分析容器中空气的热力学能如何变化?若隔板上有一小孔,气体泄漏入 B 中,分析A、B 两部分压力相同时A、B 两部分气体的热力学能如何变化? 答:将隔板抽去,根据热力学第一定律q u w w=所以容 =?+其中0 q=0 器中空气的热力学能不变。若有一小孔,以B 为热力系进行分析

2 1 2 2 222111()()22f f cv j C C Q dE h gz m h gz m W δδδδ=+++-+++ 只有流体的流入没有流出,0,0j Q W δδ==忽略动能、势能c v l l d E h m δ=l l dU h m δ=l l U h m δ?=。B 部分气体的热力学能增量为U ? ,A 部分气体的热力学能减少量为U ? 5.热力学第一定律能量方程式是否可以写成下列两种形式: 212121()()q q u u w w -=-+-,q u w =?+的形式,为什么? 答:热力学第一定律能量方程式不可以写成题中所述的形式。对于 q u w =?+只有在特殊情况下,功w 可以写成pv 。热力学第一定律是一个针对任何情况的定律,不具有w =pv 这样一个必需条件。对于公式212121()()q q u u w w -=-+-,功和热量不是状态参数所以不能写成该式的形式。 6.热力学第一定律解析式有时写成下列两种形式: q u w =?+ 2 1 q u pdV =?+? 分别讨论上述两式的适用范围. 答: q u w =?+适用于任何过程,任何工质。 2 1 q u pdV =?+? 可逆过程,任何工质 7.为什么推动功出现在开口系能量方程式中,而不出现在闭口系能量

工程热力学思考题答案,第五章

第五章 热力学第二定律 热力学第二定律能否表达为:“机械能可以全部变为热能,而热能不可能全部变为机械能。”这种说法有什么不妥当 答:不能这样表述。表述不正确,对于可逆的定温过程,所吸收的热量可以全部转化为机械能,但是自身状态发生了变化。所以这种表述不正确。 理想气体进行定温膨胀时,可从单一恒温热源吸入的热量,将之全部转变功对外输出,是否与热力学第二定律的开尔文叙述矛盾提示:考虑气体本身是否有变化。 答:不矛盾,因为定温膨胀气体本身状态发生了改变。 自发过程是不可逆过程,非自发过程必为可逆过程,这一说法是否正确 答:不正确。自发过程是不可逆过程是正确的。非自发过程却不一定为可逆过程。 请归纳热力过程中有哪几类不可逆因素 答:。不可逆因素有:摩擦、不等温传热和不等压做功。 试证明热力学第二定律各种说法的等效性:若克劳修斯说法不成立,则开尔文说也不成立。 答:热力学第二定律的两种说法反映的是同一客观规律——自然过程的方向性 →是一致的,只要一种表述可能,则另一种也可能。 假设热量Q2 能够从温度T2 的低温热源自动传给温度为T1 的高温热源。现有一循环热机在两热源间工作,并且它放给低温热源的热量恰好等于Q2。整个系统在完成一个循环时,所产生的唯一效果是热机从单一热源(T1)取得热量Q1-Q2,并全部转变为对外输出的功W 。低温热源的自动传热Q2 给高温热源,又从热机处接受Q2,故并未受任何影响。这就成了第二类永动机。违反了克劳修斯说法,必须违反了开尔文说法。反之,承认了开尔文说法,克劳修斯说法也就必然成立。 下列说法是否有误: (1)循环净功Wnet 愈大则循环效率愈高;(×) (2)不可逆循环的热效率一定小于可逆循环的热效率;( ×) (3)可逆循环的热效率都相等,1 21T T t -=η(×)

