当前位置:文档之家› 流体力学 孔口管嘴出流与管路水力计算

流体力学 孔口管嘴出流与管路水力计算

流体力学 孔口管嘴出流与管路水力计算
流体力学 孔口管嘴出流与管路水力计算

高等流体力学重点

1.流体的连续介质模型:研究流体的宏观运动,在远远大于分子运动尺度的范围里考察流体运动,而不考虑个别分子的行为,因此我们可以把流体视为连续介质。 它有如下性质: (1)流体是连续分布的物质,它可以无限分割为具有均布质量的宏观微元体。 (2)不发生化学反应和离解等非平衡热力学过程的运动流体中,微元体内流体状态服 从热力学关系 (3)除了特殊面外,流体的力学和热力学状态参数在时空中是连续分布的,并且通常 认为是无限可微的 2.应力:有限体的微元面积上单位面积的表面力称为表面力的局部强度,又称为应力,定义如下:=n T A F A δδδlim 0→ 3.流体的界面性质:微元界面两侧的流体的速度和温度相等,应力向量的大小相等.方向相反或应力分量相等。 4.流体具有易流行和压缩性。 5.应力张量具有对称性。 6.欧拉描述法:在任意指定的时间逐点描绘当地的运动特征量(如速度、加速度)及其它的物理量的分布(如压力、密度等)。 7.拉格朗日描述法:从某个时刻开始跟踪质点的位置、速度、加速度和物理参数的变化,这种方法是离散质点的运动描述法称为拉格朗日描述法。 8.流线:速度场的向量线,该曲线上的任意一点的切向量与当地的的速度向量重合。 迹线:流体质点点的运动迹象。 差别:迹线是同一质点在不同时刻的位移曲线。 流线是同一时刻、不同质点连接起来的速度场向量线。 流线微分方程:ω dz v dy u dx == 迹线微分方程:t x U i i ??= 9.质点加速度:质点速度向量随时间的变化率。 U U t U a )(??+??= 质点加速度=速度的局部导数+速度的迁移导数。 物理量的质点导数=物理量的局部导数+物理量的对流导数。

流力实验实验十一孔口与管嘴出流实验

实验十一孔口与管嘴出流实验 一、实验目的 1.量测孔口与管嘴出流的流速系数、流量系数、侧收缩系数局部阻力系数及圆柱形管嘴内的局部真空度。 2.分析圆柱形管嘴的进口形状(圆角和直角)对出流能力的影响及孔口与管嘴过流能力不同的原因。 二、实验装置

图二孔口、管嘴结构剖面图三、实验原理

在恒压水头下发生自由出流时孔口管嘴的有关公式为: 实验测得上游恒压水位及各孔口、管嘴的过流量,利用以上5个公式,从而得出不同形状断面的孔口、管嘴在恒压、自由出流状态下的各水力系数。 根据理论分析,直角进口圆柱形外管嘴收缩断面处的真空度为 hv = Pv/ρg = 0.75H 本实验装置可实测出直角进口圆柱形外管嘴收缩断面处的真空度,打开直角进口管嘴射流,即可观测到,测管处水柱迅速降低,hv = 0.6 ~ 0.7H。。说明直角进口管嘴在进口处产生较大真空。但与经验值0.75H。相比,真空度偏小,其原因主要是有机玻璃材料的直角进口锐缘难以达到象金属材料那样的强度。 观察孔口及各管嘴出流水柱的流股形态: 打开各孔口管嘴,使其出流,观察各孔口及管嘴水流的流股形态,因各种孔口、管嘴的形状不同,过流阻力也不同,从而导致了各孔口管嘴出流的流股形态也不同:圆角管嘴出流水柱为光滑圆柱,直角管嘴为圆柱形麻花状扭变,圆锥管嘴为光滑圆柱,孔口则为具有侧收缩的光滑圆柱; 圆锥管嘴虽亦属直角进口,但因进口直径渐小,不易产生分离,其侧收缩断面面积接近出口面积(μ值以出口面积计),故侧收缩并不明显影响过流能力。另外,从流股形态看,横向脉动亦不明显,说明渐缩管对流态有稳定作用(工程或实验中,为了提高工作段水流的稳定性,往往在工作段前加一渐缩段,正是利用渐缩的这一水力特性)。能量损失小,因此其μ

计算流体力学教案

计算流体力学教案 Teaching plan of computational fluid mechanics

计算流体力学教案 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 一、流体地基本特征 1.物质地三态 在地球上,物质存在地主要形式有:固体、液体和气体。 流体和固体地区别:从力学分析地意义上看,在于它们对外力抵抗地能力不同。 固体:既能承受压力,也能承受拉力与抵抗拉伸变形。 流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。 液体和气体地区别:气体易于压缩;而液体难于压缩; 液体有一定地体积,存在一个自由液面;气体能充满任意形状地容器,无一定地体积,不存在自由液面。 液体和气体地共同点:两者均具有易流动性,即在任何 微小切应力作用下都会发生变形或流动,故二者统称为流体。 2.流体地连续介质模型

微观:流体是由大量做无规则运动地分子组成地,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右地分子,相邻分子间地距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右地分子,相邻分子间地距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用地一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。 (1)概念 连续介质(continuum/continuous medium):质点连续充满所占空间地流体或固体。 连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据地整个空间地一种连续介质,且其所有地物理量都是空间坐标和时间地连续函数地一种假设模型:u =u(t,x,y,z)。 (2)优点 排除了分子运动地复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。 3.流体地分类

