当前位置:文档之家› 1。发电机纵差保护(故障分量+稳态比率制动式)

1。发电机纵差保护(故障分量+稳态比率制动式)

1。发电机纵差保护(故障分量+稳态比率制动式)
1。发电机纵差保护(故障分量+稳态比率制动式)

附A.1 发电机纵差保护(故障分量+稳态比率制动式)

附A.1.1 稳态差动保护基本原理

比率制动式纵差保护原理接线如图附A1.1所示(以单相为例), I 1、 I 2

为一次电流,1i 和2i 相应的为二次电流。d i 和r i 则为继电器差动电流和制动电流。

其中: 21i i i d +=

2/|)||(|21i i i r +=

图附A1.1

比率制动式纵差保护原理接线

当发电机内部短路(区内)时的短路电流m k I .为:

m

k I . 21I I += (1I 与2I 近于反相) 相应有: 21i i i d +=m k I .=/L n

L r n I I i 2/|)||(|21 +=

此时,d i 为全部区内短路电流,r i 为两侧电流的幅值的代数和的1/2,所以差动保护能灵敏工作。

当外部短路时,2

1I I -=,差流应为零,但两侧互感器通过大电流的磁场特性不一致会导致差流存在一不平衡电流,并可能会大于差动电流的整定值,从而导致差动保护误动作。为了保证正常及区外短路差动保护不误动,整定的比率制动特性曲线为图附A1.2中折线所示。

应有: min .d d I i > 当min .r r I i <;

)(min .min .r r r d d I i K I i -+> 当min .r r I i >

其中: min d I ──差动电流;

min r I ──制动电流;

r K ──比率制动系数。

图附A1.2 差动保护比率制动特性

附A.1.2 故障分量差动保护基本原理

差动保护分为故障分量和稳态两种,前者反应重负荷下的轻微内部故障的能力要比后者强。

故障分量即用故障后的交流量减去故障前的交流量,这样就消去了负荷电流对故障电流的影响,差动电流在故障前基本为零,所以故障分量算法主要针对制动电流而言。

故障时,图附A1.1中1I 、2

I 为全部故障电流,相应的故障分量为: )(1)(11N K K I I I --=?

)(2)(22N K K I I I --=?

其中: 1I ?、2I ?──故障分量电流;

, ()()I I K K 12──故障后K 时刻电流;

, ()()

I I K N K N 12--──对应K 时刻的故障前的电流; N ──一周波采样点数。

此时:

d K K N K K N K K d i I I I I I I I I i =+=-+-=?+?=?--)(2)(1)(2)(2)(1)(121

其中: )(2)(1N K N K I I --= ; 2/|)||(|2/|)||(|)(2)(2)(1)(121N K K N K K r I I I I I I i --+--=?+?=? 。

在重负荷下的轻微内部故障时,差动电流比较小,而正常的负荷电流相对差动电流比较大,根据差动保护的制动特性可能会导致差动保护的拒动。因此,需要对制动电流进行故障分量的算法,消除负荷电流对制动电流的影响,使保护装置能够可靠动作。

按故障分量电流1I ?,2

I ?形成的比率制动式差动特性与图附A1.2相似,因为故障分量的制动电流要比稳态制动电流小,为了提高差动保护的可靠性,需要将制动电流拐点的整定值减小,在本装置中自动将min .r I ?设定为min .r I 的1/2,不需要另外整定。

动作判据为:min .min .d d d I I i =?>?(当min .r r I i ?

)2/()(min .min .min .min .r r d r r r d d I i K I I i K I i -?+=?-?+?>?

(当2/min .min .r r r I I i =?>?时)

其中: min d I ?──故障分量差动电流;

min r I ?──故障分量制动电流拐点;

αtg K =──比率制动系数。

附A.1.3 差动速断保护基本原理

当任一相差动电流大于速断整定值时瞬时动作于跳闸。

差动速断判据为:

n KF KF d d I K I i ?=>.

