当前位置:文档之家› 单晶硅简介

单晶硅简介

单晶硅简介
单晶硅简介

一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在Φ3~6英寸。外延片主要用于集成电路领域。由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。在IC工业中所用的材料主要是CZ抛光片和外延片。存储器电路通常使用CZ抛光片,因成本较低。逻辑电路一般使用价格较高的外延片,因其在IC 制造中有更好的适用性并具有消除Latch-up的能力。单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路用硅。

二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。

日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、3、4、5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。

目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,世界单晶硅材料发展将呈现以下发展趋势。

单晶硅产品向300mm过渡,大直径化趋势明显:

随着半导体材料技术的发展,对硅片的规格和质量也提出更高的要求,适合微细加工的大直径硅片在市场中的需求比例将日益加大。目前,硅片主流产品是200mm,逐渐向300mm 过渡,研制水平达到400mm~450mm。据统计,200mm硅片的全球用量占60%左右,150mm 占20%左右,其余占20%左右。根据最新的《国际半导体技术指南(ITRS)》,300mm硅片之后下一代产品的直径为450mm;450mm硅片是未来22纳米线宽64G集成电路的衬底材料,将直接影响计算机的速度、成本,并决定计算机中央处理单元的集成度。

Gartner发布的对硅片需求的5年预测表明,全球300mm硅片将从2000年的1.3%增加到2006年的21.1%。日、美、韩等国家都已经在1999年开始逐步扩大300mm硅片产量。据不完全统计,全球目前已建、在建和计划建的300mm硅器件生产线约有40余条,主要分布在美国和我国台湾等,仅我国台湾就有20多条生产线,其次是日、韩、新及欧洲。

世界半导体设备及材料协会(SEMI)的调查显示,2004年和2005年,在所有的硅片生产设备中,投资在300mm生产线上的比例将分别为55%和62%,投资额也分别达到130.3亿美元和184.1亿美元,发展十分迅猛。而在1996年时,这一比重还仅仅是零

2、硅材料工业发展日趋国际化,集团化,生产高度集中:

研发及建厂成本的日渐增高,加上现有行销与品牌的优势,使得硅材料产业形成“大者恒大”的局面,少数集约化的大型集团公司垄断材料市场。上世纪90年代末,日本、德国和韩国(主要是日、德两国)资本控制的8大硅片公司的销量占世界硅片销量的90%以上。根据SEMI提供的2002年世界硅材料生产商的市场份额显示,Shinetsu、SUMCO、Wacker、

MEMC、Komatsu等5家公司占市场总额的比重达到89%,垄断地位已经形成。

3、硅基材料成为硅材料工业发展的重要方向:

随着光电子和通信产业的发展,硅基材料成为硅材料工业发展的重要方向。硅基材料是在常规硅材料上制作的,是常规硅材料的发展和延续,其器件工艺与硅工艺相容。主要的硅基材料包括SOI(绝缘体上硅)、GeSi和应力硅。目前SOI技术已开始在世界上被广泛使用,SOI材料约占整个半导体材料市场的30%左右,预计到2010年将占到50%左右的市场。Soitec 公司(世界最大的SOI生产商)的2000年~2010年SOI市场预测以及2005年各尺寸SOI硅片比重预测了产业的发展前景。

4、硅片制造技术进一步升级:

目前世界普遍采用先进的切、磨、抛和洁净封装工艺,使制片技术取得明显进展。在日本,Φ200mm硅片已有50%采用线切割机进行切片,不但能提高硅片质量,而且可使切割损失减少10%。日本大型半导体厂家已经向300mm硅片转型,并向0.13μm以下的微细化发展。另外,最新尖端技术的导入,SOI等高功能晶片的试制开发也进入批量生产阶段。对此,硅片生产厂家也增加了对300mm硅片的设备投资,针对设计规则的进一步微细化,还开发了高平坦度硅片和无缺陷硅片等,并对设备进行了改进。

三、硅是地壳中赋存最高的固态元素,其含量为地壳的四分之一,但在自然界不存在单体硅,多呈氧化物或硅酸盐状态。硅的原子价主要为4价,其次为2价;在常温下它的化学性质稳定,不溶于单一的强酸,易溶于碱;在高温下化学性质活泼,能与许多元素化合。

由于硅的禁带宽度和电子迁移率适中,硅器件的最高工作温度能达250℃,其制作的微波功率器件的工作频率可以达到C波段(5GHZ)。在硅的表面能形成牢固致密的SiO2膜,此膜能充当电容的电介质、扩散的隔离层、器件表面的保护层,随着平面工艺与光刻技术的问世而促进了硅的超大规模集成电路的发展。硅材料资源丰富,又是无毒的单质半导体材料,较易制作大直径无位错低微缺陷单晶。晶体力学性能优越,易于实现产业化,从而导致半导体硅材料成为电子材料中的第一大主体功能材料,并在今后较长时间内仍将成为半导体的主体材料。

多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。

多晶硅产品分类:

多晶硅按纯度分类可以分为冶金级(工业硅)、太阳能级、电子级。

1、冶金级硅(MG):是硅的氧化物在电弧炉中被碳还原而成。一般含Si为90-95%以上,高达99.8%以上。

2、太阳级硅(SG):纯度介于冶金级硅与电子级硅之间,至今未有明确界定。一般认为含Si在99.99%–99.9999%(4~6个9)。

3、电子级硅(EG):一般要求含Si>99.9999%以上,超高纯达到99.9999999%~99.999999999%(9~11个9)。其导电性介于10-4–1010欧厘米。

多晶硅应用领域:

多晶硅是半导体工业、电子信息产业、太阳能光伏电池产业的最主要、最基础的功能性材料。主要用做半导体的原料,是制做单晶硅的主要原料,可作各种晶体管、整流二极管、可控硅、太阳能电池、集成电路、电子计算机芯片以及红外探测器等。

多晶硅是制备单晶硅的唯一原料和生产太阳能电池的原料。随着近几年我国单晶硅产量以年均26%的速度增长,多晶硅的需求量与日俱增,目前供应日趋紧张。我国2000年产单晶硅459吨,2003年增加到1191吨,预计2005年产量将达1700吨,消耗多晶硅2720吨。从单晶硅产品结构看,太阳电池用单晶硅产量增长最快,2000年产量207吨,2003年为696吨。预计

2005年将达到1000吨,约需多晶硅1590吨,而国内2004年仅生产多晶硅57.7吨,绝大部分需要进口。

我国主要的太阳能电池厂有5~6家,最大的无锡尚德太阳能电力有限公司2004年产量约为50MW,2005年计划生产100MW,如果完成计划,则约需多晶硅1300吨以上。仅此一家企业,就要2家千吨级多晶硅厂为其供货,才能满足生产需要。