孔口与管嘴出流实验

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴2#直角进口管嘴3#锥形管嘴4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头10. 上回水槽11. 标尺12. 测压管 二、实验原理

流量系数 收缩系数 流速系数 阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定后,测记水箱水面高程标尺读数H ,测定流量Q(要求重复测量三次,时间尽量长些,以求准确), 1 测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 及流量Q,观察和量测直角3.依照上法,打开2#管嘴,测记水箱水面高程标尺读数H 1 管嘴出流时的真空情况。 及Q。 4.依次打开3#园锥形管嘴,测定H 1 及Q,并按下述7(2)的方法测记孔口收缩5.打开4#孔口,观察孔口出流现象,测定H 1 断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。

高等流体力学试题

1.简述流体力学有哪些研究方法和优缺点? 实验方法就是运用模型实验理论设计试验装置和流程,直接观察流动现象,测量流体的流动参数并加以分析和处理,然后从中得到流动规律。实验研究方法的优点:能够直接解决工程实际中较为复杂的流动问题,能够根据观察到的流动现象,发现新问题和新的原理,所得的结果可以作为检验其他方法的正确性和准确性。实验研究方法的缺点主要是对于不同的流动需要进行不同的实验,实验结果的普遍性稍差。 理论方法就是根据流动的物理模型和物理定律建立描写流体运动规律的封闭方程组以及相应初始条件和边界条件,运 用数学方法准确或近似地求解流场,揭示流动规律。理论方法的优点是:所得到的流动方程的解是精确解,可以明确地给出各个流动参数之间的函数关系。解析方法的缺点是:数学上的困难比较大,只能对少数比较简单的流动给出解析解,所能得到的解析解的数目是非常有限的。 数值方法要将流场按照一定的规则离散成若干个计算点,即网格节点;然后,将流动方程转化为关于各个节点上流动 参数的代数方程;最后,求解出各个节点上的流动参数。数值方法的优点是:可以求解解析方法无能为力的复杂流动。数值方法的缺点是:对于复杂而又缺乏完整数学模型的流动仍然无能为力,其结果仍然需要与实验研究结果进行对比和验证。 2.写出静止流体中的应力张量,解释其中非0项的意义. 无粘流体或静止流场中,由于不存在切向应力,即p ij =0(i ≠j ),此时有 P =00000 0xx yy zz p p p ??????????=000000p p p -????-????-??=-p 00000011????1?????? = -p I 式中I 为单位张量,p 为流体静压力。 流体力学中,常将应力张量表示为 p =-+P I T (2-9) 式中p 为静压力或平均压力,由于其作用方向与应力定义的方向相反,所以取负值;T 称为偏应力张量,即 T =xx xy xz yx yy yz zx zy zz τττττττττ?????????? (2-10) 偏应力张量的分量与应力张量各分量的关系为:i =j 时,p ij 为法向应力,τii = p ij - p ;当i ≠j 时p ij 为粘性剪切应力,τij =p ij 。τii =0的流体称为非弹性流体或纯粘流体,τii ≠0的流体称为粘弹性流体。 3.分析可压缩(不可压缩)流体和可压缩(不可压缩)流动的关系. 当气体速度流动较小(马赫数小于0.3)时,其密度变化不大,或者说对气流速度的变化不十分敏感,气体的压缩性没有表现出来。因此,在处理工程实际问题时,可以把低速气流看成是不可压缩流动,把气体可以看作是不可压缩流体。而当气体以较大的速度流动时,其密度要发生明显的变化,则此时气体的流动必须看成是可压缩流动。 流场任一点处的流速v 与该点(当地)气体的声速c 的比值,叫做该点处气流的马赫数,用符号Ma 表示: Ma /v c v == (4-20) 当气流速度小于当地声速时,即Ma<1时,这种气流叫做亚声速气流;当气流速度大于当地声速时,即Ma>l 时,这种气流称为超声速气流;当气流速度等于当地声速时,即Ma=l 时,这种气流称为声速气流。以后将会看到,超声速气流和亚声速气流所遵循的规律有着本质的不同。 马赫数与气流的压缩性有着直接的联系。由式(4-11)可得 所以有 222Ma d ρv dv dv ρc v v =-=-。 (4-21) 当Ma≤0.3时,dρ/ρ≤0.09dv /v 。由此可见,当速度变化一倍时,气体的密度仅仅改变9%以下,一般可以不考虑密度的变化,即认为气流是不可压缩的。反之,当Ma>0.3时,气流必须看成是可压缩的。 4.试解释为什么有时候飞机飞过我们头顶之后才能听见飞机的声音. 5.试分析绝能等熵条件下截面积变化对气流参数(v ,p ,ρ,T )的影响.