其中: KF d I .──差动速断电流;

KF K ──为速断倍数;

n I ──为额定电流。

附A.1.4 动作逻辑

本装置中发电机纵差保护采用故障分量+稳态相配合方式(差动保护启动后的0~20ms 为差动速断的运算时段,20~40ms 为故障分量比率式差动保护的运算时段,40ms 之后为稳态比率式差动保护的运算时段,直至差动保护返回或出口)。

发电机比率差动分为单相差动和相间差动两种模式,当控制字中的“相间差动”为“投入”时,发电机比率差动为相间差动模式,当控制字中的“相间差动”为“退出”时,发电机比率差动为单相差动模式,单相差动保护逻辑框图如图附A1.3所示,相间差动保护逻辑框图如图附A1.4所示(注:差动速断保护不受“相间差动”控制)。

图附A1.3 发电机单相差动逻辑

图附A1.4 发电机相间差动逻辑

附A.1.5 定值整定

附A.1.5.1 差动速断定值

差动速断保护可以快速切除内部严重故障,防止由于电流互感器饱和引起的差动保护延时动作,因其不具有制动特性,所以应躲过被保护元件外部短路时可能出现的最大不平衡电流。

在本装置的经验值为5.0~10.0倍的额定电流,即:

L L n n /I )0.10~0.5(/I K I n n K f d.K f ?=?=

附A.1.5.2 差动电流定值

Id.min 为差动保护的最小动作电流,应按躲过被保护元件额定负载时的最大不平衡电流来整定,在现场的实际应用中,发电机差动通常取0.2~0.3倍的额定电流,即:

L n /I )35.0~25.0( I n d.min ?=

附A.1.5.3 制动电流拐点

对于稳态比率差动的制动拐点通常选取0.8~1.2倍的额定电流,即:

L n /I )2.1~8.0( I n r..min ?=

附A.1.5.4 比率制动系数

差动保护的制动电流应大于外部短路时流过差动回路的不平衡电流。被保护元件不同,不平衡电流计算也不相同,需按现场实际情况计算。

在本装置中通常取经验值0.3~0.6,即 K f 取0.3~0.6。

发电机差动保护动作原因分析

发电机差动保护动作原因分析 一、事故经过 2012年10月23日07时29分,网控值班员听见巨响声同时发现盘面柴发电源二103-16断路器跳闸,网控值班员立即前往网控10KV配电室发现浓烟,经检查柴发电源二103-16高压柜后盖已被甩出,柜内已烧黑。2号发电机纵差保护动作,2号发电机组跳闸。07时33分,低频保护动作,甩负荷至第5轮。07时33分41秒,1号、3号机组跳闸,全厂失电。 二、故障分析 继电保护人员随后调取事故动作报告,发现发电机差动保护动作时刻,差动电流确实已经远超过了整定值,说明在103-16柜故障时刻发抗组差动回路确实存在很大的不平衡电流。与此同时为验证发电机差动回路内一次设备是否有故障,对发电机绕组及其一次母线进行对地及相间绝缘检查,未发现异常。证明发电机等一次设备未发生故障,发抗组保护装臵本身在这次大修期间已经对保护装臵及二次回路连线可靠性及差动极性正确性进行检查均未发现有误之处。差动动作时间和103-16柜发生故障时间基本同时发生,但是就算在故障过程中产生的瞬间大电流对发电机差动回路来说也应该是一个穿越性电流,不应该对发电机差动保护产生影响。随后保护人员调取录波图进行分析,发现故障时刻发电机中性点B相电流波形严重畸变。经过计算,发电机中性点B相电流与发电机机端B相电流之差正好等于装臵

采样的差流值。 从录波图上可以看出,故障时刻发电机中性点B相电流波形发生严重畸变,且故障时刻发电机中性点B相电流与发电机机端电流在同一时刻的相位及幅值均不相同,说明故障电流对发电机中性点电流互感器和发电机机端电流互感器造成的影响不同。 三、波形畸变分析 1、从录波图上可以看出,B相电流波形开始发生畸变前一刻波形