从国际市场看,国际市场多晶硅需求量在以每年10-12%的速度增长,按此增长速度预测,2005年全球多晶硅需求量将达27000吨,2010年将达60000吨,缺口很大。亚太地区特别是日本、台湾、新加坡、韩国等地,都是多晶硅的主要需求地。

多晶硅生产技术:

多晶硅生产技术主要有:改良西门子法、硅烷法和流化床法。正在研发的还有冶金法、气液沉积法、重掺硅废料法等制造低成本多晶硅的新工艺。

世界上85%的多晶硅是采用改良西门子法生产的,其余方法生产的多晶硅仅占15%。以下仅介绍改良西门子法生产工艺。

西门子法(三氯氢硅还原法)是以HCl(或Cl2、H2)和冶金级工业硅为原料,将粗硅(工业硅)粉与HCl在高温下合成为SiHCl3,然后对SiHCl3进行化学精制提纯,接着对SiHCL3进行多级精馏,使其纯度达到9个9以上,其中金属杂质总含量应降到0.1ppba以下,最后在还原炉中在1050℃的硅芯上用超高纯的氢气对SiHCL3进行还原而长成高纯多晶硅棒。

多晶硅副产品:

多晶硅生产过程中将有大量的废水、废液排出,如:生产1000吨多晶硅将有三氯氢硅3500吨、四氯化硅4500吨废液产生,未经处理回收的三氯氢硅和四氯化硅是一种有毒有害液体。对多晶硅副产物三氯氢硅、四氯化硅经过多级精馏提纯等化学处理,可生成白炭黑、氯化钙以及用于光纤预制棒的高纯(6N)四氯化硅。

四、硅锭的拉制,目前主要有以下几种方法:

*直拉法

即切克老斯基法(Czochralski:Cz),直拉法是用的最多的一种晶体生长技术。直拉法基本原理和基本过程如下:

1.引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体;

2.缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中;

放肩:将晶体控制到所需直径;

3.等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;

4.收尾:直径逐渐缩小,离开熔体;

5.降温:降级温度,取出晶体,待后续加工

6.最大生长速度:晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。

7.熔体中的对流:相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。

实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。

8.生长界面形状(固液界面):固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。

9.连续生长技术:为了提高生产率,节约石英坩埚(在晶体生产成本中占相当比例),发展了连续直拉生长技术,主要是重新装料和连续加料两中技术:

-重新加料直拉生长技术:可节约大量时间(生长完毕后的降温、开炉、装炉等),一个坩埚可用多次。

-连续加料直拉生长技术:除了具有重新装料的优点外,还可保持整个生长过程中熔体的体积恒定,提高基本稳定的生长条件,因而可得到电阻率纵向分布均匀的单晶。连续加料直拉生长技术有两种加料法:连续固体送料和连续液体送料法。

10.液体覆盖直拉技术:是对直拉法的一个重大改进,用此法可以制备多种含有挥发性组元的化合物半导体单晶。主要原理:用一种惰性液体(覆盖剂)覆盖被拉制材料的熔体,在晶体生长室内充入惰性气体,使其压力大于熔体的分解压力,以抑制熔体中挥发性组元的蒸发损失,这样就可按通常的直拉技术进行单晶生长。

*悬浮区熔法:

主要用于提纯和生长硅单晶;其基本原理是:依靠熔体的表面张力,使熔区悬浮于多晶硅棒与下方生长出的单晶之间,通过熔区向上移动而进行提纯和生长单晶。具有如下特点:

1.不使用坩埚,单晶生长过程不会被坩埚材料污染

2.由于杂质分凝和蒸发效应,可以生长出高电阻率硅单晶

*多晶硅浇注法

用于制备多晶硅太阳电池所用的硅原片,它是一种定向凝固法,晶体呈现片状生长过程和结构。

五、直拉法:直拉法即切克老斯基法(Czochralski:Cz),直拉法是半导体单晶生长用的最多的一种晶体生长技术。

直拉法单晶硅工艺过程

-引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体;

-缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中;

-放肩:将晶体控制到所需直径;

-等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;

-收尾:直径逐渐缩小,离开熔体;

-降温:降底温度,取出晶体,待后续加工

直拉法-几个基本问题

最大生长速度

晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。

熔体中的对流

相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围

区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。

生长界面形状(固液界面)

固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。

生长过程中各阶段生长条件的差异

直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。

直拉法-技术改进:

一,磁控直拉技术

1,在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2,、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷。

2,半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。

3,磁控直拉技术与直拉法相比所具有的优点在于:

减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10C以上,而施加0.2T的磁场,其温度波动小于1℃。这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;降低了单晶中的缺陷密度;减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;由于磁粘滞性,使扩散层厚度增大,可提高杂质纵向分布均匀性;有利于提高生产率。采用磁控直拉技术,如用水平磁场,当生长速度为一般直拉法两倍时,仍可得到质量较高的晶体。

4,磁控直拉技术主要用于制造电荷耦合(CCD)器件和一些功率器件的硅单晶。也可用于GaAs、GaSb等化合物半导体单晶的生长。

连续生长技术

为了提高生产率,节约石英坩埚(在晶体生产成本中占相当比例),发展了连续直拉生长技术,主要是重新装料和连续加料两中技术:

1,重新加料直拉生长技术:可节约大量时间(生长完毕后的降温、开炉、装炉等),一个坩埚可用多次。

2,连续加料直拉生长技术:除了具有重新装料的优点外,还可保持整个生长过程中熔体的体积恒定,提高基本稳定的生长条件,因而可得到电阻率纵向分布均匀的单晶。连续加料直拉生长技术有两种加料法:连续固体送料和连续液体送料法。

液体覆盖直拉技术:是对直拉法的一个重大改进,用此法可以制备多种含有挥发性组元的化合物半导体单晶。

主要原理:用一种惰性液体(覆盖剂)覆盖被拉制材料的熔体,在晶体生长室内充入惰性气体,使其压力大于熔体的分解压力,以抑制熔体中挥发性组元的蒸发损失,这样就可按通常的直拉技术进行单晶生长。

对惰性液体(覆盖剂)的要求:-密度小于所拉制的材料,既能浮在熔体表面之上;对

熔体和坩埚在化学上必须是惰性的,也不能与熔体混合,但要能浸云晶体和坩埚;熔点要低于被拉制的材料且蒸气压很低;-有较高的纯度,熔融状态下透明。

广泛使用的覆盖剂为B2O3:密度1.8g/cm3,软化温度450C,在1300C时蒸气压仅为13Pa,透明性好,粘滞性也好。此种技术可用于生长GaAs、InP、GaP、GaSb和InAs等单晶。