高等流体力学

高等流体力学 第一章 流体力学的基本概念 连续介质:流体是由一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所 谓的连续介质。 流体质点:是指微小体积内所有流体分子的总和。 欧拉法质点加速度:时变加速度与位变加速度和 z u u y u u x u u t u dt du a x z x y x x x x x ??+??+??+??== 质点的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数,用dt d 表示。在欧拉法描述中的任意物理量Q 的质点随体导数表述如下: x k k Q u t Q dt dQ ??+??= 式中Q 可以是标量、矢量、张量。质点的随体导数公式对任意物理量都成立,故将质点的 随体导数的运算符号表示如下: x k k u t dt d ??+??= 其中 t ?? 称为局部随体导数,x k k u ??称为对流随体导数,即在欧拉法描述的流动中,物理 量的质点随体导数等于局部随体导数与对流随体导数之和。 体积分的随体导数:质点携带的物理量随时间的变化率称为质点的随体导数。则在由流体质点组成的流动体积V 中标量函数Φ(x, t )随时间的变化率就是体积分的随导函数。 由两部分组成①函数Φ 对时间的偏导数沿体积V 的积分,是由标量场的非恒定性引起的。②函数Φ通过表面S 的通量。由体积V 的改变引起的。 ()dV divv dt d dV v div t dS u dV t dV dt d v v n s v v ?? ? ???Φ+Φ=??????Φ+?Φ?=Φ+?Φ?=Φ??????????????()dV adivv dt da dV av div t a dS au dV t a adV dt d v v n s v v ?? ????+=??????+??=+??=?????????????? 变形率张量: 11ε 12ε13ε D ij = 21ε 22ε 23ε 31ε 32ε 33ε

高等流体力学考试大纲

《高等流体力学》考试大纲 一、考试性质 《高等流体力学》是我校相关专业博士入学专业基础课考试科目。 二、考试形式与试卷结构 1、答卷方式:闭卷,笔试 2、答题时间;180分钟 3、题型比例 概念20% 计算与应用80% 4、参考书目 《高等流体力学》高学平,天津大学出版社,2005. 《高等工程流体力学》张鸣远等,西安交通大学出版社,2006. 三、考试要点 1、流体力学的基本概念 连续介质、欧拉法质点加速度、质点随体导数、体积分的随体导数、变形率张量、旋转角速度、判断有旋流与无旋流、涡量与速度环量的关系、应力张量的概念(包括切应力的特性、压应力的特性)、牛顿流体的本构方程(本构方程的概念、切应力和法向应力与变形的关系)。 2、流体运动的基本方程 微分形式的连续方程的表达形式、不可压缩流体的确切定义、理解其含义。N-S方程的各种表示形式、流体的能量包括哪几种形式,

并对各种形式进行解释,写出单位质量流体能量的表达式、流体运动微分形式的基本方程组有哪些方程组成,通常有几个未知量,方程组是否封闭、对于不可压缩流体,如何求解速度场、压强场以及温度场,说明其求解步骤。 3、势流运动 势流运动控制方程及求解步骤;势流求解常用的方法有哪些。速度势函数与流函数;复势与复速度;恒定平面势流的解析方法有哪几种途径;保角变换法的思路。 4、粘性流体运动 基本方程及求解途径;黏性流体运动的基本性质;黏性流体运动的解析解(如两平行板间的层流、普阿塞流的流速分布的推导)、小雷诺数流动近似解的思路;边界层的概念;边界层厚度(名义厚度、位移厚度);边界层方程的相似性解的概念;边界层的分离现象。5、紊流运动 紊流的特征及分类;壁面剪切紊流的发生过程及紊流结构;时间平均法和系综平均法的概念。紊流运动方程—雷诺方程的推导思路,雷诺方程的形式及与N-S方程的区别,雷诺应力项的意义。紊流模型的用途,紊流模型通常有哪几类(零方程模型、一方程模型、二方程模型、其他模型);紊流动能k、能量耗散率ε。 6、涡旋运动 涡旋的运动学性质、涡旋运动的基本方程;涡旋的形成。

孔口与管嘴出流实验

实验八孔口与管嘴出流实验 一、实验目的 1、掌握测定薄壁孔口与管嘴出流的断面收缩系数ε、流量系数μ、流速系数φ、 局部阻力系数ξ的测量方法; 2、观察各种典型孔口及管嘴自由出流的水力现象,并通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对过流能力的影响,及相关水力要素对孔口出流能力的影响。 二、实验原理 在盛有液体的容器侧壁上开一小孔,液体质点在一定水头作用下,从各个方向流向孔口,并 以射流状态流出,由于水流惯性作用,在流经孔口后,断面发生收缩现象,在离孔口1/2直径的地方达到最小值,形成收缩断面。 若在孔口上装一段L=(3-4)d的短管,此时水流的出流现象便为典型的管嘴出流。当液流经过 管嘴时,在管嘴进口处,液流仍有收缩现象,使收缩断面的流速大于出口流速。因此管嘴收缩断面处的动水压强必小于大气压强,在管嘴内形成真空,其真空度约为h v=0.75H0,真空度的存在相当于提高了管嘴的作用水头。因此,管嘴的过水能力比相同尺寸和作用水头 的孔口大32%。 在恒定流条件下,应用能量方程可得孔口与管嘴自由出流方程: Q=φεA(2gH0)1/2 =μA(2gH0)1/2 流量系数μ=Q/[A(2gH0)1/2] 收缩系数ε=A c/A=d2c/d2 流速系数φ=V c/(2gH0)1/2=μ/ε=1/(1+ξ)1/2 阻力系数ξ=1/φ2-1 三、实验设备 图8-1 孔口与管嘴实验装置图 1、自循环供水器; 2、实验台; 3、可控硅无级调速器; 4、恒压水箱; 5、供水管; 6、回水管; 7、孔口管嘴: (A-A图内小字标号1#为喇叭进口管嘴,2#为直角进口管嘴,3#为锥形管嘴,4#为孔口);8、防溅旋板; 9、测量孔口射流收缩直径的移动触头;10、回水槽;11、标尺;12、测压管。