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

变压器差动保护的比率制动特性曲线及现场测试方法

变压器差动保护的比率制动特性曲线及现场测试方法 摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器继电器AL3 AL4 ,以保障电力系统的安全运行水平。为此,介绍变压器差动保护的制动特性曲线及现场测试方法。 关键词:变压器;差动保护;制动特性;测试方法 1前言 变压器是现代电力系统中的主要电气设备之一。由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变压器过励磁时能不误动。 2差动保护中引入比率制动特性曲线 变压器在正常负荷状态下,电流互感器电流互感器LDZ1 的误差很校这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。 由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装置的调试重点。 3制动特性曲线的测试方法 以往在实际工作中,由于试验仪器所限,我们很容易忽略比率制动特性的测试,认为制动系数装置已固有,不用测试,结果往往造成保护装置因调试工作不细致而误动作。但随着现场

发电机纵差保护

发电机纵差保护 收藏此信息打印该信息添加:不详来源:未知 输入电流的不同分类 发电机差动保护由三个分相差动元件构成。若按由差动元件两侧输入电流的不同进行分类,可以分成完全纵差保护和不完全保护两类。其交流接入回路分别如图1(a)和图1(b)所示。

图1发电机纵差保护的交流接入回路 在图1中:Ja、Jb、Jc-分别为发电机A、B、C三相的差动元件; A、B、C-发电机三相输入端子。

由图1可以看出,发电机完全纵差保护与不完全纵差保护的区别是:对于完全纵差保护,在发电机中性点侧,输入到差动元件的电流为每相的全电流,而不完全差动保护,由中性点输入到差动元件的电流为每相定子绕组某一分支的电流。 1完全纵差保护 发电机完全纵差保护,是发电机相间故障的主保护。由于差动元件两侧TA的型号、变比完全相同,受其暂态特性的影响较小。其动作灵敏度也较高,但不能反应定子绕组的匝间短路及线棒开焊。 2不完全纵差保护 不完全纵差保护除保护定子绕组的相间短路之外,尚能反应定子线棒开焊及某些匝间短路。但是,由于在中性点侧只引入其一分支的电流,故在整定计算时,尚应考虑各分支电流不相等产生的差流。另外,当差动元件两侧TA型号不同及变比不同时,受系统暂态过程的影响较大。

全国继电保护技木竞赛考题与答案 收藏此信息打印该信息添加:用户发布来源:未知 一、判断题(20题,每题0.5分,要求将答案填在答题卡的相应位置) 1.二次回路中电缆芯线和导线截面的选择原则是:只需满足电气性能的要求;在电压和操作回路中,应按允许的压降选择电缆芯线或电缆芯线的截面。(×) 2.为使变压器差动保护在变压器过激磁时不误动,在确定保护的整定值时,应增大差动保护的5次谐波制动比。(×) 3.对于SF6断路器,当气压降低至不允许的程度时,断路器的跳闸回路断开,并发出“直流电源消失”信号。(√) 4.在双侧电源系统中,如忽略分布电容,当线路非全相运行时一定会出现零序电流和负序电流。(×) 5.在电压互感器二次回路通电试验时,为防止由二次侧向一次侧反充电,将二次回路断开即可。(×) 6.在正常工况下,发电机中性点无电压。因此,为防止强磁场通过大地对保护的干扰,可取消发电机中性点TV二次(或消弧线圈、配电变压器二次)的接地点。(×) 7.为提高保护动作的可靠性,不允许交、直流回路共用同一根电缆。(√) 8.比较母联电流相位式母差保护在母联断路器运行时发生区内故障,理论上不会拒动。(×)

