当前位置:文档之家› 电化学剥离法制备石墨烯及表征

电化学剥离法制备石墨烯及表征

电化学剥离法制备石墨烯及表征
电化学剥离法制备石墨烯及表征

剥离重组法制备石墨烯二氧化钛复合物

剥离重组法制备石墨烯二氧化钛复合物

学校代码:10722 学号:0808014113 分类号:密级:公开 剥离重组法制备石墨烯二氧化钛复合物 Stripping method for restructuring graphite surfaces titanium dioxide compound 作者姓名:邢世才 专业名称:化学 学科门类:理学 指导教师:邓玲娟 提交论文日期:2012年5月 成绩评定:

目录1.1 石墨烯材料简介 1.3 石墨烯复合物的制备方法 1.3.1 机械剥离法 1.3.2 氧化石墨还原法 1.3.3 SiC 分解法 1.3.4 化学气相沉积法 1.3.5电子束辐照法 1.3.6微机械分离法 1.4石墨烯材料的应用 1.4.1 石墨烯基电源材料 1.4.2 石墨烯复合材料 1.4.3 传感器 1.4.4 石墨烯晶体管 2.石墨烯复合材料的研究进展 1.1.1石墨烯与金属化合物复合 1.1.2石墨烯-非金属材料复合 1.1.3石墨烯与聚合物复合 3.石墨烯-二氧化钛复合物研究进展 1.5 本课题的特色与创新之处

文献综述 1.1 石墨烯复合材料的研究进展 石墨烯是由单层碳原子组成的六方蜂巢状二维结构,是其他维的石墨材料的基础材料。它可以包裹形成零维富勒烯,卷起来形成一维碳纳米管,层层堆积形成三维石墨。自从Geim 等用胶带方法制备出石墨烯以来,其就引起物理界和化学界的轰动和极大的兴趣.石墨烯的这种特殊结构,使其表现出一些独特的物理性能,如室温量子霍尔效应、超高的电子迁移率和弹道运输、较长的电子平均自由路径、良好的热传导、较强的机械强度和出众的灵活性。其优异的性能、极大的比表面积和较低的生产成本(相对于碳纳米管),非常适合于高性能复合材料的开发.在实际应用中,石墨烯复合材料可以分为两类:石墨烯/无机复合材料和石墨烯/聚合物复合材料.制备石墨烯复合材料的方法主要有两种:先让氧化石墨与其他材料复合,再将其中的氧化石墨还原得到石墨烯纳米复合材料;或者用改性过的石墨烯与其他材料复合.这些复合材料广泛地应用在超级电容器、锂电池、电催化和燃料电池等领域。 1.1.1 石墨烯与金属化合物复合 金属化合物与石墨烯用不同方法制备复合材料,主要用于超级电容器、锂电池等领域.金属化合物包括金属氧化物、金属氢氧化物、金属硫化物等。 TiO2是一种应用广泛的半导体材料,由于其成本低、稳定性好、对人体无毒性,并具有气敏、压敏、光敏以及较强的光催化特性,而被广泛应用于传感器、太阳能电池和光催化等领域.Manga等通过喷墨印刷术处理前驱溶液氧化石墨和二(2-羟基丙酸)二氢氧化二铵合钛)制备石墨烯-TiO2光电导薄膜.由于这种薄膜制备的光电导体设备具有宽带光电导性、高的光电探测能力和光导率,与纯TiO2的光电探测器相比具有更快的光响应。Williams等通过紫外照射TiO2悬浮液,使其释放电子还原分散在乙醇里的氧化石墨.TiO2颗粒和石墨烯相互作用阻碍剥离石墨烯的团聚.光催化技术不仅提供了紫外辅助还原技术,而且还开创了制备光敏石墨烯半导体复合材料的新途径.Tang等通过分子嫁接方法把化学剥离的石墨烯加入到TiO2纳米颗粒薄膜中,适用于染料敏化太阳能.由于石墨烯的高电导性,石墨烯/TiO2复合薄膜((3.6±1.1)×102Ω/cm)提高了纯TiO2纳米颗粒薄膜((2.1±0.9)×105Ω/cm)电导率2个数量级.此外,基于石墨烯/TiO2复合薄膜的染料敏化太阳能的功率转换效率(1.68%)比纯TiO2纳米颗粒薄膜(0.32%)高出5倍多,这表明了加入石墨烯能有效增强光电性能.其他的金属化合物例如磷酸亚铁锂(Li Fe-PO4)、氧化锡(SnO2)、氧化亚铜(Cu2O)、铂(Pt、硫化镉(CdS)与石墨烯复合材料可以用在锂电池、电催化和传感器等方面.