高等工程流体力学

高等工程流体力学 粘性流动 康顺 华北电力大学能源与动力工程系学院 Kangs@https://www.doczj.com/doc/de2898523.html,

内容提纲 ?边界层及其方程 ?层流边界层流动转捩 ?湍流边界层结构 ?流动分离、二次流动与旋涡 能源动力领域流动问题的主要特征 ?全三维 ?非定常 ?粘性 ?高雷诺数,边界层 ?边界层:层流、转捩、湍流(紊流),分离流动,旋涡运动 叶轮机械(透平和压气机等)大多由单个或多个级组成。每个级含有一 排静子叶片列和一排转子叶片列。在级内的气流场中,一般至少有以下 几种流动现象发生:1、前缘马蹄涡;2、通道涡;3、顶部间隙涡;4、 边界层转捩;5、叶片尾迹;6、旋涡、尾迹等与叶片列周期性非定常相 互作用。 ?激波、激波与边界层相互作用

边界层流动 边界层 边界层概念:粘性很小的流体以大雷诺数运动时,在大部分流场上可以略去粘性的作用;但在物面附近的很薄的一层流体内必须考虑粘性作用。这一薄层流体称为边界层。 平板边界层示意图有边界的流动图谱 如右上图所示:流动分为三个区:边界层,尾迹区,位流区(外部势流区) 二维平板的边界层微分方程 设直匀流以零迎角平行流过一块长度为的平板,如左下图所示,人为规定,当某个y处的速度达到层外自由流的99%时,这一点到物体表面的距离(即y)称为边界层在改点的厚度,记为。显然,边界层的厚度是与X有关的,所以可以写成。 平板边界层 边界层的厚度很小,满足此关系式: 在忽略质量力的前提下,粘性平面不可压流的运动方程加上连续方程是: 用边界层条件式上式,y的数值限制在边界层之内,即 υ ∞l δδ(x) δ(x)l δ(x)<< 22 22 22 22 1 () 1 () u u u p u u u t x y x x y p u t x y y x y u x y υν ρ υυυυυ υν ρ υ ? ?????? ++=-++? ??????? ? ??????? ++=-++? ??????? ? ?? +=? ???? l δ(x)<<0yδ ≤≤

高等流体力学复习资料

扩散:指流体在没有对流混合情况下,流体由分子的随机运动引起的质量传递的一种性质。 本构方程:是反应物体的外部效应与内部结构之间关系的方程。对动力的粘性流体而言,外部黏性应力与内部变形速度之间的关系成为本构方程。 变形速度张量:[]? ???? ?????=zz zy zx yz yy yx xz xy xx s εεεεεεεεε,,,,,,,其中,z y v x zz yy xx ??= ??=??=ω εεμε,,, ???? ????+??==x v y yx xy μεε21,??? ????+??==z x zx xz μωεε21,??? ? ????+??==y z v zy yz ωεε21 雷诺应力:在不可压缩流体的雷诺方程中,j i -μμρ称为雷诺应力(i ,j>1,2,3)当i=j 时为法相雷诺应力,不等时称为均向雷诺应力。 镜像法:是确定干扰后流场的方法之一,是一种特别的奇点法。 粘性:流体微团发生相对滑移时产生切向阻力的性质。 不可压缩流体: 0=Dt D ρ 的流体称为不可压缩流体。不可压缩均质流体:C =ρ 可压缩流体:密度随温度和压强变化的流体称为可压缩流体。 紊流:是一种随机的三维非定常有旋流动。紊流的基本特征:1,不规则流动状态;2,参数随时间空间随机变化;3,空间分布大小形状各不相同漩涡;4,具有瞬息万变的流动特征;5,流动参数符合概率规律;6,相邻参数有关联。 流体:通常说能流动的物质为流体,液体和气体易流动,我们把液体和气体称之为流体。严格地说:在任何微小剪切力的持续作用下,能够连续不断变形的物质称为流体,流体显然不能保持一定的形状,即具有流动性。 耗散函数:i i ij x p ??μ' 称为耗散函数Γ,Γ表示单位时间内单位体积流体由机械能耗散成热能 i i ij ij i i ij x v div x p ????????+??? ??-=??=Γμμεδμμμ232'' 应力张量:[]??? ? ??????=zz zy zx yz yy yx xz xy xx p p p p p p p p p p ,,,,,,称为应力张量,它是描述运动黏性流体内任一点应力 状态的物理量。