悬浮区熔法:主要用于提纯和生长硅单晶;

基本原理:依靠熔体的表面张力,使熔区悬浮于多晶硅棒与下方生长出的单晶之间,通过熔区向上移动而进行提纯和生长单晶。不使用坩埚,单晶生长过程不会被坩埚材料污染,由于杂质分凝和蒸发效应,可以生长出高电阻率硅单晶。

硅的制取顺序是:二氧化硅矿石--〉工业硅--〉多晶硅--〉单晶硅。单晶硅是用多晶硅经单晶炉拉制而成的,也有用区熔法制取单晶硅的。但是区熔单晶硅的位错密度较大。所以半导体器件多用拉制的单晶硅作原始材料。 注意,多晶硅不是用单晶硅制取的。

单晶硅生长技术的研究与发展

单晶硅生长技术的研究与发展 摘要:综述了单晶硅生长技术的研究现状。对改良热场技术、磁场直拉技术、真空高阻技术以及氧浓度的控制等技术进行了论述。 关键词:单晶硅;真空高阻;磁场;氧含量;氮掺杂 一、前言 影响国家未来在高新技术和能源领域实力的战略资源。作为一种功能材料,其性能应该是各向异性的,因此半导体硅大都应该制备成硅单晶,并加工成抛光片,方可制造IC器件,超过98%的电子元件都足使用硅单晶”引。生产单晶硅的原料主要包括:半导体单晶硅碎片,半导体单晶硅切割剩余的头尾料、边皮料等。目前,单晶硅的生长技术主要有直拉法(CZ)和悬浮区熔法(FZ)。在单晶硅的制备过程中还可根据需要进行掺杂,以控制材料的电阻率,掺杂元素一般为Ⅲ或V主族元素.生长制备后的单晶硅棒还需经过切片、打磨、腐蚀、抛光等工序深加工后方可制成用作半导体材料的单晶硅片。随着单晶硅生长及加工处理技术的进步,单晶硅正朝着大直径化(300ram以上)、低的杂质及缺陷含晕、更均匀的分布以及生产成本低、效率高的方向发展。 二、单晶硅的生长原理 在单晶硅生长过程中,随着熔场温度的下降,将发生由液态转变到固态的相变化。对于发生在等温、等压条件下的相变化,不同相之间的相对稳定性可由吉布斯自由能判定。AG可以视为结晶驱动力。 △G=△H—TAS (1) 在平衡的熔化温度瓦时,固液两相的自由能是相等的,即AG=0,因此 △G=AH一瓦X AS---O (2) 所以,AS=AH/T= (3) 其中,AH即为结晶潜热。将式(3)代入式(1)可得 (4) 由式(4)可以看出,由于AS是一个负值常数,所以△兀即过冷度)可被视为结晶的唯一驱动力。 以典型的CZ长晶法为例,加热器的作用在于提供系统热量,以使熔硅维持在高于熔点的温度。如果在液面浸入一品种,在品种与熔硅达到热平衡时,液面会靠着表面张力的支撑吸附在晶种下方。若此时将晶种往上提升,这些被吸附的液体也会跟着晶种往上运动,而形成过冷状态。这节过冷的液体由于过冷度产生的驱动力而结晶,并随着晶种方向长成单晶棒。在凝固结晶过程中,所释放出的潜热是一个间接的热量来源,潜热将借着传导作用而沿着晶棒传输。同时,晶棒表面也会借着热辐射与热对流将热量散失到外围,另外熔场表面也会将热量散失掉。于是,在一个固定的条件下,进入系统的热能将等于系统输出的热能陟。 三、硅单晶生长方法 1直拉(CZ)法 直拉法的生产过程简单来说就是利用旋转的籽晶从熔硅中提拉制备单晶硅。此法产量大、成本低,国内外大多数太阳能单晶硅片厂家多采用这种技术。目前,直拉法生产工艺的研究热点主要有:先进的热场构造、磁场直拉法以及对单晶硅中氧浓度的控制等方面。 (1)先进的热场构造 在现代下游IC产业对硅片品质依赖度日益增加的情况下,热场的设计要求越来越高。好的

单晶硅制备方法

金属1001 覃文远3080702014 单晶硅制备方法 我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。 单晶硅,英文,Monocrystallinesilicon。是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。 用途:单晶硅具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随着温度升高而增加,具有半导体性质。单晶硅是重要的半导体材料。在单晶硅中掺入微量的第ЩA族元素,形成P型半导体,掺入微量的第VA族元素,形成N型,N型和P型半导体结合在一起,就可做成太阳能电池,将辐射能转变为电能。 单晶硅是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。在开发能源方面是一种很有前途的材料。 单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。 直拉法 直拉法又称乔赫拉尔基斯法(Caochralski)法,简称CZ法。它是生长半导体单晶硅的主要方法。该法是在直拉单晶氯内,向盛有熔硅坩锅中,引入籽晶作为非均匀晶核,然后控制热场,将籽晶旋转并缓慢向上提拉,单晶便在籽晶下按照籽晶的方向长大。拉出的液体固化为单晶,调节加热功率就可以得到所需的单晶棒的直径。其优点是晶体被拉出液面不与器壁接触,不受容器限制,因此晶体中应力小,同时又能防止器壁沾污或接触所可能引起的杂乱晶核而形成多晶。直拉法是以定向的籽晶为生长晶核,因而可以得到有一定晶向生长的单晶。 直拉法制成的单晶完整性好,直径和长度都可以很大,生长速率也高。所用坩埚必须由不污染熔体的材料制成。因此,一些化学性活泼或熔点极高的材料,由于没有合适的坩埚,而不能用此法制备单晶体,而要改用区熔法晶体生长或其