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

液相法制备石墨烯

液相法制备石墨烯 摘要 近年来, 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣。石墨烯是一种二维单元子层厚度的晶体,其碳原子呈蜂窝状晶格排布,并在单原子层厚度上集合了优异的电学、机械、光学与热学性质。目前人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。现有的石墨烯的制备方法有微机械剥离法、化学气相沉积法、液相或气相直接剥离法、晶体外延生长法﹑氧化-还原法等,但大规模高质量制备技术仍然是制约其进入实际应用的瓶颈之一。 本文采用液相直接剥离石墨来制备石墨烯,按照正交试验设计方案,通过多次实验,改变石墨与溶剂的配比、超声时间、超声功率等,使得石墨剥离充分,通过适当时间的高速离心得到分散较好的石墨烯分散液。再选用不同的溶剂同样对石墨进行剥离得到石墨烯分散液。实验结果表明使用二甲基甲酰胺(DMF)作为溶剂剥离石墨,当浓度配比在0.14mg/ml,超声时间在9小时时效果最好,丁达尔效应表明分散液分散效果良好, 紫外光谱(UV)结果分析得出DMF剥离石墨没有引入其他官能团,利用扫描电子显微镜(SEM)得出微观图,得到低于五层的石墨烯。 与其他石墨烯制备方法相比,本论文所采用的液相直接剥离法制备石墨烯具有仪器设备简单、原材料便宜易得、液相体系便于材料加工成型等优点。直接利用数控超声机对放有石墨的溶剂进行超声剥离,不涉及化学变化从而得到的样品质量高。 关键词:石墨烯,液相剥离,正交试验设计

Graphene by Liquid Phase-based Exfoliation ABSTRACT Graphene has attracted much interest in recent years due to its unique and outstanding properties. Graphene is a two-dimensional crystal with atomic thickness, whose atoms are arranged in a honey comb lattic. Different routes to prepare graphene have been developed and achieved. Preparation methods of graphene used in recent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gas phase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. But large high quality preparation technology is still restrict the bottleneck of entered actual application. In this paper, liquid phase-based exfoliation of graphite method was used to fabricate graphene. By controlling the graphite and solvent ratio, the ultrasonic time, ultrasonic power according to orthogonal test design. Make graphite stripping fully, and at the same time through proper time of high-speed centrifugal get spread good graphene dispersed, and then choose different solvents of graphite and on the same stripped of graphene to dispersed. The experimental shown that when using DMF as solvent stripping graphite, it brought the best results when the ultrasonic time is nine hours and the concentration ratio is 0.14mg/ml. Then Tyndall effect shown that the dispersion liquid had a good dispersion effect Ultraviolet spectroscopy (UV) analysis of the results obtained that other functional groups were not introduced in DMF stripped graphite.Finally, the Graphene less than five layers could be observed in the microgram obtained by scanning electron microscopy (SEM) In comparison with other methods, liquid phase-based exfoliation of graphite method in preparation of grapheme has advantages that the devices required are simple, raw materials are cheap and easy to get, liquid-phase state is easy to be further processed and suitable for mass production. Numerical control ultrasonic machine using directly to a solvent with graphite for ultrasound dissection, not only simple operation, but also very safe. KEY WORDS: graphene, liquid phase-based exfoliation, orthogonal experimental design