05_第五章 热力学第二定律

【5-1】下列说法是否正确? (1)机械能可完全转化为热能,而热能却不能完全转化为机械能。 (2)热机的热效率一定小于1。 (3)循环功越大,则热效率越高。 (4)一切可逆热机的热效率都相等。 (5)系统温度升高的过程一定是吸热过程。 (6)系统经历不可逆过程后,熵一定增大。 (7)系统吸热,其熵一定增大;系统放热,其熵一定减小。 (8)熵产大于0的过程必为不可逆过程。 【解】 (1)对于单个过程而言,机械能可完全转化为热能,热能也能完全转化为机械能,例如定温膨胀过程。对于循环来说,机械能可完全转化为热能,而热能却不能完全转化为机械能。 (2)热源相同时,卡诺循环的热效率是最高的,且小于1,所以一切热机的热效率均小于1。 (3)循环热效率是循环功与吸热量之比,即热效率不仅与循环功有关,还与吸热量有关。因此,循环功越大,热效率不一定越高。 (4)可逆热机的热效率与其工作的热源温度有关,在相同热源温度的条件下,一切可逆热机的热效率都相等。 (5)系统温度的升高可以通过对系统作功来实现,例如气体的绝热压缩过程,气体温度是升高的。 (6)T Q dS δ>>系统经历不可逆放热过程,熵可能减小;系统经历不可 逆循环,熵不变。只有孤立系统的熵只能增加。系统经历绝热不可逆过程,熵一定增大。 (7)g f dS dS dS +=,而0≥g dS ,系统吸热,0>f dS ,所以熵一定增加;系统放热时,0

工程热力学第十章蒸汽动力装置循环教案.docx

第十章蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质:水蒸汽。 用途:电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 匀速 朗肯循环回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今 不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能 按卡诺循环进行。 p 51 C2 v 1-2绝热膨胀(汽轮机) 2-C定温放热(冷凝汽)可以实现 5-1定温加热(锅炉) C-5绝热压缩(压缩机)难以实现 原因: 2-C 过程压缩的工质处于低干度的湿汽状态 1 、水与汽的混合物压缩有困难,压缩机工作不稳定,而且 3 点的湿蒸汽比容比 水大的多 '2000'需比水泵大得多的压缩机使得输出的净功大大3232

减少,同时对压缩机不利。 2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理 论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使 T1高于临界温度,改进的结果 就是下面要讨论的另一种循环—朗肯循环。 10-2朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵 P 送进省煤器 D′进行预热,然后在锅炉内吸热汽化,饱 和蒸汽进入 S 继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热 过程—朗诺循环。 1-2绝热膨胀过程,对外作功 2-3定温(定压)冷凝过程(放热过程) 3-4绝热压缩过程,消耗外界功 4-1定压吸热过程,(三个状态) 4-1 过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2 过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3 过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4 过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。

第五章 热力学第二定律习题

《工程热力学》第四次小测验 (热力学第二定律部分)试卷A 专业班级姓名学号成绩 一.是非题 1. 一切熵增过程全是自发的。() 2. 由于火车紧急刹车,使动能全部变为热能,因而从理论上说,动能的可用能全部损失了() 3. 对于可逆循环∮dS=0,对于不可逆循环∮dS>0。() 4.定容加热过程1-2,定压放热过程2-3和定熵过程3-1构成的循环1-2-3-1中,系统与外界换热量为q(1-2-3);定压放热过程1-4,定容加热过程4-3和定熵过程3-1构成的循环1-4-3中,系统与外界换热量为q(1-4-3),若比较二者绝对值的大小,则必然有q(1-2-3)>q(1-4-3)。() 5. 卡诺循环的热效率只与冷热源的温度差值有关。() 6. 任何不可逆过程中工质的熵总是增加的,而可逆过程中工质的熵总是不变的。() 7. 孤立系统熵增原理表明:孤立系统内各部分的熵全是增加的。() 8. 系统的熵增加时,其作功能力一定下降。() 二.填空题 1. 一绝热容器A中充有空气,温度和压力分别为T和P。B为真空,隔板抽出后,气体的内能(),熵将()。 2. 可逆过程熵变的定义式为()。 3. 熵增原理适用于()系统,其内容是()。 4. 循环热效率公式η=1-Q2/Q1适用于()循环;公式η=1-T2/T1适用于()循环。 5. 自然界中一切自发过程均将引起孤立系统()一切非自发过程均将引起孤立系统(),而一切非自发过程只有在()伴随下才能实现,以使整个孤立系统的()为正值。 6. 卡诺循环是由两个等温过程和两绝热过程构成的可逆循环,如果两个可逆循环的冷热源温度相等,则两个可逆循环的热效率均等于相应的卡诺循环热效率,其根据是()。 三.选择题 1.热机从热源取热1000kJ,对外作功1000kJ,其结果是() A.违反热力学第一定律; B.违反热力学第二定律; C. .违反热力学第一、第二定律 D.不违反热力学第一及第二定律 2. 从同一初态出发的两个过程,一为可逆过程,一为不可逆过程。若两过程中工质的温度不变,工质得到相同的热量,则可逆与不可逆过程终态熵值之间的关系为() A.S=S’ B.S>S’ C.S