单晶硅与多晶硅的区别、功能及优缺点

单晶硅与多晶硅的区别、功能及优缺点 单晶硅 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。 单晶硅在日常生活中是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中的各个角落。 单晶硅在火星上是火星探测器中太阳能转换器的制成材料。火星探测器在火星上的能量全部来自太阳光,探测器白天休息---利用太阳能电池板把光能转化为电能存储起来,晚上则进行科学研究活动。也就是说,只要有了单晶硅,在太阳光照到的地方,就有了能量来源单晶硅在太空中是航天飞机、宇宙飞船、人造卫星必不可少的原材料。人类在征服宇宙的征途上,所取得的每一步进步,都有着单晶硅的身影。航天器材大部分的零部件都要以单晶硅为基础。离开单晶硅,卫星会没有能源,没有单晶硅,航天飞机和宇航员不会和地球取得联系,单晶硅作为人类科技进步的基石,为人类征服太空作出了不可磨灭的贡献。 单晶硅在太阳能电池中得到广泛的应用。高纯的单晶硅是重要的半导体材料,在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。单晶硅太阳能电池的特点:1.光电转换效率高,可靠性高; 2.先进的扩散技术,保证片内各处转换效率的均匀性; 3.运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观;4.应用高品质的金属浆料制作背场和电极,确保良好的导电性。 单晶硅广阔的应用领域和良好的发展前景北京2008年奥运会将把"绿色奥运"做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。

单晶硅材料简介

单晶硅材料简介 摘要:单晶硅是硅的单晶体,具有完整的点阵结构,纯度要求在99.9999%以上,是一种良好的半导体材料。制作工艺以直拉法为主,兼以区熔和外延。自从1893年光生伏效应的发现,太阳能电池就开始在人们的视线中出现,随着波兰科学家发展了生长单晶硅的提拉法工艺以及1959年单晶硅电池效率突破10%,单晶硅正式进入商业化。我国更是在05年把太阳能电池的产量提高到10MW/年,并且成为世界重要的光伏工业基地。单晶硅使信息产业成为全球经济发展中增长最快的先导产业,世界各国也重点发展单晶硅使得单晶硅成为能源行业宠儿。地壳中含量超过25.8%的硅含量使得单晶硅来源丰富,虽然暂时太阳能行业暂时以P 型电池主导,但遭遇边际效应的P型电池终将被N型电池所取代。单晶硅前途不可限量。 关键字:性质;历史;制备;发展前景 Monocrystalline silicon material Brief Introduction Abstract: Monocrystalline silicon is silicon single crystal with complete lattice structure, purity over 99.9999%, is a good semiconductor materials.Process is given priority to with czochralski method, and with zone melting and extension.Since 1893 time born v effect, found that solar cells began to appear in the line of sight of people, with the development of polish scientist pulling method of single crystal silicon growth process and single crystal silicon battery efficiency above 10% in 1959, monocrystalline silicon formally enter the commercial.5 years of our country is in the production of solar cells to 10 mw/year, and become the world pv industrial base.Monocrystalline silicon makes information industry become the world's fastest growing economy in the forerunner industry, the world also make focus on monocrystalline silicon single crystal silicon darling become the energy industry.Content more than 25.8% of silicon content in the crust has rich source of monocrystalline silicon, while the solar industry to temporarily P type battery, but in the marginal effects of p-type battery will eventually be replaced by N type battery.Future of monocrystalline silicon. Key words: silicon;Properties;History;Preparation;Prospects for development 一、单晶硅基本性质以及历史沿革 硅有晶态和无定形两种同素异形体。晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。晶态硅的熔点1410C,沸点2355C,密度2.32~2.34g/cm3,莫氏硬度为7。 单晶硅是硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。 熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。 最开始是1893年法国的实验物理学家E.Becquerel发现液体的光生伏特效应,简称为光伏效应。在1918年的时候波兰科学家Czochralski发展生长单晶硅的提拉法工艺。1959年Hoffman电子实现可商业化单晶硅电池效率达到10%,并通过用网栅电极来显著减少光伏电池串联电阻;卫星探险家6号发射,共用9600片太阳能电池列阵,每片2c㎡,共20W。由此单晶硅生产的太阳能电池正式进入商业化方向。 同样在中国,单晶硅的发展也是伴随着太阳能电池的发展。在1958年的时候我国开始

四川单晶硅项目申报材料

四川单晶硅项目申报材料 xxx有限公司

报告说明— 从生产工艺来看,单多晶生产工艺差别主要体现在拉棒和铸锭环节, 其中单晶硅棒工艺对设备、生产人员的要求严格,早期单晶硅片因长晶炉 投料量、生长速率、拉棒速度等方面技术不够成熟,生产成本居高不下, 而多晶硅锭使用铸锭技术成本优势明显而占据主要市场份额。 该单晶硅棒项目计划总投资2741.68万元,其中:固定资产投资 2429.72万元,占项目总投资的88.62%;流动资金311.96万元,占项目总 投资的11.38%。 达产年营业收入2738.00万元,总成本费用2132.46万元,税金及附 加47.11万元,利润总额605.54万元,利税总额736.17万元,税后净利 润454.15万元,达产年纳税总额282.01万元;达产年投资利润率22.09%,投资利税率26.85%,投资回报率16.56%,全部投资回收期7.54年,提供 就业职位43个。 硅棒在2018年和2020年能分别达到1942万片/月和2130万片/月, 预计2015年到2020年之间符合年均增速为5.4%。硅棒指的是作用主要是 耐火耐高温材料,做高温发热的元件,为无色立方或六方晶体,表面氧化或 含杂质时呈蓝黑色。

目录 第一章项目基本情况 第二章项目投资单位 第三章建设背景 第四章项目市场分析 第五章项目建设方案 第六章项目选址科学性分析第七章土建工程 第八章工艺技术方案 第九章项目环境影响分析第十章企业卫生 第十一章项目风险评估分析第十二章节能说明 第十三章进度方案 第十四章项目投资方案分析第十五章项目经营收益分析第十六章项目结论 第十七章项目招投标方案