主变比率制动式差动保护

主变比率制动式差动保 护 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1.1.1. 主变比率制动式差动保护 比率制动式差动保护能反映主变内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,既要考虑励磁涌流和过励磁运行工况,同时也要考虑TA 断线、TA 饱和、TA 暂态特性不一致的情况。 由于变压器联结组不同和各侧TA 变比的不同,变压器各侧电流幅值相位也不同,差动保护首先要消除这些影响。本保护装置利用数字的方法对变比和相位进行补偿,以下说明均基于已消除变压器各侧电流幅值相位差异的基础之上。 1.1.1.1. 比率差动动作方程 ? ?? ??-+-+≥-+≥>)I 6I (6.0)I I 6(S I I ) I I (S I I I I e res 0.res e 0.op op 0.res res 0.op op 0.op op ) I 6I ()I 6I I ()I I (e res e res 0.res res.0res >≤<≤ (6-3-1) op I 为差动电流,0.op I 为差动最小动作电流整定值,res I 为制动电流,0.res I 为最小制动电流整定 值,S 为动作特性折线中间段比率制动系数。op.0I ,res.0I ,S 需用户整定。 对于两侧差动: 21I I I op += (6-3-2) 2I 21res I I -= (6-3-3) 1I ,2I 分别为变压器高、低压侧电流互感器二次侧的电流。各侧电流的方向都以指向变压器为正方向。 1.1.1. 2. 比率差动动作特性 比率差动动作特性同图6-3-1所示: 图6-3-1 主变(厂变、励磁变)比率差动动作特性 注:只有主变比率差动保护动作特性才有速动区,厂变和励磁变均没有速动区。 1.1.1.3. 主比率差动启动条件 当三相最大差动电流大于倍最小动作电流时,比率制动式差动启动元件动作。 图6-3-2 主变增量差动保护动作特性图 1.1. 2. 主变差动保护逻辑图 主变差动保护逻辑如图6-3-3所示: 图6-3-3 主变(厂变、励磁变)差动保护逻辑图

发电机纵差动保护培训资料

发电机纵差动保护培训资料 本厂1、2号发动机负粗电流不得大于8℅IN。因此,在发电机上(尤其是大型发电机)应装设定子匝间短路保护。(2)发电机不同相匝间短路时,必将出现环流的短路电流。。 电机网消息:发电机纵差动保护培训资料1、发电机纵差动保护原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外部故障,而且还要求无延时地切除内部故障,为此而设置发电机纵差动保护。在发电机中型点侧配置一组电流互感器,在发电机出口配置一组电流互感器,其保护范围为两电流互感器之间的发电机定子绕组及引出线。 两电流互感器是同一电压等级、同变比、可同型及特性尽可能相近的,其不平衡电流比较小。为防止外部短路暂态不平横电流的影响,差动继电器可选用带中间速饱和电流器的继电器。 发电机纵差动保护培训资料 不平衡电流计算只考虑两电流互感器不一致而产生的不平蘅电流。Ibp.max =KftqKtxfiI(3)dmax Kftq—非周期分量影响系数BCH—2继电器取1 Ktx—同型系数取0.5 fi=0.1 ID(3)max —外部短路最大短路电流周期分量为了防止电流互感器二次回路断线引起保护误动,设计有电流互感器二次回路断线监视装置,在发电机电流互感器二次回路断线后延时发信。 正常运行时发出断线信号后,运行人员应将差动保护退出,以防在断线情况下发生外部短路时差动保护误动。2、发电厂330KV发电机差动保护蒲城发电厂1、2号发动机采用单星形中型点经中值电阻(1000欧)接地接线方式,差动保护采用BCH—12型差动继电器,保护范围是中型点CT与发电机出口CT之间、反映相间短路和单相接地故障,此保护未设CT断线闭锁,依靠躲过单相CT断线二次不平衡电流来闭锁CT断线。 发电机另外与主变共设置一套差动保护,保护范围是330KV两个出口开关CT、发电机中性点CT、厂高变低压侧两分支CT之间的接地、相间短路。3、发电机纵差动保护的评价1)发电机纵差动保护不能反映定子绕组匝间短路;2)发电机定子绕组不同地点发生短路时,由于定子绕组多点感应电动势不同及短路阻抗不同,所以短路电流大小不同,中性点附近短路或接地,差动保护不灵敏。 同步发电机构纵差动保护一、发电机纵差动保护的作用原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外故障,而且还要求无延时地切除内部故障。由变压器差动保护的讨论可知,差动保护可以满足作为发电机主保护的基本要求。 二、发电机纵差动保护的特点由于被保护的对象是定子绕组,因此,当定子一相绕组发生匝间短路时,绕组两端的电流仍同方向,流人差动继电器的只有不平衡电流,差动继电器不会动作,故它不能反应匝间短路。在定子绕组不同地点相简短路时,由于定子绕组各点感应电动势不同,以及短路回路阻抗不同,所以短路电流的大小不一样。 经分析得出如下结论:1)当过渡电阻不为零时,在中性点附近短路时,差动保护可能不动作,即在中性点附近经电弧电阻短路时,可能出现死区。因此,要求发电机纵差动保护灵敏度尽可能高,尽可能减少它的死区。 2)由于发电机电压系统的中性点一般不接地的或经大阻抗接地,单相接地时的短路电流较小,差动保护不能动作。 故必须设置独立的接地:保护。 大容量发电机应采用负序反时限过流保护。。