工程热力学习题解答_5

第五章 气体的流动和压缩 思 考 题 1.既然 c 里呢? 答:对相同的压降(*P P -)来说,有摩擦时有一部分动能变成热能,又被工质吸收了,使h 增大,从而使焓降(*h h -)减少了,流速C 也降低了(动能损失)。对相同的焓降(*h h -)而言,有摩擦时,由于动能损失(变成热能),要达到相同的焓降或相同的流速C ,就需要进步膨胀降压,因此,最后的压力必然降低(压力损失)。 2.为什么渐放形管道也能使气流加速?渐放形管道也能使液流加速吗? 答:渐放形管道能使气流加速—是对于流速较高的超音速气流而言的,由 2(1) dA dV dC dC M A V C C ===-可知,当0dA >时,若0dC >,则必1M >,即气体必为超音速气流。超音速气流膨胀时由于dA dV dC A V C =-(V--A )而液体0dV V =,故有dA dC A C =- ,对于渐放形管有 0dA A >,则必0dC C <,这就是说,渐放形管道不能使液体加速。 3.在亚音速和超音速气流中,图5-15所示的三种形状的管道适宜作喷管还是适宜 作扩压管? 图 5-15 答:可用 2(1) dA dC M A C =-方程来分析判断 a) 0dA <时 当1M <时,必0dC >,适宜作喷管 当1M >时,必0dC <,适宜作扩压管 b) 0dA >时 当1M <时,必0dC <,适宜作扩压管 当1M >时,必0dC >,适宜作喷管 c) 当入口处1M <时,在0dA <段0dC >;在喉部达到音速,继而在0dA >段0dC <成为 超音速气流,故宜作喷管(拉伐尔喷管) 当入口处1M >时,在0dA <段,0dC <;在喉部降到音速,继而在0 dC <成为亚音速气流,故宜作扩压管(缩放形扩压管)。 (a) (b) (c)

工程热力学第2章习题答案

第2章 热力学第一定律 2-1 定量工质,经历了下表所列的4个过程组成的循环,根据热力学第一定律和状态参数的特性填充表中空缺的数据。 过程 Q/ kJ W/ kJ △U/ kJ 1-2 0 100 -100 2-3 -110 80 -190 3-4 300 90 210 4-1 20 -60 80 2-2 一闭口系统从状态1沿过程123到状态3,对外放出47.5 kJ 的热量,对外作功为 30 kJ ,如图2-11所示。 (1) 若沿途径143变化时,系统对外作功为6 kJ ,求过程中系统与外界交换的热量; (2) 若系统由状态3沿351途径到达状态1,外界对系统作功为15 kJ ,求该过程与外界 交换的热量; (3) 若U 2=175 kJ ,U 3=87.5 kJ ,求过程2-3传递的热量,及状态1的热力学能U 1。 图2-11 习题2-2 解:(1)根据闭口系能量方程,从状态1沿途径123变化到状态3时,12313123Q U W ?=?+, 得1347.5kJ 30kJ 77.5kJ U ??=??=? 从状态1沿途径143变化到状态3时,热力学能变化量13U ??保持不变,由闭口系能量方程14313143Q U W ?=?+,得14377.5kJ 6kJ 71.5kJ Q =?+=?,即过程中系统向外界放热71.5kJ (2)从状态3变化到状态1时,()31133113U U U U U U ???=?=??=??,由闭口系能量方程35131351Q U W ?=?+,得35177.5kJ 15kJ 62.5kJ Q =?=,即过程中系统从外界吸热92.5kJ (3)从状态2变化到状态3体积不变,3 23232323232 Q U W U pdV U ???=?+=?+=?∫ , 因此23233287.5kJ 175kJ 87.5kJ Q U U U ?=?=?=?=?