电化学法制备石墨烯及其导电特性

Vol.33高等学校化学学报No.82012年8月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 1804~1808电化学法制备石墨烯及其导电特性 朱龙秀,李英芝,赵 昕,张清华 (东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海200051) 摘要 采用电化学方法将石墨层电解剥离,得到分散于电解质溶液的结构较为完整的石墨烯.用透射电子显微镜和拉曼光谱分析了石墨烯的形貌和结构,利用四探针法测定了石墨烯导电特性.实验数据和理论拟合结果表明,当100K

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

CVD法制备石墨烯

题目: CVD法制备石墨烯及其进展

目录 1. 石墨烯 1.1 石墨烯简介 2.石墨烯的制备方法 2.1 物理方法制备石墨烯 2.1.1机械剥离法 2.1.2取向附生法—晶膜生长 2.1.3 液相和气相直接剥离法 2.2 化学法制备石墨烯 2.2.1 化学气相沉积法 2.2.2外延生长法 2.2.3 氧化石墨还原法 3.化学气相沉淀法制备石墨烯 3.1碳源 3.2生长基体 3.3 生长条件 4.不同基体时制备特点 4.1以镍为基体 4.2以铜为基体 5.讨论 6.总结与展望 参考文献

摘要: 石墨烯作为一种近年来发现的新材料,拥有许多独特的理化性质,在多个领域具有很大的应用潜力,成为了目前研究的热点。在多种制备石墨烯的方法中,化学气相沉积(Chemical Vapor Deposition, CVD)法所制备的石墨烯具有面积大、质量高、均匀性好、层数可控等优点,被广泛采用。一般可采用镍,铁,铜,铂等过渡金属作为生长衬底,目前,研究中多采用铜衬底,这是由于其相对比较经济且所生长的石墨烯质量较好。但是如何利用化学气相沉积(CVD)在金属镍(Ni)和铜(Cu)衬底上实现高质量大面积石墨烯的可控生长还存在很大的难度。本文将重点介绍化学气相沉淀法制备石墨烯。 关键词:化学气相沉淀法,石墨烯 1. 石墨烯 1.1 石墨烯简介 石墨烯是一种二维晶体,人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。石墨烯是一种二维晶体,由碳原子按照六边形进行排布,相互连接,形成一个碳分子,其结构非常稳定;随着所连接的碳原子数量不断增多,这个二维的碳分子平面不断扩大,分子也不断变大。单层石墨烯只有一个碳原子的厚度,即0.335 纳米,相当于一根头发的20万分之一的厚度,1毫米厚的石墨中将将近有150万层左右的石墨烯。石墨烯是已知的最薄的一种材料,并且具有极高的比表面积、超强的导电性和强度等优点。 石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15 000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料[12]。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。 2石墨烯的制备方法

石墨烯的制备及电化学性能研究

目录 摘要............................................................................................................................ I Abstract ......................................................................................................................... I I 1 引言 (1) 1.1 石墨烯的制备 (2) 1.1.1 机械剥离法 (2) 1.1.2 电化学剥离法 (2) 1.1.3 化学气相沉积法 (3) 1.2 石墨烯电极材料的制备 (5) 1.3 石墨烯电极材料电化学性能测试 (5) 2 实验部分 (6) 2.1 实验试剂 (6) 2.2 实验仪器 (6) 2.3 RHAC和GQDs的制备 (6) 2.4 RHAC-GQDs的制备 (6) 2.5 电极制备和电池组装 (7) 3 结果和讨论 (8) 3.1 分析了RHAC的比表面积和孔隙结构 (8) 3.2 GQDs的拉曼光谱和荧光光谱分析 (8) 3.3 红外光谱分析 (8) 3.4 XRD分析 (8) 3.5 扫描电镜分析 (9) 3.6 循环伏安法测试分析 (9) 3.7 恒流充放电试验分析 (9) 3.8 电化学阻抗分析 (10) 4 结论与展望 (12) 4.1 结论 (12) 4.2 主要创新点 (12) 4.3 展望 (12) 参考文献 (13) 致谢............................................................................................ 错误!未定义书签。