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

比率制动式差动保护

比率制动式差动保护 变压器差动保护 :这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简 称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 :下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:

1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA, 11'流过变压器高压侧的一次电流; I ” :流过变压器低压侧的一次电流; 12'流过变压器高压侧所装设电流互感器即CT1的二次电流; I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 动作电流lop 4 d Iopo 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; P:比率制动斜线上的任一点; e: p点的纵坐标; b: p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于 电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬 高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴 影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2撮小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流Il=6A,180度,低压侧电流I2=6A,0度,固定II升12,当12升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(11+12) /2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)= 1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 f Ires, o 图二 b 制动电流Ires

比率制动差动保护

1比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为0B,即保护区内短路时的短路电流必须大于0B所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于0A所代表的电流值,保护即能动作。OA <0B这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。 在实际的变压器差动保护装置中,其比率制动特性如下图2所示: 图2中平行于横坐标的AB段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。即:lzd=le/nLH 图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动Izdo增大,当动作电流Idzo大于启动电流时,制动电流和动作电流的交点D必落在制动区内。当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。 2比率制动式差动保护的整定在比率制动式差动保护的整定计算时,通常按以下原则选取: 2.1 Icdsd即差动速断电流 当变压器空载投入或变压器外部故障切除后电压恢复时,励磁涌流高达额定电流的6? 8 倍,当差动保护电流互感器选择合适时,变压器外部短路流过差动回路的不平衡电流小于

纵联差动保护原理

一、发电机相间短路的纵联差动保护 将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部 故障时,I1 与 I2 反向流入,KD的电流为1 1 TA I n - 2 2 TA I n = 1 I' - 2 I'≈0 ,故KD不会动作。当在保护 区内K2点故障时, I1与 I2 同向流入,KD的电流为: 1 1 TA I n + 2 2 TA I n = 1 I' + 2 I'=2k TA I n 当2k TA I n 大于KD的整定值时,即 1 I' - (3) max max / unb st unp i k TA I K K f I n = ≠0 ,KD动作。这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部

故障时, 2 k TA I n ≥Iset ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达: .min .min .min ()brk brk op ork brk op I I I K I I I >≥≤+ 式中:Kst ——同型系数,取; Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。 为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop= (Krel 为可靠系数,取)。越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。对于大、中型发电机,即使轻微故障也会造成严重后果。为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。显然,图所示的