工程热力学(第五版)第5章练习题

第5章 热力学第二定律 5.1 本章基本要求 理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。 熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无 的概念。 5.2 本章重点: 学习本章应该掌握以下重点内容:, l .深入理解热力学第二定律的实质,它的必要性。它揭示的是什么样的规律;它的作用。 2.深入理解熵参数。为什么要引入熵。是在什么基础上引出的。怎样引出的。它有什么特点。 3.系统熵变的构成,熵产的意义,熟练地掌握熵变的计算方法。 4.深入理解熵增原理,并掌握其应用。 5.深入理解能量的可用性,掌握作功能力损失的计算方法 5.3 本章难点 l .过程不可逆性的理解,过程不可逆性的含义。不可逆性和过程的方向性与能量可用性的关系。 2.状态参数熵与过程不可逆的关系。 3.熵增原理的应用。 4.不可逆性的分析和火用 分析. 5.4 例题 例1:空气从P 1=0.1MP a ,t 1=20℃,经绝热压缩至P 2=0.42MP a ,t 2=200℃。求:压缩过程工质熵变。(设比热为定值)。 解:定压比热: k kg kJ R C P ?=?==/005.1287.02 727

由理想气体熵的计算式: k kg kJ P P R T T C S P ?=-=-=?/069.01.042.0ln 287.0293473ln 005.1ln ln 1 21212 例2:刚性容器中贮有空气2kg ,初态参数P 1=0.1MP a ,T 1=293K ,内装搅拌器,输入轴功率W S =0.2kW ,而通过容器壁向环境放热速率为kW Q 1.0.=。求: 工作1小时后孤立系统熵增。 解:取刚性容器中空气为系统,由闭系能量方程:U Q W s ?+=. . 经1小时, ()12..36003600T T mC Q W v s -+=()K mC Q W T T v 5447175 .021.02.036002933600..12=?-+=??? ??-+= 由定容过程:1212T T P P =, MPa T T P P 186.0293 5441.01212=?== 取以上系统及相关外界构成孤立系统: sur sys iso S S S ?+?=? K kJ T Q S sur /2287.1293 1.036000=?==? K kJ S iso /1 2.22287.18906.0=+=? 例3:压气机空气由P 1=100kP a ,T 1=400K ,定温压缩到终态P 2=1000kP a ,过程中实际消耗功比可逆定温压缩消耗轴功多25%。设环境温度为T 0=300K 。 求:压缩每kg 气体的总熵变。 解:取压气机为控制体。按可逆定温压缩消耗轴功: kg kJ P P RT v v RT W SO /3.2641000 100ln 400287.0ln ln 2112-=?=== 实际消耗轴功: ()kg kJ W S /4.3303.26425.1-=-= 由开口系统能量方程,忽略动能、位能变化:21h q h W S +=+ 因为理想气体定温过程:h 1=h 2

工程热力学第五版第五章习题答案_

第五章 习题解答 5-1 ⑴ 12,1873313 64.14%873 t c T T T η--== = ⑵ 0,10.641410064.14 kW t c W Q η==?= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-?= 5-2 12,1100040060%1000 t c T T T η--= == 0,10.61000600 kJ < 700 kJ t c W Q η==?= 该循环发动机不能实现 5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=?-= 1 33323331221.4 1.41 ln ln ln 300 0.287300ln 362.8 kJ/kg 1000p p T q RT RT RT p p T κκ--??=== ??? ?? =??=- ? ?? 12707362.8344.2 kJ/kg w q q =+=-= 1344.248.68%707 w q η= == 5-4 12,11000300 70%1000 t c T T T η--= == ,10.7707495 kJ/kg t c w q η==?= 5-5 ⑴221126310000089765 kJ/h 293 T Q Q T = =?= ⑵12,12293 9.77293263c T T T ε= ==-- 1 2,100000 2.84 kW 9.773600 c Q P ε= = =? ⑶100000 100000 kJ/h 27.78 kW 3600 P == =