流体力学孔口管嘴出流实验报告

《流体力学》实验报告 开课实验室: 2013年5月17日

三、使用仪器、材料 实验仪器:孔口与管嘴出流实验仪 仪器元件:自循环供水器、实验台、无级调速器、水箱、溢流板、稳水孔板、孔口、管嘴、挡水旋板、移动触头、上回水槽、标尺、测压管、接水盒、回水管等。 流体介质:水、气,实验装置如图: T汞厦 1! ! ! ! 1 n b a ■ 四、实验步骤 1、记录参数d1=1.20cm,d2=1.20cm,d3=1.20cm,d4=1.20cm;z仁z2=19cm,z3=z4=12cm 。 2、通电充水逐一打开1-4#孔口管嘴,待液面稳定后分别测记H Q 3 、用游标卡尺测读孔口收缩断面处直径d。 4、关闭电源,将仪器恢复到实验前状态。 五、实验过程原始记录(数据、图表、计算 1. 记录计算有关参数 圆角形管嘴d仁1.20cm,直角形嘴d2=1.20cm,圆锥形嘴d3=1.20cm ; 出口高程读数Z1=Z2=19cm,出口高程读数Z3=Z4=12cm, 孔口d4=1.20cm。 分类项目1圆角形管嘴2直角形管嘴3圆锥形管嘴4孔口水面读数H1/cm 42.10 42.45 42.39 42.10 体积V/cm3 2880 2940 3166 3114 2946 3046 2832 2742 时间t/s 12.95 13.00 15.60 15.00 11.30 11.20 16.70 15.8C 流量Q/(cm3s)222.39 226.15 202.95 207.60 260.71 217.96 169.58 173.5 平均流量Q /(cmSs)224.27 205.28 266.34 171.56 作用水头H o/cm 23.10 23.45 30.39 30.10 面积A/ cm2 1.13 1.13 1.13 1.13 流量系数u 0.933 0.847 0.966 0.625

高等流体力学习题

第一讲绪论 习题: 1.综述流体力学研究方法及其优缺点。 2.试证明下列各式: (1)grad(φ±ψ)=grad(φ)±grad(ψ) (2) grad(φψ)=ψgrad(φ)+φgrad(ψ) (3)设r= x i+y j+ z k,则= (4) 设r= x i+y j+ z k,求div(r)=? (5) 设r= x i+y j+ z k,则div(r4r)= ? 3.给定平面标量场f及M点处上已知两个方向上的方向导数和,求该点处的grad f 第二讲应力张量及应变张量 例2-1试分析下板不动上板做匀速运动的两个无限大平板间的简单剪切流动 ,, 式中k为常数,且k=u0/b。 解:由速度分布和式(2-14、16和17)可得 再由式(2-18)可得 所以II=k=u0/b。 流动的旋转张量R的分量不全为零说明流动是有旋流动,I=tr A=0表明流动为不可压缩流动,II=k表明了流场的剪切速率为常数。

第三讲流体的微分方程 习题:试由纯粘流体的本构方程和柯西方程推导纳维尔-斯托克斯方程(N-S方程)。 第四讲流动的积分方程 【例3-1】 在均匀来流速度为V的流场中放置一个垂直于来流的圆柱体,经过若干距离后测得的速度分布如图所示,假设图示的控制体边界上的压力是均匀的,设流体为不可压缩的,其密度为ρ,试求: (1)流线1-2的偏移量C的表达式; (2)单位长度圆柱体的受力F的表达式。 解: (1)无圆柱体时流管进出口一样大(即流线都是直线,无偏移),进出口的流速分布也是相同的,而放入圆柱体之后出口处的流速分布变成图示的那样,即靠近中心线部分的流速变小,由于已经假定流体是不可压缩的流体,若想满足进出口流量相同——连续性方程,必然会导致流管边界会向外偏移,也就是说出口处流管的截面会增大。因此,求解时可由进出口流量相等入手,设入口处平均流速为V,取宽度为L,所得的连续性方程应为: 求得C=a/2 (2)在流管的进出口截面1-1与2-2之间使用动量方程,即圆柱体的阻力应等于单位时间内流出2-2面的流体的动量与流入1-1面的流体的动量差,列x方向的动量方程可表示为 则,F=-R 【例3-2】试求如图所示的射流对曲面的作用力。 解:假设水平射流的流量为Q,因曲面对称且正迎着射流,则两股流量可以认为相等,等于Q/2。x方向动量方程为 。 所以,射流对壁面的作用力为

新版流体力学孔口管嘴出流实验报告-新版.pdf

《流体力学》实验报告 开课实验室:2013年5 月17日学院城环学院年级、专业、班11环工2班姓名成绩 课程名称流体力学实验 实验项目 名称 孔口管嘴出流实验指导教师 教师 评语教师签名: 年月日 一、实验目的 1.理解射流与孔口出流的特点。 2.掌握管嘴出流的水力现象。 3.灵活应用静力学的基本知识,由测压管读数推求作用水头。 4.掌握孔口、管嘴出流的流量计算公式与流量系数的大小。 二、实验原理

三、使用仪器、材料 实验仪器:孔口与管嘴出流实验仪 仪器元件:自循环供水器、实验台、无级调速器、水箱、溢流板、稳水孔板、孔口、管嘴、挡水旋板、移动触头、上回水槽、标尺、测压管、接水盒、回水管等。 流体介质:水、气,实验装置如图: 四、实验步骤 1、记录参数d1=1.20cm,d2=1.20cm,d3=1.20cm,d4=1.20cm;z1=z2=19cm,z3=z4=12cm。 2、通电充水逐一打开1-4#孔口管嘴,待液面稳定后分别测记H、Q。 3、用游标卡尺测读孔口收缩断面处直径d。 4、关闭电源,将仪器恢复到实验前状态。