浅析单晶硅的生产现状

浅析单晶硅的生产现状 发表时间:2018-07-23T16:41:02.197Z 来源:《知识-力量》2018年8月上作者:高磊刘佳佳[导读] 本文综述了制造光伏电池和集成电路用单晶硅的特点,对直拉法生长单晶硅的基本原理及生产工艺进行论述,并且分析了直拉法单晶生长过程中的主要杂质及其来源。(郑州大学,河南郑州 450001) 摘要:本文综述了制造光伏电池和集成电路用单晶硅的特点,对直拉法生长单晶硅的基本原理及生产工艺进行论述,并且分析了直拉法单晶生长过程中的主要杂质及其来源。关键词:单晶硅直拉法生产工艺前言 单晶硅属于立方晶系,金刚石结构,是一种性能优良的半导体材料。应用于制作晶体管、微处理器、存储器、模拟电路等,其中90%的半导体器件和集成电路都是用硅单晶制作的。目前,单晶硅在太阳能光伏电池和集成电路中的应用最为广泛。 随着电子通讯行业和太阳能光伏产业的快速发展,半导体工业也随之迅猛发展。到目前为止,太阳能光电工业基本上是建立在硅材料基础之上的,以硅材料为主的半导体专用材料在国民经济、军事工业中的地位非常重要,全世界的半导体器件中有95 % 以上是用硅材料制成。其中单晶硅则是半导体器件的核心材料,单晶硅属于立方晶系,具有类似金刚石的结构,硬度大,在较宽的温度范围内,都能够稳定地工作,其热稳定性和电学性能非常好。硅材料的优点及用途决定了它是目前最重要、产量最大、发展最快、用途最广泛的一种半导体材料。因此,单晶硅制备工艺发展迅速,产量大幅增加。 1单晶硅生产工艺 当前制备单晶硅主要有两种技术,根据晶体生长方式不同,可分为悬浮区熔法和直拉法。这两种方法制备的单晶硅具有不同的特性和不同的器件应用领域,区熔单晶硅主要应用于大功率器件方面,而直拉单晶硅主要应用于微电子集成电路和太阳能电池方面,是单晶硅的主体。 区熔法:在整个制备单晶硅的过程中,不需要使用石英坩埚支撑,高温的硅并没有和任何其它物质接触,因而很容易保持高纯度。这种方法制备的单晶硅氧含量低,但是不容易生长出较大直径的硅单晶。 直拉法:也被简称为CZ 法,现已成为制备单晶硅材料最为重要的方法之一。CZ法是将原料装在一个石英坩埚中,外面用石墨加热器进行加热,当原料被加热器熔化后,将籽晶插入熔体之中,在合适的温度下,边转动边提拉,即可获得所需单晶。直拉法的优点是:可以方便地观察晶体生长过程、晶体生长时内部热应力小、可以方便地使用“缩颈”工艺,降低位错密度,成品率高、方便的控制温度梯度、有较快的生长效率。 直拉法生长单晶的具体工艺过程包括装料、化料、熔接、引晶、放肩、转肩、等径生长和收尾这几个阶段: 1.装料:根据所设计的投料量,将块状多晶硅料装入石英坩埚内并放入到单晶炉中。在此阶段有两个问题需要特别注意: 投料量和熔料温度,避免在化料过程中产生不利的问题,例如挂边、破裂。 2.抽真空:将单晶炉内的空气抽出,真空合格后充入保护气体氩气。 3.化料:打开功率进行加热,使炉体上升到1500℃左右。熔硅时,应注意炉内真空度的变化,一般来说,在流动气氛下或在减压下熔硅比较稳定。熔硅温度升到1000℃时应转动坩埚,使坩埚各部受热均匀。 4.熔接:当硅料全部溶化,调整加热功率以控制熔体的温度。待熔体稳定后,降下籽晶至离液面3-5mm 距离,使籽晶预热,以减少籽晶与溶硅的温度差,从而减少籽晶与溶硅接触时在籽晶中产生的热应力。预热充分后的籽晶则可以继续下降与液面进行熔接,同时籽晶保持一定的旋转速度。 5.引晶:为排除籽晶在熔接时由于受热冲击而产生的位错延伸到晶体中,需要控制籽晶生长出一段长为100mm左右、直径为3~5mm的细颈,在引晶过程中需注意两个关键因素:坩埚的位置和液面温度。 6.放肩:为使得晶体直径达到制备要求的尺寸,进行放肩。引晶完成后,将拉速降低,同时降低功率开始放肩。放肩角一般控制在140°至160°之间,需适当调整放肩速度,保持圆滑光亮的放肩表面。放肩过程可通过降低拉速或者降低温度实现。 7.转肩:当放肩过程达到目标直径时,要对它的生长进行控制,通过提高拉晶速度进行转肩,使肩近似直角,进入等直径的纵向生长。 8.等径:当晶棒长到一定长度,就可以对其直径进行等径控制,以确保单晶棒直径的上下一致。等径过程在整个拉晶工艺中占用时间最多也是最重的阶段,这个阶段的工艺直接决定了单晶硅棒的质量。不仅要控制好晶体的直径,更为重要的是保持晶体的无错位生长。 9.收尾:在晶体生长接近尾声时,生长速度再次加快,同时升高硅熔体的温度,使得晶体的直径不断缩小,形成一个圆锥形,最终晶体离开液面,单晶硅生长完成。收尾的作用是防止位错反延。 10.停炉:当单晶硅与液面脱离后,不能立刻把晶棒升高,而是缓慢降低加热器功率直至为零,仍保持氩气的正常流通直至完全冷却,以防止空气对单晶硅表面的氧化。 2直拉单晶中存在的主要杂质目前,在直拉单晶硅中,主要杂质是氧和碳。 (1)单晶硅中的氧杂质在CZ法生长中,氧是直拉单晶硅中的主要杂质,氧不可避免地掺入硅单晶。其途径是在硅的熔点(1420℃)附近,熔硅与石英坩埚作用,生成sio进入硅熔体,溶解的氧经由熔体的对流和扩散传输到晶体和熔体的界面或自由表面。熔体中的部分氧在熔体自由表面蒸发,而余下的氧则通过晶体和熔体界面分凝而渗入晶体内。在实际直拉单晶硅中,氧浓度的表现为头部高、尾部低,在收尾处氧浓度有所上升,同时,氧浓度从单晶硅的中心部位到边缘是逐渐降低的。这是受晶体生长工艺变化的影响。 (2)单晶中的碳杂质

单晶硅的原材料

单晶硅棒、单晶硅片成品和主要原料 单质硅有无定形及晶体两种。无定形硅为灰黑色或栗色粉末,更常见的是无定形块状,它们是热和电的不良导体、质硬,主要用于冶金工业(例如铁合金及铝合金的生产)及制造硅化物。晶体硅是银灰色,有金属光泽的晶体,能导电(但导电率不及金属)故又称为金属硅。高纯度的金属硅(≥99.99%)是生产半导体的材料,也是电子工业的基础材料。掺杂有微量硼、磷等元素的单晶硅可用于制造二极管、晶体管及其他半导体器件。 由于半导体技术不断向高集成度,高性能,低成本和系统化方向发展,半导体在国民经济各领域中的应用更加广泛。单晶硅片按使用性质可分为两大类:生产用硅片;测试用硅片。 半导体元件所使用的单晶硅片系采用多晶硅原料再经由单晶生长技术所生产出来的。多晶硅所使用的原材料来自硅砂(二氧化硅)。目前商业化的多晶硅依外观可分为块状多晶与粒状多晶。 多晶硅的品质规格: 多晶硅按外形可分为块状多晶硅和棒状多晶硅;等级分为一、二、三级免洗料。 多晶硅的检测: 主要检测参数为电阻率、碳浓度、N型少数载流子寿命;外形主要是块状的大小程度;结构方面要求无氧化夹层;表面需要经过酸腐蚀,结构需致密、平整,多晶硅的外观应无色斑、变色,无可见的污染物。对于特殊要求的,还需要进行体内金属杂质含量的检测。 单晶硅棒品质规格: 单晶硅棒的主要技术参数