5-6 ⑴12,12293 14.65293273 c T T T ε= ==-- 1 2,201000 0.455 kW 9.773600 c Q P ε?= = =? 由()122 1212003600 T T T P T T -?=-2 20t =℃ 得1313 K 40T ==℃ 5-7 2,10.351000015000 kJ/h t c Q Q ηε==??= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=?-= 215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T 1 1.411.4 22110.3300410.60.1p T T p κκ --????==?= ? ? ?? ?? K 可逆过程0Q U W =?+=,不可逆过程0Q U W ''=?+= 且 1.1W W '=,则 1.1U U '?=? ()()21211.1v v mc T T mc T T '-=- ()()21211.1300 1.1410.6300421.7T T T T '=+-=+?-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '??? ??=-=?- ? ???? ? =0.00286 kJ/kg.K 5-10 理论制冷系数:21,12258 7.37293258 c T T T ε= ==-- 制冷机理论功率:2 1,125700 4.74 kW 7.373600 c Q P ε= = =? 散热量:12125700 4.743600142756 kJ/h Q Q P =+=+?= 冷却水量:21H O 142756 4867.2 kg/h 4.197 Q m c t = ==??

广大复习资料之工程热力学第2章思考题答案

第二章气体的热力性质 思考题 2-1 容器内盛有一定量的理想气体,如果将气体放出一部分后达到了新的平衡状态,问放气前、后两个平衡状态之间参数能否按状态方程表示为下列形式: (a ) 2 221 11T v P T v P = (b ) 2 221 11T V P T V P = 答:放气前、后两个平衡状态之间参数能按方程式(a )形式描述,不能用方程式(b )描述,因为容器中所盛有一定量的理想气体当将气体放出一部分后,其前、后质量发生了变化,根据1111RT m v p =,2222RT m v p =,而21m m ≠可证。 2-3 一氧气瓶内装有氧气,瓶上装有压力表,若氧气瓶内的容积为已知,能否算出氧气的质量。 答:能算出氧气的质量。因为氧气是理想气体,满足理想气体状态方程式mRT PV =。根据瓶上压力表的读数和当地大气压力,可算出氧气的绝对压力P ,氧气瓶的温度即为大气的温度;氧气的气体常数为已知;所以根据理想气体状态方程式,即可求得氧气瓶内氧气的质量。 2-4 夏天,自行车在被晒得很热的马路上行驶时,为何容易引起轮胎爆破? 答:夏天自行车在被晒得很热的马路上行驶时,轮胎内的气体(空气)被加热,温度升高,而轮胎的体积几乎不变,所以气体容积保持不变,轮胎内气体的质量为定值,其可视为理想气体,根据理想气体状态方程式mRT PV =可知,轮胎内气体的压力升高,即气体作用在轮胎上的力增加,故轮胎就容易爆破。 2-5 气瓶的体积为5L ,内有压力为101325Pa 的氧气,现用抽气体积为0.1L 的抽气筒进行抽气。由于抽气过程十分缓慢,可认为气体温度始终不变。为了使其压力减少一半,甲认为要抽25次,他的理由是抽25次后可抽走25×0.1L=2.5L 氧气,容器内还剩下一半的氧气,因而压力就可减少一半;但乙认为要抽50次,抽走50×0.lL=5.0L 氧气,相当于使其体积增大一倍,压力就可减少一半。你认为谁对? 为什么? 到底应该抽多少次? 答:甲和乙的看法都是错误的。 甲把氧气的体积误解成质量,导出了错误的结论,在题设条件下,如果瓶内氧气质量减少了一半,压力确实能相应地减半。但是抽出氧气的体积与抽气时的压力、温度有关,并不直接反映质量的大小。因此,氧气体积减半,并不意味着质量减半。 乙的错误在于把抽气过程按定质量系统经历定温过程进行处理。于是他认为体积增大一倍,压力就减半。显然在抽气过程中,瓶内的氧气是一种变质量的系统,即使把瓶内的氧气与被抽走的氧气取为一个联合系统,联合系统内总质量虽然不变,但瓶内氧气的参数与被抽放的氧气的参数并不相同,也同样无法按定质量的均匀系统进行处理。 设初始质量RT V P m 1= ,抽气一次,减少质量'm ,剩余质量2m 。 则m RT V P m 02.05 1.0'1=?= ,则m m 98.02=