热膨胀剥离法制备石墨烯及其表征

以-48μm高纯鳞片石墨为原料,先采用Hummers法制备氧化石墨,再采用高温热膨胀剥离法制备石墨烯。利用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、原子力显微镜(AFM)、N2 吸附-脱附(BET)等研究了氧化石墨及石墨烯的晶体结构、表面官能团、表面形貌、比表面积、孔径分布等。XRD 研究结果表明,氧化石墨层间距为0.94 nm,原有的石墨峰消失;热膨胀所得石墨烯(2θ=25.6°, d(002)=0.348nm)为无定形态。FT-IR 分析表明,石墨氧化过程中结构层间形成大量含氧官能团,经高温还原后仅残存部分含氧官能团。石墨烯具有较高的比表面积(336.7m2/g),其厚度在0.4~0.7 nm 之间,为1~2 层石墨烯。 2004 年,英国曼切斯顿大学K S Novoselov 和A K Geim 等人,在实验中通过胶带反复剥离石墨片发现了只有1 个原子厚度单晶石墨膜——石墨烯。石墨烯材料具有理论高比表面积 (2600 m2/g) 以及奇特的电性能 (15000cm2/(V·s))、导热性能(3000 W/(m·K))、拉伸模量(1.01 TPa)、极限强度(116 GPa) 和光学性质,引起了科学家的广泛关注。 目前,石墨烯的制备方法主要分为化学法和物理法。化学法包括热膨胀剥离法、化学气相沉积法、氧化石墨还原法、电化学法、石墨插层法等。物理法包括机械剥离法、爆炸法、加热SiC 法、取向附生法。石墨烯可通过膨胀石墨超声或者球磨制备,其片层厚度一般为30~100 nm,难以得到单层石墨烯。本实验首先采用Hummers 法制备氧化石墨,在 1050 ℃高温热膨胀,并通过在水溶液中超声制备了1~2 层石墨烯。 1、实验部分 1.1、原料及试剂 天然高纯鳞片石墨,含碳99.99%,粒径为-48μm,其X 射线衍射分析表明(002)晶面间距为0.336 nm。高锰酸钾、98% 浓硫酸、硝酸钠、30%双氧水、5% 盐酸,均为分析纯。 1.2、实验方法 氧化石墨制备:采用Hummers 法制备氧化石墨。首先在干燥烧杯中加入55 mL 98%浓硫酸和1 g 硝酸钠,冰浴条件下冷却,当体系温度低于5 ℃时,搅拌中加入2 g 鳞片石墨,混合均匀后,缓慢加入5 g 高锰酸钾,控制反应液温度不超过 20 ℃,反应2 h,然后将烧杯置于 35 ℃左右的恒温水浴中,均匀搅拌,待混合液温度升至 35 ℃,反应30 min,加入92 mL 去离子水,控制反应液温度在 98 ℃左右,继续搅拌15 min,然后加入280 mL 去离子水将反应终止,同时加入20 mL 30% 双氧水,这时溶液从棕黑色变为鲜亮的黄色,趁热过滤,并用2