其中电阻率、OISF密度、以及碳含量是衡量单晶硅棒等级的关键参数。这些参数在单晶成型后即定型,无法在此后的加工中进行改变。 测试方法: 电阻率:用四探针法。 OISF密度:利用氧化诱生法在高温、高洁净的炉管中氧化,再经过腐蚀后观察其密度进行报数。 碳含量:利用红外分光光度计进行检测。 单晶硅抛光片品质规格: 单晶硅抛光片的物理性能参数同硅单晶技术参数 单晶硅抛光片的表面质量:正面要求无划道、无蚀坑、无雾、无区域沾污、无崩边、无裂缝、无凹坑、无沟、无小丘、无刀痕等。背面要求无区域沾污、无崩边、无裂缝、无刀痕。(太阳能人才太阳能招聘人才招聘太阳能商情网)

单晶硅技术参数

单晶硅抛光片的物理性能参数同硅单晶技术参数 厚度(T) 200-1200um 总厚度变化(TTV)<10um 弯曲度(BOW)<35um 翘曲度(WARP)<35um 单晶硅抛光片的表面质量:正面要求无划道、无蚀坑、无雾、无区域沾污、无崩边、无裂缝、无凹坑、无沟、无小丘、无刀痕等。背面要求无区域沾污、无崩边、无裂缝、无刀痕。 (2)加工工艺知识 多晶硅加工成单晶硅棒: 多晶硅长晶法即长成单晶硅棒法有二种: CZ(Czochralski)法 FZ(Float-Zone Technique)法 目前超过98%的电子元件材料全部使用单晶硅。其中用CZ法占了约85%,其他部份则是由浮融法FZ生长法。CZ法生长出的单晶硅,用在生产低功率的集成电路元件。而FZ法生长出的单晶硅则主要用在高功率的电子元件。CZ法所以比FZ法更普遍被半导体工业采用,主要在于它的高氧含量提供了晶片强化的优点。另外一个原因是CZ法比FZ法更容易生产出大尺寸的单晶硅棒。 目前国内主要采用CZ法 CZ法主要设备:CZ生长炉 CZ法生长炉的组成元件可分成四部分 (1)炉体:包括石英坩埚,石墨坩埚,加热及绝热元件,炉壁 (2)晶棒及坩埚拉升旋转机构:包括籽晶夹头,吊线及拉升旋转元件 (3)气氛压力控制:包括气体流量控制,真空系统及压力控制阀 (4)控制系统:包括侦测感应器及电脑控制系统 加工工艺: 加料→熔化→缩颈生长→放肩生长→等径生长→尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩劲生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径

单晶硅生产工艺

什么是单晶硅 单晶硅可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。 在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。北京2008年奥运会将把“绿色奥运”做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。 单晶硅产品包括φ3”----φ6”单晶硅圆形棒、片及方形棒、片,适合各种半导体、电子类产品的生产需要,其产品质量经过当前世界上最先进的检测仪器进行检验,达到世界先进水平。 相对多晶硅是在单籽晶为生长核,生长的而得的。单晶硅原子以三维空间模式周期形成的长程有序的晶体。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片 加工工艺: 加料—→熔化—→缩颈生长—→放肩生长—→等径生长—→尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径部分。 (6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么热应力

云南单晶硅项目申报材料

云南单晶硅项目申报材料 参考模板

报告说明— 从生产工艺来看,单多晶生产工艺差别主要体现在拉棒和铸锭环节,其中单晶硅棒工艺对设备、生产人员的要求严格,早期单晶硅片因长晶炉投料量、生长速率、拉棒速度等方面技术不够成熟,生产成本居高不下,而多晶硅锭使用铸锭技术成本优势明显而占据主要市场份额。 该单晶硅棒项目计划总投资18463.72万元,其中:固定资产投资14070.91万元,占项目总投资的76.21%;流动资金4392.81万元,占项目总投资的23.79%。 达产年营业收入32709.00万元,总成本费用25347.93万元,税金及附加330.34万元,利润总额7361.07万元,利税总额8706.73万元,税后净利润5520.80万元,达产年纳税总额3185.93万元;达产年投资利润率39.87%,投资利税率47.16%,投资回报率29.90%,全部投资回收期4.84年,提供就业职位477个。 硅棒在2018年和2020年能分别达到1942万片/月和2130万片/月,预计2015年到2020年之间符合年均增速为5.4%。硅棒指的是作用主要是耐火耐高温材料,做高温发热的元件,为无色立方或六方晶体,表面氧化或含杂质时呈蓝黑色。

目录 第一章基本信息 第二章项目建设单位 第三章项目建设及必要性第四章市场调研 第五章产品及建设方案 第六章选址规划 第七章项目工程设计说明第八章工艺方案说明 第九章环境保护说明 第十章项目安全规范管理第十一章项目风险 第十二章项目节能可行性分析第十三章进度方案 第十四章投资方案分析 第十五章项目经济评价分析第十六章结论 第十七章项目招投标方案

单晶硅太阳能电池制作工艺

. 单晶硅太阳能电池/DSSC/PERC技术 2015-10-20

单晶硅太阳能电池

2.太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥0.4 μm颗粒,利用兆声波可去除≥0.2 μm颗粒. 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。 1、用H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。由于SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被

排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 具体的制作工艺说明(1)切片:采用多线切割,将硅棒切割成正方形的硅片。(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD 法或喷涂法等。(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。 生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、