工程热力学思考题答案,第五章

第五章 热力学第二定律 5.1热力学第二定律能否表达为:“机械能可以全部变为热能,而热能不可能全部变为机械能。”这种说法有什么不妥当? 答:不能这样表述。表述不正确,对于可逆的定温过程,所吸收的热量可以全部转化为机械能,但是自身状态发生了变化。所以这种表述不正确。 5.2理想气体进行定温膨胀时,可从单一恒温热源吸入的热量,将之全部转变功对外输出,是否与热力学第二定律的开尔文叙述矛盾?提示:考虑气体本身是否有变化。 答:不矛盾,因为定温膨胀气体本身状态发生了改变。 5.3自发过程是不可逆过程,非自发过程必为可逆过程,这一说法是否正确? 答:不正确。自发过程是不可逆过程是正确的。非自发过程却不一定为可逆过程。 5.4请归纳热力过程中有哪几类不可逆因素? 答:。不可逆因素有:摩擦、不等温传热和不等压做功。 5.5试证明热力学第二定律各种说法的等效性:若克劳修斯说法不成立,则开尔文说也不成立。 答:热力学第二定律的两种说法反映的是同一客观规律——自然过程的方向性 →是一致的,只要一种表述可能,则另一种也可能。 假设热量Q2 能够从温度T2 的低温热源自动传给温度为T1 的高温热源。现有一循环热机在两热源间工作,并且它放给低温热源的热量恰好等于Q2。整个系统在完成一个循环时,所产生的唯一效果是热机从单一热源(T1)取得热量Q1-Q2,并全部转变为对外输出的功W 。低温热源的自动传热Q2 给高温热源,又从热机处接受Q2,故并未受任何影响。这就成了第二类永动机。?违反了克劳修斯说法,?必须违反了开尔文说法。反之,承认了开尔文说法,克劳修斯说法也就必然成立。 5.6下列说法是否有误: (1)循环净功Wnet 愈大则循环效率愈高;(×) (2)不可逆循环的热效率一定小于可逆循环的热效率;( ×) (3)可逆循环的热效率都相等,1 21T T t -=η(×) 5.7 循环热效率公式121q q q t -=η和1 21T T T t -=η是否完全相同?各适用于哪些场合? 答:这两个公式不相同。121q q q t -= η适用于任何工质,任何循环。121T T T t -=η适用于任

工程热力学-课后习题答案

工程热力学(第五版)习题答案 工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社 第二章 气体的热力性质 2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。 解:(1)2N 的气体常数 288314 0== M R R =296.9)/(K kg J ? (2)标准状态下2N 的比容和密度 101325 2739.296?== p RT v =0.8kg m /3 v 1 = ρ=1.253 /m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0=64.27kmol m /3 2-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3 .02 =g p Mpa ,温度由t1=45℃增加到t2=70℃。试求 被压入的CO2的质量。当地大气压B =101.325 kPa 。 解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO2的质量

1111RT v p m = 压送后储气罐中CO2的质量 2222RT v p m = 根据题意 容积体积不变;R =188.9 B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO2的质量 )1122(21T p T p R v m m m -= -= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题 1000)273325 .1013003.99(287300)1122(21?-=-= -=T p T p R v m m m =41.97kg 2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa

工程热力学第5章习题答案

第5章 热力学第二定律 5-1 当某一夏日室温为30℃时,冰箱冷藏室要维持在-20℃。冷藏室和周围环境有温差,因此有热量导入,为了使冷藏室内温度维持在-20℃,需要以1350J/s 的速度从中取走热量。冰箱最大的制冷系数是多少?供给冰箱的最小功率是多少? 解: 制冷系数:22 253 5.0650 Q T W T T ε= ===? 5-4 有一卡诺机工作于500℃和30℃的两个热源之间,该卡诺热机每分钟从高温热源 V

吸收1000kJ ,求:(1)卡诺机的热效率;(2)卡诺机的功率(kW )。 解:1211 50030470 0.608273500733T T W Q T η??= ====+ 11000 0.60810.1360 W Q η=?= ×= kw 5-5 利用一逆向卡诺机作热泵来给房间供暖,室外温度(即低温热源)为-5℃,为使室内(即高温热源)经常保持20℃,每小时需供给30000kJ 热量,试求:(1)逆向卡 110000100006894.413105.59C W Q =?=?=kJ 热泵侧: 'C10C C Q W T T T =? ' 10 3333105.5922981.3745C C C T Q W T T =?=×=? 暖气得到的热量:' 1C16894.4122981.3729875.78C Q Q Q =+=+=总kJ 5-7 有人声称设计出了一热机,工作于T 1=400K 和T 2=250K 之间,当工质从高温热源