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

石墨烯修饰电极电化学性能

石墨烯修饰电极的电化学性能 石墨烯(Graphene>是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳M管、三维石墨等其他碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。 本论文围绕石墨烯的不同修饰电极条件,结合电化学基础研究,开展了石墨烯及其相关的电化学性能研究。具体内容归纳如下: (1>将石墨烯与具有良好导电性能的聚苯胺(PANI>复合,研究了石墨烯/聚苯胺复合物修饰电极的电化学性能。利用石墨烯与聚苯胺之间电子给体与电子受体的相互作用,实现了聚苯胺在中性甚至强碱性溶液中的电化学活性,并利用红外光谱、拉曼光谱和紫外光谱进行了可能的机理探讨。石墨烯/聚苯胺复合物材料在中性溶液里的电化学活性,在生物传感领域具有可能的应用空间。同时,在不同pH溶液里的电化学活性也为石墨烯/聚苯胺复合物材料在pH传感中提供了可能的应用空间。 (2>将石墨烯与具有电绝缘性能的凡士林混合,研究了石墨烯/凡士林膜电极的电化学性能。循环伏安测试表明:采用10.0 mg/mL、5.0 mg/mL和1.0 mg/mL的石墨烯/凡士林修饰电极可以依次得到常规尺寸电极、亚微尺寸电极和微尺寸的纳M电极阵列,并且通过简单混合所制备的石墨烯/凡士林膜电极具有良好的电化学活性和稳定性。作为新型碳材料的膜电极,石墨烯/凡士林膜电极在基础电化学研究和应用中具有一定的潜在价值。 (3>将石墨烯组装在具有完全电绝缘性能的硫醇自组装膜电极上,研究了石墨烯/硫醇自组装膜电极的电化学性能。交流阻抗数据表明,随着组装时间的增加,石墨烯/硫醇自组装膜电极的电化学阻抗逐渐降低,表明石墨烯在硫醇自组装膜上是一个可控的组装过程。循环伏安测试还表明,石墨烯的组装时间是120 min和5 min时,可以分别得到常规尺寸和微尺寸纳M电极阵列的石墨烯/硫醇自组装膜电极,而且对抗坏血酸、多巴胺、尿酸具有较好的电催化活性。同时,为了探讨可能的实验机理,我们讨论了电子传递的可能原因以及影响自组装膜电极双电层结构的两个因素。结果表明随着硫醇中碳链长度的增加,电子传递速率逐渐降低,氧化还原峰电位的差值逐渐增大。不同碳材料的电子转移速率呈现为:石墨烯>多孔碳>石墨。这种采用简单而有效的方法制备的石墨烯/硫醇自组装膜电极,在电化学理论研究和实际应用中具有较好的前景。 超级电容器是一种绿色、新型的储能元件,因为其高效、无污染的优良特性,符合“低碳”经济的发展要求,受到了人们的高度重视。超级电容器的核心是电极材料。 新兴的石墨烯二维单层原子碳材料因具有大的比表面积、优异的导电性、高的机械强度,被认为是理想的超级电容器电极材料。化学方法制备的氧化石墨烯具有良好的成膜性,可用于制备“石墨烯纸”并进而应用于无支撑电极。 此外,氧化石墨烯上丰富的含氧官能团可用于锚定金属纳M粒子,形成石墨烯复合材料。本论文围绕石墨烯薄膜制备、修饰和电化学电容性质开展研究工作,发展了石墨烯/碳纳M管复合薄膜的溶液铸造制备方法,提出了水热还原制备石墨烯基复合薄膜的途径,并研究了所制备材料的电容性能,取得了以下的研究成果:1.利用氧化石墨烯良好的成膜性,通过溶液铸造方法,制备了氧化石墨烯薄膜和氧化石墨烯/碳纳M管复合薄膜。 然后通过200℃退火,得到了相应的石墨烯薄膜、石墨烯/碳纳M管薄膜。这种薄膜通过石墨烯层间相互作用结合,例如π-π堆积,以及范德华力等,因而能够在各种极性电解液中稳定存在。复合薄膜的比电容在70~110 F/g,并且因为其表面仍然存在着部分含氧官能团的作用,显示了一定的赝电容的特性,表明其作为超级电容器电极的潜质。2.通过抽虑法制备了氧化石墨烯/碳纳M管复合薄膜。在水热条件下,氧化石墨烯被水还原并实现自组装,重新构建成具有π-π堆积的网络状三维结