单晶硅生长炉原理

单晶硅生长炉原理 单晶硅生长炉原理 首先,把高纯度的多晶硅原料放入高纯石英坩埚,通过石墨加热器产生的高温将其熔化;然后,对熔化的硅液稍做降温,使之产生一定的过冷度,再用一根固定在籽晶轴上的硅单晶体(称作籽晶)插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便会在籽晶下端生长;接着,控制籽晶生长出一段长为100m 单晶硅生长炉 m左右、直径为3~5mm的细颈,用于消除高温溶液对籽晶的强烈热冲击而产生的原子排列的位错,这个过程就是引晶;随后,放大晶体直径到工艺要求的大小,一般为75~300mm,这个过程称为放肩;接着,突然提高拉速进行转肩操作,使肩部近似直角;然后,进入等径工艺,通过控制热场温度和晶体提升速度,生长出一定直径规格大小的单晶柱体;最后,待大部分硅溶液都已经完成结晶时,再将晶体逐渐缩小而形成一个尾形锥体,称为收尾工艺;这样一个单晶拉制过程就基本完成,进行一定的保温冷却后就可以取出。 直拉法,也叫切克劳斯基(J.Czochralski)方法。此法早在1917年由切克劳斯基建立的一种晶体生长方法,用直拉法生长单晶的设备和工艺比较简单,容易实现自动控制,生产效率高,易于制备大直径单晶,容易控制单晶中杂质浓度,可以制备低电阻率单晶。据统计,世界上硅单晶的产量中70%~80%是用直拉法生产的。 单晶硅生长炉现状 目前国内外晶体生长设备的现状如下: 美国KAYEX公司 国外以美国KAYEX公司为代表,生产全自动硅单晶体生长炉。KAYEX公司是目前世界上最大,最先进的硅单晶体生长炉制造商之一。KAYEX的产品早在80年代初就进入中国市场,已成为中国半导体行业使用最多的品牌。该公司生长的硅晶体生长炉从抽真空-检漏-熔料-引晶-放肩-等径-收尾到关机的全过程由计算机实行全自动控制。晶体产品的完整性与均匀性好,直径偏差在单晶全长内仅±1mm。主要产品有CG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg。

如何评估单晶与多晶的好坏

一、单/多晶硅片性能对比 1、单晶硅片与多晶硅片在晶体品质、电学性能、机械性能方面有显着差异。 2、单晶和多晶的差别主要在于原材料的制备方面,单晶是直拉提升法,多晶是铸锭方法,后端制造工艺只有一些细微差别。 二.单/多晶硅片晶体品质差异 1、单晶硅片,是一种完整的晶格排列;单晶硅片的位错密度和金属杂质比多晶硅片小得多,各种因素综合作用使得单晶的少子寿命比多晶高出数十倍,从而表现出转换效率优势。 2、多晶硅片,它是多个微小的单晶的组合,中间有大量的晶界,包含了很多的缺陷,它实际上是一个少子复合中心,因此降低了多晶电池的转换效率。 3、单晶是一种完整的晶格排列,在同样的切片工艺条件下表面缺陷少于多晶; 4、在电池制造环节,单晶电池的碎片率也小于1%的,通常情况下是0.8%左右。而多晶的晶体结构缺陷导致在电池制造环节的碎片率一般大于2%。 三、单/多晶硅片电学性能差异 单/多晶的少子寿命对比。各种实验数据显示,单晶的使用寿命明显要高于多晶的使用寿命; 四、单/多晶硅片机械性能差异 1、多晶硅片的最大弯曲位移比单晶硅片低1/4,因此在电池的生产和运输过程中更容易破碎; 2、单晶在运输中的抗破坏性能比较好; 3、单/多晶在长期的高低温交替过程中,多晶更容易发生隐裂; 五.单/多晶硅片转换效率对比 1、影响单/多晶转换效率主要是以下参数来决定的 1.1Voc(开路电压) 1.2Isc(短路电流) 1.3FF(填充因子) 1.4计算公式为:Eta=Voc×Isc×FF 2、实验表明 2.1单晶最高转换率为25%;

2.2多晶最搞转换率为20.8%; 【总结】 1、单晶硅片比多晶硅片有更高的机械强度,更低的易碎率; 2、单晶硅电池比多晶硅电池有更高的转换效率; 3、25年的生命周期内,单晶硅电站的实际发电量比多晶硅电站的发电量多(大约6%); 4、在长期可靠性方面,单晶硅电站比多晶硅的衰减少3%左右;

单晶硅生长原理及工艺_刘立新

单晶硅生长原理及工艺 摘要:介绍了直拉法生长单晶硅的基本原理及工艺条件。通过控制不同的工艺参数(晶体转速:2.5、10、20rpm ;坩埚转速: 5、 150×1000mm 优质单晶硅棒。分别对这三种单晶硅样品进行 了电阻率、氧含量、碳含量、少子寿命测试,结果表明,当晶体转速为10rpm ,坩埚转速为 07 ),男,助理研究员,E-mail :lxliu2007@https://www.doczj.com/doc/de8805516.html, 。 刘立新1,罗平1,李春1,林海1,张学建1,2,张莹1 (1.长春理工大学 材料科学与工程学院,长春 130022;2.吉林建筑工程学院,长春 130021) Growth Principle and Technique of Single Crystal Silicon LIU Lixin 1,LUO Ping 1,LI Chun 1,LIN Hai 1,ZHANG Xuejian 1,2 ,ZHANG Ying 1 (1.Changchun University of Science and Technology ,Changchun 130022;2.Jilin Architectural and civil Engineering institute ,Changchun 130021) Abstract :This paper introduces the basic principle and process conditions of single crystal silicon growth by Cz method.Through controlling different process parameters (crystal rotation speed:2.5,10,20rpm;crucible rotation speed:-1.25,-5,-10),three high quality single crystal silicon rods with the size of é? ??ì?2a?÷?¢?ˉ3éμ??·?¢ì????üμ?3?μè [1] 。此外,硅 没有毒性,且它的原材料石英(SiO 2)构成了大约60%的地壳成分,其原料供给可得到充分保障。硅材料的优点及用途决定了它是目前最重要、产量最大、发展最快、用途最广泛的一种半导体材料[2]。 到目前为止,太阳能光电工业基本上是建立在 硅材料基础之上的,世界上绝大部分的太阳能光电器件是用单晶硅制造的。其中单晶硅太阳能电池是 最早被研究和应用的,至今它仍是太阳能电池的最 主要材料之一。单晶硅完整性好、纯度高、资源丰富、技术成熟、工作效率稳定、光电转换效率高、使用寿命长,是制备太阳能电池的理想材料。因此备受世界各国研究者的重视和青睐,其市场占有率为太阳能电池总份额中的40%左右[3]。 随着对单晶硅太阳能电池需求的不断增加,单晶硅市场竞争日趋激烈,要在这单晶硅市场上占据重要地位,应在以下两个方面实现突破,一是不断降低成本。为此,必须扩大晶体直径,加大投料量,并且提高拉速。二是提高光电转换效率。为此,要在晶体生长工艺上搞突破,减低硅中氧碳含 第32卷第4期2009年12月 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition )Vol.32No.4 Dec.2009