吸收了104750kJ 热量,对外作功20kW.h ,这种热机可能吗? 解: max 1211400250150 0.375400400 C W T T Q T η??= ==== max 11047500.375 10.913600 C W Q η×=?= =kW h ?<20kW h ? ∴ 这种热机不可能 5-8 有一台换热器,热水由200℃降温到120℃,流量15kg/s ;冷水进口温度35℃, 11p 烟气熵变为: 2 21 1 1213731.46 6.41800T T p p n n T T Q T dT S c m c mL L T T T ?====××=?∫ ∫kJ /K 热机熵变为0 2.环境熵变为: 图5-13 习题5-9

工程热力学第十章蒸汽动力装置循环教案

工程热力学第十章蒸汽动力装置循环教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十章 蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质 :水蒸汽。 用途 :电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 朗肯循环匀速 回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1 水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环 (蒸汽动力循环)至今不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能按卡诺循环进行。 1-2 绝热膨胀(汽轮机) 2-C 定温放热(冷凝汽) 可以实现 5-1 定温加热(锅炉) C-5 绝热压缩(压缩机) 难以实现 原因:2-C 过程压缩的工质处于低干度的湿汽状态 1、水与汽的混合物压缩有困难,压缩机工作不稳定,而且3点的湿蒸汽比容比水大的多'23νν>' 232000νν≈需比水泵大得多的压缩机使得输出的净功大大减少,同时对压缩机不利。 p v

2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使T1高于临界温度,改进的结果就是下面要讨论的另一种循环—朗肯循环。 10-2 朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵P送进省煤器D′进行预热,然后在锅炉内吸热汽化,饱和蒸汽进入S继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热过程—朗诺循环。 1-2 绝热膨胀过程,对外作功 2-3 定温(定压)冷凝过程(放热过程) 3-4 绝热压缩过程,消耗外界功 4-1 定压吸热过程,(三个状态) 4-1过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。朗肯循环与卡诺循环

工程热力学-思考题答案-沈维道-第十章

第十章 水蒸气及动力循环 1.答:水的三相点状态参数不是唯一的,其中温度、压力是定值而比体积不是定值;临界点是唯一的,其比体积、温度、压力都是确定的;三相点是三相共存的点,临界点是饱和水线与饱和蒸汽线的交点,在该点饱和水线与饱和蒸汽线不再有分别。 2. 答:水的集态为高压水,若有裂缝则会产生爆裂事故。 3. 答:这种说法是不对的。因为温度不变不表示热力学能不变。这里分析的是水,定压汽化有相变,不能作为理想气体来处理,所以 。不能得到这样的结果。 4. 答: 适用于理想气体,不能应用于水定压汽化过程,水不能作为理想气体来 处理。 5. 答:图10-1中循环6-7-3-4-5-6局限于饱和区,上限温度受制于临界温度,导致其平均吸热温度较低,故即使实现卡诺循环其热效率也不高。 6. 答:通过对热机的效率进行分析后知道,提高蒸汽的过热温度和蒸汽的压力,都能使热机效率提高。在本世纪二三十年代,材料的耐热性较差,通过提高蒸汽的温度而提高热机的效率比较困难,因此采用再热循环来提高蒸汽初压。随着耐热材料的研究通过提高蒸汽的温度而提高热机的效率就可以满足工业要求。因此很长一段时期不再设计制造再热循环工作设备。近年来要求使用的蒸汽初压提高,由于初压的提高使得乏气干度迅速降低,引起气轮机内部效率降低,另外还会侵蚀汽轮机叶片缩短汽轮机寿命,所以乏气干度不宜太低,必须提高乏气温度,就要使用再热循环。 7.答:计算回热循环主要是计算抽气量。 1)对于混合式回热加热器对如图11-4所示的N 级抽汽回热的第j 级加热器,列出质量守恒方程为 能量守恒方程为 0≠?u w q =T c h T T p p ?=?21 ()() ∑∑+-=-=-= -+11 1 11j N k k j N k k j ααα()()'01 1 ' 1 ,01 011j j N k k j j N k k j j h h h ∑∑+-=+-=-= -+ααα

相关主题
文本预览
相关文档 最新文档