五、实验过程原始记录(数据、图表、计算 1.记录计算有关参数 圆角形管嘴d1=1.20cm,直角形嘴d2=1.20cm,圆锥形嘴d3=1.20cm; 出口高程读数Z1=Z2=19cm,出口高程读数Z3=Z4=12cm, 孔口d4=1.20cm。 2.实验记录与计算 分类项目1圆角形管嘴2直角形管嘴3圆锥形管嘴4孔口水面读数H1/cm 42.10 42.45 42.39 42.10 体积V/cm32880 2940 3166 3114 2946 3046 2832 2742 时间t/s 12.95 13.00 15.60 15.00 11.30 11.20 16.70 15.80 流量Q/(cm3/s)222.39 226.15 202.95 207.60 260.71 217.96 169.58 173.54 平均流量Q‘/(cm3/s)224.27 205.28 266.34 171.56 作用水头H o/cm 23.10 23.45 30.39 30.10 面积A/ cm2 1.13 1.13 1.13 1.13 流量系数u 0.933 0.847 0.966 0.625 测管读数H2/cm / 1.82 // 真空度H v/cm /17.18 // 收缩直径d c/cm ///0.972 收缩断面A c/cm2///0.742 收缩系数 1.0 1.0 1.0 0.66 流速系数0.93 0.85 0.97 0.95 阻力系数0.16 0.38 0.06 0.11 流股形态光滑水柱、无收 缩不光滑、紊乱水 柱 光滑水柱扭变光滑水柱、 侧收缩

孔口与管嘴出流实验

孔口与管嘴出流实验 Revised as of 23 November 2020

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关 水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图

1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴 2#直角进口管嘴 3#锥形管嘴 4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头 10. 上回水槽 11. 标尺 12. 测压管 二、 流量系数 收缩系数 流速系数

阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定 ,测定流量Q(要求重复测量三次,时间尽量长些,以求后,测记水箱水面高程标尺读数H 1 准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 及流量Q,观察和量测直角3.依照上法,打开2#管嘴,测记水箱水面高程标尺读数H 1 管嘴出流时的真空情况。 及Q。 4.依次打开3#园锥形管嘴,测定H 1 及Q,并按下述7(2)的方法测记孔口收缩5.打开4#孔口,观察孔口出流现象,测定H 1 断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。 四、 .结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流能力的途径。 参考答案: 据实验报告解答的实际实验结果可知,流股形态及流量系数如下: 园角管嘴出流的流股呈光滑园柱形,u = 0. 935;

【精品】流力实验实验十一孔口与管嘴出流实验

实验十一孔口与管嘴出流实验 实验目的 1.量测孔口与管嘴出流的流速系数、流量系数、侧收缩系数局部阻力系数及圆柱形管嘴内的局部真空度。 二、2.分析圆柱形管嘴的进口形状(圆角和直角)对出流能力的影响及孔口与管嘴过流能力不同的原因。 三、实验装置

三、图二孔口、管嘴结构剖面图 四、实验原理 在恒压水头下发生自由出流时孔口管嘴的有关公式为: 实验测得上游恒压水位及各孔口、管嘴的过流量,利用以上5个公式,从而得出不同形状断面的孔口、管嘴在恒压、自由出流状态下的各水力系数。 根据理论分析,直角进口圆柱形外管嘴收缩断面处的真空度为 hv=Pv/ρg=0。75H 本实验装置可实测出直角进口圆柱形外管嘴收缩断面处的真空度,打开直角进口管嘴射流,即可观测到,测管处水柱迅速降低,hv=0。6~0.7H。。说明直角进口管嘴在进口处产生较大真空.但与经验值0。75H。相比,真空度偏小,其原因主要是有机玻璃材料的直角进口锐缘难以达到象金属材料那样的强度。

观察孔口及各管嘴出流水柱的流股形态: 打开各孔口管嘴,使其出流,观察各孔口及管嘴水流的流股形态,因各种孔口、管嘴的形状不同,过流阻力也不同,从而导致了各孔口管嘴出流的流股形态也不同:圆角管嘴出流水柱为光滑圆柱,直角管嘴为圆柱形麻花状扭变,圆锥管嘴为光滑圆柱,孔口则为具有侧收缩的光滑圆柱; 圆锥管嘴虽亦属直角进口,但因进口直径渐小,不易产生分离,其侧收缩断面 面积接近出口面积(μ值以出口面积计),故侧收缩并不明显影响过流能力。 另外,从流股形态看,横向脉动亦不明显,说明渐缩管对流态有稳定作用(工程 或实验中,为了提高工作段水流的稳定性,往往在工作段前加一渐缩段,正是 利用渐缩的这一水力特性)。能量损失小,因此其μ值与圆角管嘴相近. 观察孔口出流在d/H〉0.1时与在d/H〈0。1时侧收缩情况: 开大流量,使上游水位升高,使d/H〈0。1,测量相应状况下收缩断面直径dc; 再关小流量,上游水头降低,使d/H〉0。1,测量此时的收缩断面直径d c’的值,可发现当d/H〉0。1时d c’增大,并接近于孔径d,这叫作不完全收缩,此 时由实验测知,μ也增大,可达0。7左右. 四、实验步骤与方法 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开水泵开关,使恒压水箱充水,至溢流后,再打开圆柱形管嘴(先旋转旋板挡住管嘴,然后拔掉橡皮塞,最后旋开旋板),待水面稳定后,测定水箱水面高程标尺读数,用体积 法或数显流量计(两种方法皆可)测定流量,测量完毕,先旋转水箱内的旋板,将管嘴进 口盖好,再塞紧橡皮塞。 3。打开圆锥形管嘴,测记恒压水箱水面高程标尺读数及流量,观察和量测圆柱形管嘴出流 时的真空情况。 4。打开孔口,观察孔口出流现象,测量水面高程标尺读数及孔口出流流量,测记孔口收 缩断面的直径(重复测量3次)。改变孔口出流的作用水头(可减少进口流量),观察孔 口收缩断面的直径随水头变化的情况.