比较三种化学方法制备石墨烯

一、利用液氨作为还原剂,还原氧化石墨。 工艺: 1、将60 g的颗粒状天然石墨,硝酸钠30 g加入l0L的双层玻璃反应釜中冷却至0℃;再将2500 mL浓硫酸缓慢加入反应釜中充分搅拌3 0 min,保持反应体系的温度不高于4℃;然后,将180 g高锰酸钾加入反应釜中并充分搅拌60 min,同时保持反应体系温度不高于8℃,此阶段为低温反应。 2、撤走冷浴,用高温恒温循环泵将反应体系加热至35℃,并充分搅拌3h,得到褐色悬浮液,再缓慢加入90 g高锰酸钾反应12h,保持反应体系的温度不高于

40℃,此阶段为中温反应。 3、撤走高温恒温循环泵,用低温冷却循环泵将反应系统温度控制在5℃以下,将7L去离子水缓慢滴加入褐色悬浮液中,体系温度骤然升高,并伴有大量气体生成,稀释的悬浮液在此温度下搅拌60 min。 4、向悬浮液中加入50 mL的H202(30%),室温下搅拌60 min,得到亮黄色氧化石墨 分散液。 5、将上述分散液静置2 h,分层,去除上清液后,加入一定量的去离子水,过滤,得到黄褐色滤饼。用5000 mL稀盐酸(10%)将滤饼洗涤2次后,再分散于5000 mL 去离子水中,过滤,用大量去离子水洗涤至溶液中无氯离子(可用AgN03溶液检测),且接近中性。然后将剩余固体产物在60 ℃的真空干燥箱中干燥24 h,研磨过筛后得到的氧化石墨。 石墨烯的制备 用低温冷却循环泵在一定温度下将高纯氨在密封容器中液化,加入一定量干燥的氧化石墨用超声细胞粉碎机超声剥离1h,将一定量的金属铿放入液氨中,溶液变成蓝色,继续保持超声30 min溶液变黑,停止冷却自然升温使液氨挥发,向得到的黑色固体中加入乙醇超声分散,过滤用去离子水洗涤至中性,真空60℃干燥12h,得到黑色的石墨烯。在其他实验条件相同的条件下,将铿用金属钠和金属钾代替,得到对应的碱金属还原的石墨烯。 小结:采用液氨作为溶剂超声剥离氧化石墨,利用液氨一碱金属强还原性,碱金属进一步插层剥离氧化石墨同时将其还原。实验结果表明,低温的还原体系有效避免了热还原过程中重新团聚的产生,从透射电镜观察得到的石墨烯片层厚度在2-5 nm,红外和XPS证实大部分含氧基团被去除。 还原剂锂不易存放,石墨烯制备时所使用的试剂腐蚀性强。 二、用抗坏血酸(L-AA)(维生素)作还原剂,还原氧化石墨,所得到的是化学还原氧化石墨(CRG) 工艺: 1.在室温下,将30 μm的颗粒状天然石墨2 g,硝酸钠1g加入250 mL三口瓶中冷却至0 ℃;再将_50 mL浓硫酸缓慢加入三口瓶中充分搅拌30 min,并保持反应体系的温度不高于5 ℃;然后,将0.3 g高锰酸钾加入三口瓶中并充分搅拌30 min,同时保持反应体系温度不高于10 ℃;在1h内,再将7g高锰酸钾分3批加入三口瓶中,保持反应体系温度不高于20 ℃,此阶段为低温反应。 2.撤走冷浴,用水浴将反应体系加热至3 5士3 ℃,并充分搅拌2h,得到褐色悬浮液,此阶段为中温反应。 3.将90 mL水缓慢滴加入褐色悬浮液中,体系温度骤然升高至90 ℃,并伴有大量气体生成,稀释的悬浮液在此温度下反应15 min,此阶段对高温反应。 4.向悬浮液中加入H2O2 (30%, 7 mL)与超纯水(55 mL, 45 ℃)的混合溶液, 并得到亮黄色氧化石墨分散液。

相关主题
文本预览
相关文档 最新文档