差动保护的比率制动特性曲线及现场测试方法

差动保护是许多电气设备的必备保护,变压器的差动保护由于有变比误差和星角变换问题,相对其他电气设备的差动保护较为复杂,常规的变压器差动保护为了保证星角接线方式的变压器保护差流的平衡,一般将星侧的CT接角形,而将角侧的CT接成星形。而现代的微机变压器差动保护已开始采用将变压器两侧CT均接成星形进入装置,由装置内部软件完成星角转换。做常规变压器差动保护制动特性时,可用一个三相试验台通过调整角度输出两相电流,模拟区内或区外故障两侧CT的同名相的电流加入装置,分别做每相的制动特性。如何用一个三相试验台做微机变压器差动保护比率制动曲线呢?下面以 Y/△-11接线的两卷变压器为例进行说明。 假定变压器星侧二次电流为IH,角侧二次电流为IL。确定输入装置的CT电流极性为: 当一次电流流入变压器时,装置的感应电流都为正极性电流流入装置(如图1),这样在正常运行或区外故障时,星侧流入装置的电流与一次同向,角侧流入装置的电流与一次反向,但又由于星角变换而使一次星侧电流滞后角侧30度,所以最后流入装置的二次电流为星侧超前角侧150度,向量如图2,进入装置后,软件通过以下计算完成转角:

图2 图3 即星侧电流 通过以上转换之后,两侧电流大小未变,方向相反,但由于变压器变比和CT变比问题,进入装置的两侧电流大小不相等,所以还要加上平衡系数,最后计算差电流的算法为: 经过以上运算,可以得出,在区外故障和正常运行时,装置算得的差流为零。这就是国内微机变压器差动保护的算法。 由于星角变换由软件进行,所以在做单相比率制动特性时就不一样了。可以看到,如果在星侧加入A相电流I,而软件却计算出星侧: 这时,要做A相比率制动特性,首先要在角侧加入C相电流,方向与星侧所加A相电流相同,大小适当,平衡掉C相差流,否则C相总能使差动保护先动作。之后,在角侧A相加入与星侧A相方向相反的电流,调整电流大小,就可以作出差动保护的比率制动特性曲线。B相和C相做法与此相同。以此类推,也可以得出其他星角接线方式的变压器的微机差动保护比率制动特性曲线的做法。

发电机的差动保护整定计算.doc

百度文库- 让每个人平等地提升自我 1、发电机差动保护整定计算 (1)最小动作电流的选取 =~I gn/n a式中:I gn——发电机额定电流 n a——电流互感器变比 0.2 * 10190 取=(~) I gn/n a= = 12000/ 5 本保护选择 =1A (2)制动特性拐点的选择 当定子电流等于或小于额定电流时,差动保护不必具有制动特 性,因此,拐点 1 电流选择大于发电机额定电流,本保护选拐 点 1 为 5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选 拐点 2 值为 40A。 (3)制动系数的选取 按照外部短路电流下,差动保护不误动来整定。 =K rel *K ap*K cc*K er 式中: K rel——可靠系数,取~ K ap——非周期分量系数,取~ 2 K cc——互感器同型系数,取 K er ——互感器变比误差系数,取 取各系数最大值,则 =*2**= 考虑到电流互感器的饱和或其暂态特性畸变的影响,为安全起 见,宜适当提高制动系数值,取K1=30%,根据厂家说明书K2推荐值为 80%-100%,本保护取 K2=80%。

原保护为单斜率,定值为K1=30%。 保护动作于全停,启动快切,启动断路器失灵。 2、主变差动及速断保护整定计算 (1)最小动作电流的选取 按躲过变压器额定负载时的不平衡电流来整定。 =K rel (K er +△U+△m)I n/n a式中: I n——变压器额定电流 n a——电流互感器变比 K rel——可靠系数,取~ K er——电流互感器的变比误差, 10P型取 *2 ,5P 型和 TP型取 *2 △U——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值) △m——由于电流互感器变比未完全匹配产生的误差,初设时取 在工程实用整定计算中可选取 =(~)I n/n a,一般工程宜采用不 0.4 * 882.7 小于 I n/n a。取 =n a== 本保护选取 = (2)制动特性拐点的选择 拐点 1 定值要求大于强迫冷循环情况下的额定电流,小于紧急 情况下的过负荷电流,本保护取5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选拐点 2 值为 40A。 (3)制动系数的选取 按区外短路故障,差动保护不误动来整定。