孔口管嘴出流试验

实验八 孔口与管嘴出流实验 一、 实验目的 1、掌握测定薄壁孔口与管嘴出流的断面收缩系数ε、流量系数μ、流速系数φ、局部阻力系数ξ的测量方法; 2、观察各种典型孔口及管嘴自由出流的水力现象,并通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对过流能力的影响,及相关水力要素对孔口出流能力的影响。 二、实验设备 图8-1 孔口与管嘴实验装置图 1、 自循环供水器; 2、实验台; 3、可控硅无级调速器; 4、恒压水箱; 5、供水管; 6、回水管; 7、孔口管嘴: 8、防溅旋板; 9、测量孔口射流收缩直径的移动触头; 10、回水槽;11、标尺;12、测压管。 (A-A 图内小字标号1#为喇叭进口管嘴,2#为直角进口管嘴,3#为锥形管嘴,4#为孔口); 三、实验原理 在盛有液体的容器侧壁上开一小孔,液体质点在一定水头作用下,从各个方向流向孔口,并以射流状态流出,由于水流惯性作用,在流经孔口后,断面发生收缩现象,在离孔口1/2直径的地方达到最小值,形成收缩断面。 若在孔口上装一段L=(3-4)d 的短管,此时水流的出流现象便为典型的管嘴出流。当液流经过 管嘴时,在管嘴进口处,液流仍有收缩现象,使收缩断面的流速大于出口流速。因此管嘴收缩断面处的动水压强必小于大气压强,在管嘴内形成真空,其真空度约为h v =0.75H 0,真空度的存在相当于提高了管嘴的作用水头。因此,管嘴的过水能力比相同尺寸和作用水头 的孔口大32%。 在恒定流条件下,应用能量方程可得孔口与管嘴自由出流方程: 0022gH A gH A Q μ?ε==

流量系数 02gH A Q =μ 收缩系数 22d d A A c c ==ε 流速系数 ξεμ?+===1120 gH V c 阻力系数 112-=? ξ 四、实验步骤 1、记录实验常数,各孔口管嘴用橡皮塞塞紧。 2、打开调速器开关,使恒压水箱充水,至溢流后,再打开1#圆角管嘴,待水面稳定后,测定水箱水面高程标尺读数H1,用体积法(或重量法)测定流量Q(要求重复测量三次,时间尽量长些,要在15秒以上,以求准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口 盖好,再塞紧橡皮塞。 3、依照上法,打开2#管嘴,测记水箱水面高程标尺读数H1及流量Q ,观察和量测直角管嘴出流时的真空情况。 4、依次打开3#圆锥形管嘴,测量H1及Q 。 5、打开4#孔口。观察孔口出流现象,测量H1及Q ,并按下述注意事项b 的方法测记孔口收缩断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6、关闭开关3,清理实验桌面及场地。 五、注意事项 1、实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开。 2、量测收缩断面直径:可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将 其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰。 3、以上实验时,注意观察各出流的流股形态,并作好记录。 六、实验成果及要求 1.有关常数: 直角管嘴d1= cm, 喇叭进口管嘴d2= cm,出口高程读数Z1=Z2= cm ; 锥形管嘴d3= cm , 孔口d4= cm,出口高程读数Z3=Z4= cm 。 2.整理记录及计算表格(附表)。 七、思考题 1、结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流能力的途径。 2、观察d/H >0.1时,孔口出流的侧收缩率较d/H <0.1时有何不同? 3、为什么要求圆柱形外管嘴长度L=(3~4)d ,当圆柱形外管嘴长度大于或小于(3~4)d 时将会出现什么情况?

北航计算流体力学大作业

网格生成方法及网格质 量控制 (文献综述) 院系:能源与动力工程学院 姓名: 学号: 指导老师:宁方飞

一、前言 有限元网格生成是工程科学与计算科学相交叉的一个重要研究领域,在经历了30多年发展后的今天依然十分活跃一方面,有限元法己成为一种能够有效地求解各类工程和科学计算问题的通用数值分析方法:另一方面,计算机硬件运算能力的不断提高也容许人们对工程和科学计算的规模、复杂度、效率、精度等方面提出更高的要求。作为有限元走向工程应用的桥梁的有限元网格生成由此获得了源源不断的外在动力。同时,有限元网格生成算法研究中的某些难点问题始终未能获得真正意义上的解决,它们的研究解决对计算几何与计算数学都具有重要的理论价值。 有限元网格生成方法研究领域己取得许多重要成果,形成了独特的方法论体系,提出了许多有效的算法并研制出一些成功的工程化软件产品。近10年来,有限元网格生成方法研究不断地深入、完善和发展,各国科研人员不断尝试得到适应性强、应用范围广泛的网格生成方法。研究重点由二维平面问题转移到三维曲面和三维实体问题,从三角形/四面体网格自动生成转移到四边形/六面体网格自动生成,在并行网格生成、自适应网格生成、贴体坐标网格生成、各向异性网格生成等方面亦取得许多重要进展[1]。 另一方面,不同的网格在有限元计算中表现各异。网格质量对数值求解效率、收敛性和精度的巨大影响也在逐渐被人们认识到。因此,网格生成后的质量分析、后处理成为新的研究课题。尤其针对复杂计算区域,或者不易获得实验数据校核的计算区域,更需要获得高质量的计算网格。 二、网格生成方法 对不规则区域中的流动与传热问题进行数值计算,首先要解决如何进行区域离散化问题。现在有多种对不规则区域进行离散生成计算网格的方法,统称为网格生成技术。本章主要详细介绍结构与非结构网格生成技术。 2.1 概述 积分区域的网格划分直接影响到方程离散的难易,数值计算的快慢和所需计算机内存的大小,也影响到数值解的收敛性和准确性。数值计算中所用网格按网格节点排列是否有序,可分为结构化网格和非结构化网格。在一个区域中,网格的形式可以是单一的,也可以是几种形式的组合。网格生成的详细分类见图2.1。对于结构化网格,常用的方法主要有:正交曲线坐标系中的常规网格、适体坐标法和对角直角坐标法。由于计算域的不规则性,适体坐标法的三种方法比较常用,下文会做重点介绍。而对于非结构化网格,常用的方法主要有:分解和映射法、前沿推进法、Delaunay三角化法和其他方法。下文也会一一介绍[2]。