直拉法单晶硅生长技术的现状

直拉法单晶硅生长技术的现状 摘要 综述了制造集成电路(IC)用直拉硅单晶生长的现状与发展。对大直径生长用磁场拉晶技术,硅片中缺陷的控制与利用(缺陷工程),大直径硅中新型原生空位型缺陷,硅外延片与SOI片,太阳电池级硅单和大直径直拉硅生长的计算机模拟,硅熔体与物性研究等进行了论述。 关键词:直拉硅单晶;扩散控制;等效微重力;空洞型缺陷;光电子转换效率;硅熔体结构 一、光伏产业的发展趋势,及对硅材料的前景要求,直拉法单晶硅生长技术是现在主流生长技术之一 光伏产业,是一种利用太阳能电池直接把光能转换为电能的环保型新能源产业。由于从太阳光能转换成电能的光电转换装置,是利用半导体器件的“光生伏打效应”原理进行光电转换的,因此把与太阳能发电系统构成链条关系的产业称为光伏产业。光伏产业的链条,包括:硅矿-硅矿石(石英砂)-工业硅(也称金属硅)-多晶硅、单晶硅-晶圆或多晶硅切片-太阳能电池-组件-发电系统。工业硅的纯度,一般为98-99.99%;太阳能级硅的纯度,一般要求在6N级即99.9999%以上。 与其他常规能源相比,光伏发电具有明显的优越性:一是高度的清洁性,发电过程中无损耗、无废物、无废气、无噪音、无毒害、无污染,不会导致“温室效应”和全球性气候变化;二是绝对的安全性,利用太阳能发电,对人、动物、植物无任何伤害或损害;三是普遍的实用性,不需开采和运输,使用方便,凡是有太阳照射的地方就能实现光伏发电,可广泛用于通信。交通、海事、军事等各个领域,上至航天器,下至家用电器,大到兆瓦级电站,小到玩具,都能运行光

伏发电;四是资源的充足性,太阳能是一种取之不尽用之不竭的自然能源。据计算,仅一秒钟发出的能量就相当于1.3亿亿吨标准煤燃烧时所放出的热量。而到达地球表面的太阳能,大约相当于目前全世界所有发电能力总和的20万倍。地球每天接收的太阳能,相当于全球一年所消耗的总能量的200倍。人类只要利用太阳每天光照的5%,就可以解决和满足全球所需能源。正因为如此,加上由于传统的化石能源是不可再生资源,越来越接近枯竭,世界各国越来越达成必须加快发展新的替代能源的共识,从而加大了政策扶持的力度,世界光伏产业呈现出蓬勃发展的势头,光伏产业正在向大批量生产和规模化应用发展,其运用几乎遍及所有用电领域。 从整体来看,世界各国对太阳能光伏发电的政策扶持力度在逐年加大。各国的补贴政策主要分为两类:一类是对安装光伏系统直接进行补贴,如日本;另一类是对光伏发电的上网电价进行设定,如德国、西班牙等国。而美国加利福尼亚州,则是将两种政策混合执行。 光伏科技的进步,使光电转换效率不断提高、光能发电成本不断降低。技术进步是降低光伏发电成本,提高光能利用效率、促进光伏产业和市场发展的重要因素。几十年来围绕着降低成本的各种研究开发项工作取得了显著成就,表现在电池效率不断提高。硅片厚度持续降低、产业化技术不断改进等方面,对降低光伏发电成本起到了决定性的作用。 多晶硅是太阳能电池必不可少的基础材料,其占到太阳能电池成本的80%,每生产1兆瓦太阳能电池需要12-14吨多晶硅。多晶硅主要采用化学提纯、物理提纯两种方法进行生产,其中化学提纯方法主要有西门子法(气象沉淀反应法)、硅烷热分解法、流态化床法,物理提纯方法主要有区域熔化提纯法(FZ)、定向凝固多晶硅锭法(筹造法)等等。 二、直拉法单晶生长技术的机械设备 上海汉虹的FT-CZ2008A、FT-CZ2208AE、FT-CZ2208A,西安理工大学的TDR80A-ZJS、TDR80B-ZJS、TDR80C-ZJS、TDR85A-ZJS、TDR95A-ZJS、TDR112A-ZJS,美国KAYEXCG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg,以及其他厂家的

光伏组件选型:单晶、多晶的可靠性与经济性比较分析

光伏组件选型:单晶、多晶的可靠性与经济性比较分析

光伏组件选型:单晶、多晶的可靠性与经济性比较分析 本文摘要:单晶硅片与多晶硅片在晶体品质、电学性能、机械性能方面有显著差异。下面的图1是晶体硅光伏产业链的完整图示,从硅料到硅棒、硅片、电池、组件再到系统。如图中红色边框标示,单晶和多晶的差别主要在于原材料的制备方面,单晶是直拉提升法,多晶是铸锭方法,后端制造工艺只有一些细微差别。 单多晶硅片性能对比 单晶硅片与多晶硅片在晶体品质、电学性能、机械性能方面有显著差异。下面的图1是晶体硅光伏产业链的完整图示,从硅料到硅棒、硅片、电池、组件再到系统。如图中红色边框标示,单晶和多晶的差别主要在于原材料的制备方面,单晶是直拉提升法,多晶是铸锭方法,后端制造工艺只有一些细微差别。 图1晶体硅光伏产业链图示 晶体品质差异 图2展示了单晶和多晶硅片的差异。硅片性质的差异性是决定单晶和多晶系统性能差异的关键。左图是单晶硅片,是一种完整的晶格排列;右图是多晶硅片,它是多个微小的单晶的组合,中间有大量的晶界,包含了很多的缺陷,它实际上是一个少子复合中心,因此降低了多晶电池的转换效率。另一方面,单晶硅片的位错密度和金属杂质比多晶硅片小得多,各种因素综合作用使得单晶的少子寿命比多晶高出数十倍,从而表现出转换效率优势。

图2单晶硅片与多晶硅片外观图示 单晶是一种完整的晶格排列,在同样的切片工艺条件下表面缺陷少于多晶,在电池制造环节,单晶电池的碎片率也是小于1%的,通常情况下是0.8%左右。单晶硅片可以稳定应用金刚线切割工艺,显著降低切片成本,并提高电池转换效率。对多晶而言,晶体结构的缺陷导致在电池环节的碎片率一般大于2%,并且硅片切割工艺的改进难度很大,因为它没法用金刚线切割,只能用传统的砂线来切,成本上基本没有多大的下降空间。 电学性能差异 图3是单多晶的少子寿命对比。蓝色代表少子寿命较高的区域,红色代表少子寿命较低的区域。很明显,单晶的少子寿命是明显高于多晶的。 图3单晶与多晶少子寿命分布比较

相关主题
文本预览
相关文档 最新文档