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

发电机差动保护原理

发电机差动保护原理

5.1 发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: I op ≥ I op.0 ( I res ≤ I res.0 时) I op ≥ I op.0 + S(I res – I res.0) ( I res > I res.0 时) 式中:I op 为差动电流,I op.0为差动最小动作电流整定值,I res 为制动电流,I res.0为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发电机为正方向,见图5.1.1。 差动电流: N T op I I I ? ?+= 制动电流: 2 N T res I I I ??-= 式中:I T ,I N 分别为机端、中性点电流互感器(TA)二次侧的电流,TA 的极性见图5.1.1。 图5.1.1 电流极性接线示意图 (根据工程需要,也可将TA 极性端均定义为靠近发电机侧) 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下列条件认为TA 断线: a. 本侧三相电流中至少一相电流为零; b. 本侧三相电流中至少一相电流不变; c. 最大相电流小于1.2倍的额定电流。 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情况,可选择以下方案中的一种: 5.2.1故障分量负序方向(ΔP 2) 匝间保护

该方案不需引入发电机纵向零序电压。 故障分量负序方向(ΔP 2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障时,在故障点出现负序源。故障分量负序方向元件的2.U ?和2. I ?分别取自机端TV 、TA ,其TA 极性图见图5.2.1.1,则故障分量负序功率?P 2为: ??????????=?-Λ?2.2223sen j e e I U R P ? 式中2Λ?I 为2??I 的共轭相量,?sen 。2为故障分量负序方向继电器的最大灵敏角。一般取60?~80?(2.I ?滞后2. U ?的角度)。 故障分量负序方向保护的动作判据可表示为: P e I U R ε>?????????Λ?22' 2.22'sen j e I I ?-ΛΛ?=? 实际应用动作判据综合为: u U ε>??2 i I ε>??2 ? P 2 = ? U 2r ? ? I ’2r + ? U 2i ? ? I ’2i > εP (εu 、εi 、εP 为动作门槛) 保护逻辑框图见图5.2.1.2。 图5.2.1.1 故障分量负序方向保

比率差动保护原理

故障分量差动保护 摘要深入地研究了基于故障分量的数字式差动保护的基本原理,并与传统的比率制动差动保护作了详细比较,讨论了故障分量差动保护的动作判据,最后介绍了基于该原理的保护在实际中的应用。 关键词故障分量差动保护微机保护发电机变压器 0 引言 基于故障分量(也称增量)来实现保护的原理最早可以追溯到突变 量原理的保护,但真正受到人们普遍关注和广泛研究则是出现微机保护技术之后。微机具有长记忆功能和强大的数据处理能力,可以获取稳定的故障分量,从而促进了故障分量原理保护的发展[1]。近20年来,陆续提出了基于故障分量的差动保护、方向保护、距离保护、故障选相等许多新原理,并在元件保护、线路保护各个领域得到了成功的应用。本文针对在发电机、变压器中广泛使用的比率制动式差动保护,讨论故障分量保护的基本原理、判据和应用中的一些问题。 1 故障分量比率差动保护原理 故障分量电流是由从故障后电流中减去负荷分量而得到的,可以由它来构成比率差动保护。习惯上常用“Δ”表示故障分量,故也有人称之为“Δ差动继电器”[2]。以两侧纵联差动保护为例,若两侧电流假定正向均取为流入被保护设备,故障分量比率差动保护的动作方程可表示为: (1) 式中;下标L表示正常负荷分量;下 标Ⅰ,Ⅱ则分别表示被保护设备两侧的电量。 在故障分量比率差动保护中,令,分别表示动作量(差动量)和制动量,即