孔口与管嘴出流实验

孔口与管嘴出流实验 摘要: 本实验通过通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响,并且掌握孔口与管嘴出流的流速系数?、流量系数μ、侧收缩系数ε、局部阻力系数ζ的量测技能。 前言: 管嘴和孔口的出流流体的形态,一直引起有关研究者的兴趣,文献[1~5]综述了这方面的工作。早在17世纪就有人开始研究,包括Bernouli,Reynolds,Barres等等许多人均在此领域有所建树,涉及流体形态特征、孔口与出流形态的影响,出流形态的显示方法等。到本世纪90年代,李文平等人[6]考察了垂直矩形薄壁孔射流轮廓的变化,指出射流的断面形状在流体的不同位置呈现不同的形态。射流轮廓由孔口处的规则矩形,随出流距离的增加发生有规律的收缩,到一定程度转换为一个近似的十字架形态,其长短轴分别为垂直取向和水平取向。在研究范围内,除了非完全收缩区外其它水面线均与孔口宽高比、模型尺寸无关。Hager[1]用摄像法记录扁矩形孔射流的出流形态,发现矩形长边垂直设置的孔口出流,流体上缘首先收缩,向侧面扩展,最后包覆流体的下部,呈现美丽的伞形;而水平设置的孔口出流的边缘,随出流距离的增加,持续发生横向收缩,其边缘增厚。槐文信等人[7]研究了双孔平面射流的吸附现象。根据两股流体间存在的相互吸附效应(Coanda效应),两股流体之间被卷吸的流体得不到补充或补充不足,则相互吸引汇成一股射流。研究指出,在两孔平面射流之间的补充流体小于其卷吸量,其内缘因此效应发生相互吸附,从而汇成一股射流。 实验装置 本实验装置如图9.1所示。 图9—1孔口管嘴实验装置图 1.自循环供水器; 2.实验台; 3.可控硅无级调速器;4恒压水箱;5. 溢流板;6.稳水孔板;7.孔口管嘴;8.防溅旋板;9.测量孔口射流收缩直 径的移动触头;10.上回水槽;11.标尺;12.测压管;

北航计算流体力学大作业

汽车气动特性分析1.汽车模型 图1为原设计图,图2为二维简化模型示意图: 图 1 汽车模型设计图 图 2 简化模型示意图

2. 题目要求 流体属性:空气静温T=300K 、静压Pa p 5 10015.1?=、气体常数R=8314./29.、比热比4.1=γ , 只计算层流。 (1)工况一:汽车在地面行驶,速度分别为:12、120、240km/h ,对应马赫数取为Ma = 0.01、0.1、0.2。 (2)工况二:假设汽车在天空飞行,速度分别为:Ma = 0.2、0.8、2.0。 (3)分别采用基于密度的算法和基于压力的算法。 输出结果: (1)网格生成推荐采用ICEM ,要求在Tecplot 中显示温度场、压力场、马赫数分布、流线图; (2)对比分析当Ma = 0.2时工况1和工况2流场的差别。 (3)对于工况二,Ma = 2.0,基于密度的算例在原网格(大约100*80)基础上加密1倍(200*160),分析网格对计算结果的影响。 (4)比较采用基于密度的算法和基于压力的算法的收敛情况。 (5)分析汽车的阻力和升力随行驶速度的变化规律。 (6)在完成二维计算的基础上,尝试采用三维模型计算可获得加分(工况1或者工况2,Ma = 0.2)。 3. 输出结果 3.1. 工况一 网格如图3所示(140*80):

3.1.1.温度场 图 4 基于密度0.01马赫 图 5 基于密度0.1马赫 图 6 基于密度0.2马赫注:初始温度设置为300K 图7 基于压力0.01马赫图8 基于压力0.1马赫图9 基于压力0.2马赫

3.1.2.压力场 图10 基于密度0.01马赫 图11 基于密度0.1马赫 图12 基于密度0.2马赫注:初始压强设置为101325Pa 图13 基于压力0.01马赫图14 基于压力0.1马赫图15 基于压力0.2马赫

相关主题
文本预览
相关文档 最新文档