(2) 因正常运行时有,故传统比率差动保护的动作量 d 可表示为: 和制动量 r (3) 比较式(2)与式(3)可见,忽略变压器两侧负荷电流的误差之后,两种差动保护原理的动作量相同,主要不同之处表现在制动量上。发生内部轻微故障(如单相高阻接地或小匝数匝间短路)时,可能出现 L决定,从 ,这时式(3)中制动量主要由2I Ⅰ 而使得传统比率差动保护方案因制动量太大而降低了灵敏度。利用降低K值来改善灵敏度是有限的。因为必须保证外部严重故障时有足够的制动量不使保护误动,发生外部严重故障时,一般有 ,因此两种原理差 ,制动量主要决定于Δ r 动保护的制动量相当,不会引起误动。由以下进一步的分析可更清楚地看到这一点。 设一单相变压器发生对地高阻抗接地故障,现用一简化的具有两端电源的T形网络来表征,如图1所示。 图1 单相变压器内部故障简化等值电路 Fig.1 The simplified equivalent circuit of single-phase transformer with internal fault 短路阻抗为Z 。按照叠加原理,可将图1所示电路分解为正常网络 f 和故障附加网络。由故障附加网络推导出式(1)的另一种形式为:

发电机保护配置

发电机保护基本原理 发电机可能发生的故障 定子绕组相间短路 定子绕组匝间短路 定子绕组一相绝缘破坏引起的单相接地 励磁回路(转子绕组)接地 励磁回路低励(励磁电流低于静稳极限对应的励磁电流)、失磁 发电机主要的不正常工作状态 过负荷 定子绕组过电流 定子绕组过电压 三相电流不对称 过励磁 逆功率 失步、非全相、断路器出口闪络、误上电等 发电机的主要保护和作用 纵差保护 作用:发电机及其引出线的相间短路保护 规程:1MW以上发电机,应装设纵差保护。对于发电机变压器组:当发电机与变压器间有断路器时,发电机装设单独的纵差保护;当发电机与变压器间没有断路器时,100MW及以下发电机可只装设发电机变压器组公用纵差保护;100MW及以上发电机,除发电机变压器组公用纵差保护还应装设独立纵差保护,对于200MW及以上发电机变压器组亦可装设独立变压器纵差保护。 与发变组差动区别:发变组差动需要考虑厂用分支,要考虑涌流制动、各侧平衡调节。 纵向零序电压 作用:发电机匝间短路(也能反映相间短路)。 规程:50MW以上发电机,当定子绕组为星形接线,中性点只有三个引出端子时,根据用户和制造厂的要求,也可装设专用的匝间短路保护。 定子接地 作用:定子绕组单相接地是发电机最常见的故障,由于发电机中心点不接地或经高阻接地,定子绕组单相接地并不产生大的故障电流。 常用保护方式:基波零序电压(90%)、零序电流、三次谐波零序电压(100%) 定子接地 规程:与母线直接连接的发电机:当单相接地故障电流(不考虑消弧线圈的补偿作用)大于允许值时,应装设有选择性的接地保护装置。保护装置由装于机端的零序电流互感器和电流继电器构成,其动作电流躲过不平衡电流和外部单相接地时发电机稳态电容电流整定,接地保护带时限动作于信号,但当消弧线圈退出运行或由于其它原因,使残余电流大于接地电流允许值时应切换为动作于停机。 发电机变压器组:对100MW以下发电机应装设保护区不小于90%的定子接地保护,对100MW及以上的发电机应装设保护区为100%的定子接地保护。保护装置带时限动作于信号必要时也可动作于停机。 励磁回路接地保护 作用:励磁回路一点接地故障对发电机并未造成危害。但若继而发生两点接地将严重危害发电机安全。 实现方法:采用乒乓式原理。 规程:1MW及以下水轮发电机,对一点接地故障宜装设定期检测装置,1MW以上水轮发电机应装设一点接地保护装置。 100MW以及汽轮发电机,对一点接地故障可采用定期检测,装置对两点接地故障应装设两点接地保护装置。 转子水内冷汽轮发电机和100MW及以上的汽轮发电机,应装设励磁回路一点接地保护装置,并可装设两点接地保护装置,对旋转整流励磁的发电机宜装设一点接地故障定期检测装置。 一点接地保护带时限动作于信号两点接地保护应带时限动作于停机。 失磁保护 作用:为防大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统

比率制动差动保护

1 比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的 主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制 动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。 曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为OB′,即保护区内短路时的短路电流必须大于OB′所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于OA′所代表的电流值,保护即能动作。OA′

相关主题
文本预览
相关文档 最新文档